Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = delafossite material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4506 KB  
Review
Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting
by Mohamed El Idrissi, Bastian Mei, Mohammed Abd-Lefdil and Lahoucine Atourki
Molecules 2025, 30(5), 1152; https://doi.org/10.3390/molecules30051152 - 4 Mar 2025
Cited by 4 | Viewed by 2718
Abstract
Delafossite CuFeO2 has emerged as a promising earth-abundant p-type photocathode for solar fuel generation due to its stability in aqueous conditions and its favorable light absorption characteristics. However, practical photocurrent generation in CuFeO2 has consistently fallen short of its theoretical potential. [...] Read more.
Delafossite CuFeO2 has emerged as a promising earth-abundant p-type photocathode for solar fuel generation due to its stability in aqueous conditions and its favorable light absorption characteristics. However, practical photocurrent generation in CuFeO2 has consistently fallen short of its theoretical potential. This limitation is attributed primarily to suboptimal practical visible light absorption, resulting in diminished incident photon-to-current conversion efficiency (IPCE). Challenges related to charge separation and transport, originating from low acceptor density and inherent low conductivity, further contribute to the reported suboptimal performance of delafossite CuFeO2. Thus, the present review comprehensively documents the latest advancements in the field of CuFeO2 photocathode research, with a particular emphasis on strategies to overcome the challenges currently being faced and on the illustration of pathways that may lead to the enhancement of critical performance parameters such as photocurrents, photovoltage, and fill factor. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

23 pages, 2836 KB  
Article
Effect of Changing and Combining Trivalent Metals in the Structural and Electronic Properties of Cu-Based Crystal Delafossite Materials
by Joeluis Cerutti Torres, Pablo Sánchez-Palencia, José Carlos Jiménez-Sáez, Perla Wahnón and Pablo Palacios
Crystals 2024, 14(5), 418; https://doi.org/10.3390/cryst14050418 - 29 Apr 2024
Cited by 3 | Viewed by 2055
Abstract
Cu-based ternary oxides with delafossite structure have received considerable attention in recent years for their versatility in a wide range of applications, among which is the possibility to use them in heterostructure solar cells as hole transport layers, due to their promising behavior [...] Read more.
Cu-based ternary oxides with delafossite structure have received considerable attention in recent years for their versatility in a wide range of applications, among which is the possibility to use them in heterostructure solar cells as hole transport layers, due to their promising behavior as p-type conducting oxides. Ab initio calculations have been performed with density functional theory to investigate the role of the trivalent metal within the CuMO2 structure and the dependence of structural and electronic properties with the species (M = Al, Ga, In, Fe, Cr, Co, Sc, Y) occupying the site of the metal. Generalized Gradient Approximation also including a Hubbard term and nonlocal Heyd–Scuseria–Enzerhof screened hybrid functional schemes were tested and their results were compared. Excellent agreement with experimental lattice parameters and measured gaps have been found. The use of hybrid functionals in HSE approximation considerably improves the bandgaps when compared with the experimental results but takes considerable time to converge, hence the need to explore less demanding methodologies. Trends in the geometry as well as in the electronic properties are discussed, and the effect of mixing different metals (CuMxN1−xO2, M, N being the aforementioned elements) in the geometry and electronic properties of these delafossite materials is investigated. Due to the high cost of HSE calculations, especially when supercells are needed to model several x concentrations, statistical models and techniques based on machine learning have also been explored to predict HSE bandgap values from GGA and structural information. Full article
Show Figures

Figure 1

20 pages, 4437 KB  
Review
The Use of Copper-Based Delafossite to Improve Hydrogen Production Performance: A Review
by Hasnae Chfii, Amal Bouich and Bernabé Mari Soucase
Hydrogen 2024, 5(1), 39-58; https://doi.org/10.3390/hydrogen5010004 - 30 Jan 2024
Cited by 7 | Viewed by 4171
Abstract
This review paper reports on the use of Delafossite as a layer between perovskite-based solar cells to improve hydrogen production efficiency and make the process easier. The investigation delves into the possible breakthroughs in sustainable energy generation by investigating the synergistic interplay between [...] Read more.
This review paper reports on the use of Delafossite as a layer between perovskite-based solar cells to improve hydrogen production efficiency and make the process easier. The investigation delves into the possible breakthroughs in sustainable energy generation by investigating the synergistic interplay between Delafossite and solar technology. This investigation covers copper-based Delafossite material’s properties, influence on cell performance, and function in the electrolysis process for hydrogen production. Some reports investigate the synthesis and characterizations of delafossite materials and try to improve their performance using photo electrochemistry. This work sheds light on the exciting prospects of Delafossite integration using experimental and analytical methodologies. Full article
(This article belongs to the Special Issue Feature Papers in Hydrogen (Volume 2))
Show Figures

Figure 1

9 pages, 2521 KB  
Communication
Theoretical Investigation of Delafossite-Cu2ZnSnO4 as a Promising Photovoltaic Absorber
by Seoung-Hun Kang, Myeongjun Kang, Sang Woon Hwang, Sinchul Yeom, Mina Yoon, Jong Mok Ok and Sangmoon Yoon
Nanomaterials 2023, 13(24), 3111; https://doi.org/10.3390/nano13243111 - 10 Dec 2023
Cited by 2 | Viewed by 1917
Abstract
In the quest for efficient and cost-effective photovoltaic absorber materials beyond silicon, considerable attention has been directed toward exploring alternatives. One such material, zincblende-derived Cu2ZnSnS4 (CZTS), has shown promise due to its ideal band gap size and high absorption coefficient. However, challenges such [...] Read more.
In the quest for efficient and cost-effective photovoltaic absorber materials beyond silicon, considerable attention has been directed toward exploring alternatives. One such material, zincblende-derived Cu2ZnSnS4 (CZTS), has shown promise due to its ideal band gap size and high absorption coefficient. However, challenges such as structural defects and secondary phase formation have hindered its development. In this study, we examine the potential of another compound, Cu2ZnSnO4 (CZTO), with a similar composition to CZTS as a promising alternative. Employing ab initio density function theory (DFT) calculations in combination with an evolutionary structure prediction algorithm, we identify that the crystalline phase of delafossite structure is the most stable among the 900 (meta)stable CZTO. Its thermodynamic stability at room temperature is also confirmed by the molecular dynamics study. Excitingly, this new phase of CZTO displays a direct band gap where the dipole-allowed transition occurs, making it a strong candidate for efficient light absorptions. Furthermore, the estimation of spectroscopic limited maximum efficiency (SLME) directly demonstrates the high potential of delafossite-CZTO as a photovoltaic absorber. Our numerical results suggest that delafossite-CZTO holds promise for future photovoltaic applications. Full article
(This article belongs to the Special Issue Research Progress of Solar Cells Based on Oxide Nanomaterials)
Show Figures

Figure 1

23 pages, 6683 KB  
Article
The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations
by Hasnae Chfii, Amal Bouich, Andreu Andrio, Joeluis Cerutti Torres, Bernabé Mari Soucase, Pablo Palacios, Mohammed Abd Lefdil and Vicente Compañ
Nanomaterials 2023, 13(16), 2312; https://doi.org/10.3390/nano13162312 - 11 Aug 2023
Cited by 8 | Viewed by 3049
Abstract
A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, [...] Read more.
A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices. Full article
Show Figures

Figure 1

11 pages, 2885 KB  
Article
Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode
by N. M. A. Hadia, Mohamed Shaban, Ashour M. Ahmed, W. S. Mohamed, Meshal Alzaid, Mohammed Ezzeldien, M. F. Hasaneen, Wassim El Malti, Ahmed Adel A. Abdelazeez and Mohamed Rabia
Catalysts 2023, 13(3), 456; https://doi.org/10.3390/catal13030456 - 21 Feb 2023
Cited by 9 | Viewed by 2751
Abstract
This study describes the synthesis of delafossite, CuFeO2, as a primary photocatalytic material for hydrogen generation. A photoelectrode, CuFeO2/CuO/Cu, was prepared by combusting a Cu foil dipped in FeCl3 in ambient air. This photoelectrode showed excellent optical behavior [...] Read more.
This study describes the synthesis of delafossite, CuFeO2, as a primary photocatalytic material for hydrogen generation. A photoelectrode, CuFeO2/CuO/Cu, was prepared by combusting a Cu foil dipped in FeCl3 in ambient air. This photoelectrode showed excellent optical behavior for the hydrogen generation reaction from sewage water, producing 90 µmol/h of H2. The chemical structure was confirmed through XRD and XPS analyses, and the crystalline rhombohedral shape of CuFeO2 was confirmed using SEM and TEM analyses. With a bandgap of 1.35 ev, the prepared material displayed excellent optical properties. Electrochemical measurements for H2 gas generation were carried out using the CuFeO2/CuO/Cu photoelectrode, comparing the effect of light and dark and monochromatic wavelength light. The electrode exhibited significant enhancement in light compared to dark, with current density (Jph) values of −0.83 and −0.1 mA·cm−2, respectively. The monochromatic light also had a noticeable effect, with the Jph value increasing from −0.45 to −0.79 mA·cm−2 as the wavelength increased from 640 to 390 nm. This system is cheap and durable, making it a promising solution for hydrogen gas fuel generation in the industry. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 7560 KB  
Article
Improving the p-Type CuCrO2 Thin Film’s Electrical and Optical Properties
by Jiaxin Jiang, Yu-Feng You, Dhanapal Vasu, Sheng-Chi Chen, Te-Wei Chiu, Gopi Prashanth and Po Chou Chen
Materials 2023, 16(3), 1000; https://doi.org/10.3390/ma16031000 - 21 Jan 2023
Cited by 5 | Viewed by 4089
Abstract
In this research, we studied the functional properties of CuCrO2, which is the most promising p-type transparent conductive oxide (TCO). The thin films were fabricated using a spin coating technique. The diffraction patterns were obtained with the help of X-ray diffractions, [...] Read more.
In this research, we studied the functional properties of CuCrO2, which is the most promising p-type transparent conductive oxide (TCO). The thin films were fabricated using a spin coating technique. The diffraction patterns were obtained with the help of X-ray diffractions, and the optical properties of absorption characteristics were studied using UV-visible absorption. The physical properties of film formation and surface morphology were analyzed using FESEM analysis. The aging properties were also analyzed with the help of various precursors with different aging times. The CuCrO2 thin films’ functional properties were determined by using chelating agent and precursor solution aging times. The CuCrO2 thin films have better transmittance, resistance, figure of merit (FOM), and electrical conductivity. Moreover, the resistivity values of the CuCrO2 thin films are 7.01, 9.90, 12.54, 4.10, 2.42, and 0.35 Ω cm. The current research article covers the preparation of copper chromium delafossite thin films. These thin films can be suitable for hole transport layers in transparent optoelectronic devices. Full article
(This article belongs to the Special Issue Nanostructural Thin Films: Microstructure and Optical Properties)
Show Figures

Figure 1

14 pages, 3510 KB  
Article
Semiconducting p-Type Copper Iron Oxide Thin Films Deposited by Hybrid Reactive-HiPIMS + ECWR and Reactive-HiPIMS Magnetron Plasma System
by Zdenek Hubička, Martin Zlámal, Jiri Olejníček, Drahoslav Tvarog, Martin Čada and Josef Krýsa
Coatings 2020, 10(3), 232; https://doi.org/10.3390/coatings10030232 - 3 Mar 2020
Cited by 11 | Viewed by 8057
Abstract
A reactive high-power impulse magnetron sputtering (r-HiPIMS) and a reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma source (r-HiPIMS + ECWR) were used for the deposition of p-type CuFexOy thin films on glass with SnO2 [...] Read more.
A reactive high-power impulse magnetron sputtering (r-HiPIMS) and a reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma source (r-HiPIMS + ECWR) were used for the deposition of p-type CuFexOy thin films on glass with SnO2F conductive layer (FTO). The aim of this work was to deposit CuFexOy films with different atomic ratio of Cu and Fe atoms contained in the films by these two reactive sputtering methods and find deposition conditions that lead to growth of films with maximum amount of delafossite phase CuFeO2. Deposited copper iron oxide films were subjected to photoelectrochemical measurement in cathodic region in order to test the possibility of application of these films as photocathodes in solar hydrogen production. The time stability of the deposited films during photoelectrochemical measurement was evaluated. In the system r-HiPIMS + ECWR, an additional plasma source based on special modification of inductively coupled plasma, which works with an electron cyclotron wave resonance ECWR, was used for further enhancement of plasma density ne and electron temperature Te at the substrate during the reactive sputtering deposition process. A radio frequency (RF) planar probe was used for the determination of time evolution of ion flux density iionflux at the position of the substrate during the discharge pulses. Special modification of this probe to fast sweep the probe system made it possible to determine the time evolution of the tail electron temperature Te at energies around floating potential Vfl and the time evolution of ion concentration ni. This plasma diagnostics was done at particular deposition conditions in pure r-HiPIMS plasma and in r-HiPIMS with additional ECWR plasma. Generally, it was found that the obtained ion flux density iionflux and the tail electron temperature Te were systematically higher in case of r-HiPIMS + ECWR plasma than in pure r-HiPIMS during the active part of discharge pulses. Furthermore, in case of hybrid discharge plasma excitation, r-HiPIMS + ECWR plasma has also constant plasma density all the time between active discharge pulses ni ≈ 7 × 1016 m−3 and electron temperature Te ≈ 4 eV, on the contrary in pure r-HiPIMS ni and Te were negligible during the “OFF” time between active discharge pulses. CuFexOy thin films with different atomic ration of Cu/Fe were deposited at different conditions and various crystal structures were achieved after annealing in air, in argon and in vacuum. Photocurrents in cathodic region for different achieved crystal structures were observed by chopped light linear voltammetry and material stability by chronoamperometry under simulated solar light and X-ray diffraction (XRD). Optimization of depositions conditions results in the desired Cu/Fe ratio in deposited films. Optimized r-HiPIMS and r-HiPIMS + ECWR plasma deposition at 500 °C together with post deposition heat treatment at 650 °C in vacuum is essential for the formation of stable and photoactive CuFeO2 phase. Full article
(This article belongs to the Special Issue Photocatalytic Thin Films)
Show Figures

Figure 1

11 pages, 2595 KB  
Article
Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures
by Thomas Stöcker and Ralf Moos
Materials 2018, 11(10), 1888; https://doi.org/10.3390/ma11101888 - 2 Oct 2018
Cited by 16 | Viewed by 5317
Abstract
Oxide-based materials are promising candidates for use in high temperature thermoelectric generators. While their thermoelectric performance is inferior to commonly used thermoelectrics, oxides are environmentally friendly and cost-effective. In this study, Cu-based delafossites (CuFeO2), a material class with promising thermoelectric properties [...] Read more.
Oxide-based materials are promising candidates for use in high temperature thermoelectric generators. While their thermoelectric performance is inferior to commonly used thermoelectrics, oxides are environmentally friendly and cost-effective. In this study, Cu-based delafossites (CuFeO2), a material class with promising thermoelectric properties at high temperatures, were investigated. This work focuses on the phase stability of CuFeO2 with respect to the temperature and the oxygen partial pressure. For this reason, classical material characterization methods, such as scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were combined in order to elucidate the phase composition of delafossites at 900 °C at various oxygen partial pressures. The experimentally obtained results are supported by the theoretical calculation of the Ellingham diagram of the copper–oxygen system. In addition, hot-stage X-ray diffraction and long-term annealing tests of CuFeO2 were performed in order to obtain a holistic review of the phase stability of delafossites at high temperatures and varying oxygen partial pressure. The results support the thermoelectric measurements in previous publications and provide a process window for the use of CuFeO2 in thermoelectric generators. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials)
Show Figures

Figure 1

18 pages, 7195 KB  
Review
Copper Delafossites under High Pressure—A Brief Review of XRD and Raman Spectroscopic Studies
by Alka B. Garg and Rekha Rao
Crystals 2018, 8(6), 255; https://doi.org/10.3390/cryst8060255 - 19 Jun 2018
Cited by 35 | Viewed by 9074
Abstract
Delafossites, with a unique combination of electrical conductivity and optical transparency constitute an important class of materials with their wide range of applications in different fields. In this article, we review the high pressure studies on copper based semiconducting delafossites with special emphasis [...] Read more.
Delafossites, with a unique combination of electrical conductivity and optical transparency constitute an important class of materials with their wide range of applications in different fields. In this article, we review the high pressure studies on copper based semiconducting delafossites with special emphasis on their structural and vibrational properties by synchrotron based powder X-ray diffraction and Raman spectroscopic measurements. Though all the investigated compounds undergo pressure induced structural phase transition, the structure of high pressure phase has been reported only for CuFeO2. Based on X-ray diffraction data, one of the common features observed in all the studied compounds is the anisotropic compression of cell parameters in ambient rhombohedral structure. Ambient pressure bulk modulus obtained by fitting the pressure volume data lies between 135 to 200 GPa. Two allowed Raman mode frequencies Eg and A1g are observed in all the compounds in ambient phase with splitting of Eg mode at the transition except for CuCrO2 where along with splitting of Eg mode, A1g mode disappears and a strong mode appears which softens with pressure. Observed transition pressure scales exponentially with radii of trivalent cation being lowest for CuLaO2 and highest for CuAlO2. The present review will help materials researchers to have an overview of the subject and reviewed results are relevant for fundamental science as well as possessing potential technological applications in synthesis of new materials with tailored physical properties. Full article
(This article belongs to the Special Issue High-Pressure Studies of Crystalline Materials)
Show Figures

Figure 1

16 pages, 3892 KB  
Article
Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2
by Thomas Stöcker, Jörg Exner, Michael Schubert, Maximilian Streibl and Ralf Moos
Materials 2016, 9(4), 227; https://doi.org/10.3390/ma9040227 - 24 Mar 2016
Cited by 29 | Viewed by 6914
Abstract
In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. [...] Read more.
In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

23 pages, 196 KB  
Article
Transparent Conducting Oxides—An Up-To-Date Overview
by Andreas Stadler
Materials 2012, 5(4), 661-683; https://doi.org/10.3390/ma5040661 - 19 Apr 2012
Cited by 368 | Viewed by 21600
Abstract
Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and [...] Read more.
Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al), are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication. Full article
(This article belongs to the Special Issue Advances in Transparent Conducting Oxides)
Show Figures

Figure 1

Back to TopTop