Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting
Abstract
:1. Introduction
2. Drawbacks of Bare CuFeO2 Photocathodes
3. Implemented Strategies for Improving Photoelectrochemical Performance of CuFeO2
3.1. Defect Engineering
3.2. Enhancing Light Harvesting
3.3. Improving Charge Carrier Separation by Heterojunction Formation
4. Fermi-Level Pinning in CuFeO2: Lessons from Other Photoelectrodes
4.1. Intrinsic Contributions to Fermi-Level Pinning
4.2. Other Mechanisms Contributing to Fermi-Level Pinning
5. Suggested Strategies for Enhancing CuFeO2 PEC Performance
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEC | Photoelectrochemical |
IPCE | Incident Photon-to-Current Efficiency |
HER | Hydrogen Evolution Reaction |
OER | Oxygen Evolution Reaction |
STH | Solar-to-Hydrogen |
EIS | Electrochemical Impedance Spectroscopy |
TRMC | Time-Resolved Microwave Conductivity |
MS | Mott–Schottky |
KPFM | Kelvin Probe Force Microscopy |
XPS | X-Ray Photoelectron Spectroscopy |
HMA | Hybrid Microwave Annealing |
CTA | Conventional Thermal Annealing |
LDH | Layered Double Hydroxide DLC |
DLC | Diamond-Like Carbon |
NPs | Nanoparticles |
PSB | Photonic Stop Band |
FLP | Fermi Level Pinning |
MIGS | Metal-Induced Gap States |
FTO | Fluorine-Doped Tin Oxide |
TiO2 | Titanium Dioxide |
ZnO | Zinc Oxide |
DSO | DyScO3 |
CFO | CuFeO2 |
References
- Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.-D.; Liu, S.; Teng, C.P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. Adv. Sci. 2017, 4, 1600337. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Jang, Y.J.; Choi, S.; Kang, H.J.; Park, H.; Lee, J.S.; Park, S. All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater. 2016, 8, e248. [Google Scholar] [CrossRef]
- Jang, Y.J.; Ryu, J.; Hong, D.; Park, S.; Lee, J.S. A multi-stacked hyperporous silicon flake for highly active solar hydrogen production. Chem. Commun. 2016, 52, 10221–10224. [Google Scholar] [CrossRef]
- Jang, Y.J.; Lee, J.; Lee, J.; Lee, J.S. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide. ACS Appl. Mater. Interfaces 2016, 8, 7748–7755. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Siddique, S.; Khan, A.; Haider, S.S.; Khalid, M. Recent developments in graphene based novel structures for efficient and durable fuel cells. Mater. Res. Bull. 2020, 122, 110674. [Google Scholar] [CrossRef]
- Peerakiatkhajohn, P.; Yun, J.-H.; Wang, S.; Wang, L. Review of recent progress in unassisted photoelectrochemical water splitting: From material modification to configuration design. J. Photon. Energy 2016, 7, 12006. [Google Scholar] [CrossRef]
- Youn, D.H.; Park, Y.B.; Kim, J.Y.; Magesh, G.; Jang, Y.J.; Lee, J.S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J. Power Source 2015, 294, 437–443. [Google Scholar] [CrossRef]
- Breyer, C.; Lopez, G.; Bogdanov, D.; Laaksonen, P. The role of electricity-based hydrogen in the emerging power-to-X economy. Int. J. Hydrogen Energy 2024, 49, 351–359. [Google Scholar] [CrossRef]
- Ke, G.-L.; Jia, B.; He, H.-C.; Zhou, Y.; Zhou, M. State-of-the-art advancements of transition metal oxides as photoelectrode materials for solar water splitting. Rare Met. 2022, 41, 2370–2386. [Google Scholar] [CrossRef]
- Domenichini, R.; Gallio, M.; Lazzaretto, A. Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations. Energy 2010, 35, 2184–2193. [Google Scholar] [CrossRef]
- Stiegel, G.J.; Ramezan, M. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. Int. J. Coal Geol. 2006, 65, 173–190. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.; Leung, M.K.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 2006, 87, 461–472. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The intensification technologies to water electrolysis for hydrogen production—A review. Renew. Sust. Energ. Rev. 2014, 29, 573–588. [Google Scholar] [CrossRef]
- BALL, M.; WIETSCHEL, M. The future of hydrogen—opportunities and challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Damyanova, S.; Pawelec, B.; Arishtirova, K.; Fierro, J. Ni-based catalysts for reforming of methane with CO2. Int. J. Hydrogen Energy 2012, 37, 15966–15975. [Google Scholar] [CrossRef]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Kelly, N.; Gibson, T.; Ouwerkerk, D. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results. Int. J. Hydrogen Energy 2008, 33, 2747–2764. [Google Scholar] [CrossRef]
- Sivula, K. Toward Economically Feasible Direct Solar-to-Fuel Energy Conversion. J. Phys. Chem. Lett. 2015, 6, 975–976. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, G.; Fu, H.; Li, Z.; Zou, Z. Tandem photoelectrochemical cells for solar water splitting. Adv. Phys. X 2018, 3, 1487267. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Mei, B.; Wenderich, K. Principles and Limitations of Photoelectrochemical Fuel Generation. In Heterogeneous Photocatalysis; Strunk, J., Ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 77–100. ISBN 9783527344642. [Google Scholar]
- Mei, B.; Mul, G.; Seger, B. Beyond Water Splitting: Efficiencies of Photo-Electrochemical Devices Producing Hydrogen and Valuable Oxidation Products. Adv. Sustain. Syst. 2017, 1, 1600035. [Google Scholar] [CrossRef]
- Moriya, M.; Minegishi, T.; Kumagai, H.; Katayama, M.; Kubota, J.; Domen, K. Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J. Am. Chem. Soc. 2013, 135, 3733–3735. [Google Scholar] [CrossRef]
- Sullivan, I.; Zoellner, B.; Maggard, P.A. Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chem. Mater. 2016, 28, 5999–6016. [Google Scholar] [CrossRef]
- Li, C.; Hisatomi, T.; Watanabe, O.; Nakabayashi, M.; Shibata, N.; Domen, K.; Delaunay, J.-J. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ. Sci. 2015, 8, 1493–1500. [Google Scholar] [CrossRef]
- Read, C.G.; Park, Y.; Choi, K.-S. Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell. J. Phys. Chem. Lett. 2012, 3, 1872–1876. [Google Scholar] [CrossRef]
- Sathre, R.; Scown, C.D.; Morrow, W.R.; Stevens, J.C.; Sharp, I.D.; Ager, J.W.; Walczak, K.; Houle, F.A.; Greenblatt, J.B. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3264–3278. [Google Scholar] [CrossRef]
- Li, Z.; Fang, S.; Sun, H.; Chung, R.-J.; Fang, X.; He, J.-H. Solar Hydrogen. Adv. Energy Mater. 2023, 13, 2203019. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, J.; Yao, X.; Chen, S.; Chen, Z. Clarifying the Roles of Oxygen Vacancy in W-Doped BiVO4 for Solar Water Splitting. ACS Appl. Energy Mater. 2018, 1, 3410–3419. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Mei, B.; Seger, B.; Pedersen, T.; Malizia, M.; Hansen, O.; Chorkendorff, I.; Vesborg, P.C.K. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. J. Phys. Chem. Lett. 2014, 5, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, P.; Naresh Kumar, P.; Deepa, M.; Subrahmanyam, C.; Ghosal, P. Bismuth sulfide nanocrystals and gold nanorods increase the photovoltaic response of a TiO2/CdS based cell. Sol. Energy Mater. Sol. Cells 2017, 159, 296–306. [Google Scholar] [CrossRef]
- Subramanyam, P.; Vinodkumar, T.; Nepak, D.; Deepa, M.; Subrahmanyam, C. Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting. Catal. Today 2019, 325, 73–80. [Google Scholar] [CrossRef]
- Subramanyam, P.; Meena, B.; Sinha, G.N.; Deepa, M.; Subrahmanyam, C. Decoration of plasmonic Cu nanoparticles on WO3/Bi2S3 QDs heterojunction for enhanced photoelectrochemical water splitting. Int. J. Hydrogen Energy 2020, 45, 7706–7715. [Google Scholar] [CrossRef]
- Subramanyam, P.; Meena, B.; Suryakala, D.; Deepa, M.; Subrahmanyam, C. Plasmonic nanometal decorated photoanodes for efficient photoelectrochemical water splitting. Catal. Today 2021, 379, 1–6. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Zheng, P.; Senty, T.; Meng, F.; Bristow, A.D.; Manivannan, A.; Wu, N. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449. [Google Scholar] [CrossRef]
- van Benthem, K.; Elsässer, C.; French, R.H. Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef]
- Aadenan, A.; Arzaee, N.A.; Rahman, N.A.A.; Noh, M.F.M.; Daud, M.N.M.; Mohamed, N.A.; Mustapha, M.; Ibrahim, M.A.; Ludin, N.A.; Teridi, M.A.M. Effect of aqueous media on photoelectrochemical water splitting performance of α-Fe2O3/LaFeO3:Cr tandem cell. J. Mater. Res. 2024, 39, 737–749. [Google Scholar] [CrossRef]
- Shi, H.; Guo, H.; Wang, S.; Zhang, G.; Hu, Y.; Jiang, W.; Liu, G. Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. Energy Fuels 2022, 36, 11404–11427. [Google Scholar] [CrossRef]
- Fan, R.; Mi, Z.; Shen, M. Silicon based photoelectrodes for photoelectrochemical water splitting. Opt. Express 2019, 27, A51–A80. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, T.; Gong, J. Single-crystal silicon-based electrodes for unbiased solar water splitting: Current status and prospects. Chem. Soc. Rev. 2019, 48, 2158–2181. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Takei, K.; Zhang, J.; Kapadia, R.; Zheng, M.; Chen, Y.-Z.; Nah, J.; Matthews, T.S.; Chueh, Y.-L.; Ager, J.W.; et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed Engl. 2012, 51, 10760–10764. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Minegishi, T.; Kageshima, Y.; Kobayashi, H.; Hisatomi, T.; Higashi, T.; Katayama, M.; Domen, K. CdTe-Based Photoanode for Oxygen Evolution from Water under Simulated Sunlight. J. Phys. Chem. Lett. 2017, 8, 5712–5717. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, T.J.; Platzer-Björkman, C.; Edoff, M.; Edvinsson, T. CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation. Int. J. Hydrogen Energy 2013, 38, 15027–15035. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sato, N.; Orita, M.; Kuang, Y.; Kaneko, H.; Minegishi, T.; Yamada, T.; Domen, K. Development of highly efficient CuIn0.5Ga0.5Se2 -based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 2018, 11, 3003–3009. [Google Scholar] [CrossRef]
- Zhao, J.; Minegishi, T.; Zhang, L.; Zhong, M.; Gunawan; Nakabayashi, M.; Ma, G.; Hisatomi, T.; Katayama, M.; Ikeda, S.; et al. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angew. Chem. Int. Ed. Engl. 2014, 53, 11808–11812. [Google Scholar] [CrossRef]
- Muzzillo, C.P.; Klein, W.E.; Li, Z.; DeAngelis, A.D.; Horsley, K.; Zhu, K.; Gaillard, N. Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes. ACS Appl. Mater. Interfaces 2018, 10, 19573–19579. [Google Scholar] [CrossRef]
- Takayama, T.; Iwase, A.; Kudo, A. Enhancing Photocathodic Performances of Particulate-CuGaS2-Based Photoelectrodes via Conjugation with Conductive Organic Polymers for Efficient Solar-Driven Hydrogen Production and CO2 Reduction. ACS Appl. Mater. Interfaces 2024, 16, 36423–36432. [Google Scholar] [CrossRef]
- Zhang, L.; Minegishi, T.; Nakabayashi, M.; Suzuki, Y.; Seki, K.; Shibata, N.; Kubota, J.; Domen, K. Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5. Chem. Sci. 2015, 6, 894–901. [Google Scholar] [CrossRef]
- Nunes, D.; Pimentel, A.; Branquinho, R.; Fortunato, E.; Martins, R. Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation. Catalysts 2021, 11, 504. [Google Scholar] [CrossRef]
- Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. Emerging Copper-Based Semiconducting Materials for Photocathodic Applications in Solar Driven Water Splitting. Catalysts 2022, 12, 1198. [Google Scholar] [CrossRef]
- Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461. [Google Scholar] [CrossRef]
- Zheng, L.; Diao, L.; Zhang, R.; Sun, X.; Lv, Q.; Chen, F.; Li, Y.; Liu, H.; Zhang, X.; Lu, Z.; et al. Design and In Situ Growth of Cu2O-Blended Heterojunction Directed by Energy-Band Engineering: Toward High Photoelectrochemical Performance. Adv. Mat. Interfaces 2022, 9, 2101690. [Google Scholar] [CrossRef]
- Septina, W.; Prabhakar, R.R.; Wick, R.; Moehl, T.; Tilley, S.D. Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes. Chem. Mater. 2017, 29, 1735–1743. [Google Scholar] [CrossRef]
- Arai, T.; Konishi, Y.; Iwasaki, Y.; Sugihara, H.; Sayama, K. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 2007, 9, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.P.; Abdi, F.F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; van de Krol, R. Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting. Chem. Mater. 2016, 28, 4231–4242. [Google Scholar] [CrossRef]
- Oropeza, F.E.; Dzade, N.Y.; Pons-Martí, A.; Yang, Z.; Zhang, K.H.L.; de Leeuw, N.H.; Hensen, E.J.M.; Hofmann, J.P. Electronic Structure and Interface Energetics of CuBi2O4 Photoelectrodes. J. Phys. Chem. C 2020, 124, 22416–22425. [Google Scholar] [CrossRef]
- Sharma, G.; Zhao, Z.; Sarker, P.; Nail, B.A.; Wang, J.; Huda, M.N.; Osterloh, F.E. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A 2016, 4, 2936–2942. [Google Scholar] [CrossRef]
- Amrute, A.P.; Łodziana, Z.; Mondelli, C.; Krumeich, F.; Pérez-Ramírez, J. Solid-State Chemistry of Cuprous Delafossites: Synthesis and Stability Aspects. Chem. Mater. 2013, 25, 4423–4435. [Google Scholar] [CrossRef]
- Kumar, M.; Zhao, H.; Persson, C. Study of band-structure, optical properties and native defects in AIBIIIO2 (AI = Cu or Ag, BIII = Al, Ga or In) delafossites. Semicond. Sci. Technol. 2013, 28, 65003. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Balischewski, C.; Pacholski, C.; Pandey, A.; Bald, I.; Taubert, A. Copper Iron Chalcogenide Semiconductor Nanocrystals in Energy and Optoelectronics Applications—State of the Art, Challenges, and Future Potential. Adv. Opt. Mater. 2023, 11, 2202411. [Google Scholar] [CrossRef]
- Mao, L.; Mohan, S.; Gupta, S.K.; Mao, Y. Multifunctional delafossite CuFeO2 as water splitting catalyst and rhodamine B sensor. Mater. Chem. Phys. 2022, 278, 125643. [Google Scholar] [CrossRef]
- Dai, C.; Tian, X.; Nie, Y.; Lin, H.-M.; Yang, C.; Han, B.; Wang, Y. Surface Facet of CuFeO2 Nanocatalyst: A Key Parameter for H2O2 Activation in Fenton-Like Reaction and Organic Pollutant Degradation. Environ. Sci. Technol. 2018, 52, 6518–6525. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. MSF 2015, 832, 28–53. [Google Scholar] [CrossRef]
- Prévot, M.S.; Jeanbourquin, X.A.; Bourée, W.S.; Abdi, F.; Friedrich, D.; van de Krol, R.; Guijarro, N.; Le Formal, F.; Sivula, K. Evaluating Charge Carrier Transport and Surface States in CuFeO2 Photocathodes. Chem. Mater. 2017, 29, 4952–4962. [Google Scholar] [CrossRef]
- Prévot, M.S.; Li, Y.; Guijarro, N.; Sivula, K. Improving charge collection with delafossite photocathodes: A host–guest CuAlO2/CuFeO2 approach. J. Mater. Chem. A 2016, 4, 3018–3026. [Google Scholar] [CrossRef]
- Hermans, Y.; Klein, A.; Sarker, H.P.; Huda, M.N.; Junge, H.; Toupance, T.; Jaegermann, W. Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 1910432. [Google Scholar] [CrossRef]
- Jiang, C.-M.; Reyes-Lillo, S.E.; Liang, Y.; Liu, Y.-S.; Liu, G.; Toma, F.M.; Prendergast, D.; Sharp, I.D.; Cooper, J.K. Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes. Chem. Mater. 2019, 31, 2524–2534. [Google Scholar] [CrossRef]
- Prévot, M.S.; Guijarro, N.; Sivula, K. Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 2015, 8, 1359–1367. [Google Scholar] [CrossRef]
- Sim, U.; Jeong, H.-Y.; Yang, T.-Y.; Nam, K.T. Nanostructural dependence of hydrogen production in silicon photocathodes. J. Mater. Chem. A 2013, 1, 5414. [Google Scholar] [CrossRef]
- Su, J.; Minegishi, T.; Katayama, M.; Domen, K. Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. J. Mater. Chem. A 2017, 5, 4486–4492. [Google Scholar] [CrossRef]
- Gaillard, N.; Prasher, D.; Chong, M.; Deangelis, A.; Horsley, K.; Ishii, H.A.; Bradley, J.P.; Varley, J.; Ogitsu, T. Wide-Bandgap Cu(In,Ga)S2 Photocathodes Integrated on Transparent Conductive F:SnO2 Substrates for Chalcopyrite-Based Water Splitting Tandem Devices. ACS Appl. Energy Mater. 2019, 2, 5515–5524. [Google Scholar] [CrossRef]
- Li, J.; Griep, M.; Choi, Y.; Chu, D. Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode. Chem. Commun. 2018, 54, 3331–3334. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Xiao, Y.; Li, Y.; Delaunay, J.-J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269–3306. [Google Scholar] [CrossRef]
- Oh, Y.; Yang, W.; Tan, J.; Lee, H.; Park, J.; Moon, J. Boosting Visible Light Harvesting in p-Type Ternary Oxides for Solar-to-Hydrogen Conversion Using Inverse Opal Structure. Adv. Funct. Mater. 2019, 29, 1900194. [Google Scholar] [CrossRef]
- Wang, F.; Septina, W.; Chemseddine, A.; Abdi, F.F.; Friedrich, D.; Bogdanoff, P.; van de Krol, R.; Tilley, S.D.; Berglund, S.P. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. J. Am. Chem. Soc. 2017, 139, 15094–15103. [Google Scholar] [CrossRef]
- Wuttig, A.; Krizan, J.W.; Gu, J.; Frick, J.J.; Cava, R.J.; Bocarsly, A.B. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO2. J. Mater. Chem. A 2017, 5, 165–171. [Google Scholar] [CrossRef]
- Jang, Y.J.; Park, Y.B.; Kim, H.E.; Choi, Y.H.; Choi, S.H.; Lee, J.S. Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production. Chem. Mater. 2016, 28, 6054–6061. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, Y.; Liu, M.; Chen, Y.; Xia, Z.; Xue, H. Enhancing the Lifetime of Photoinduced Charge Carriers in CuFeO2 Nanoplates by Hydrothermal Doping of Mg for Photoelectrochemical Water Reduction. Phys. Status Solidi 2018, 215, 1800056. [Google Scholar] [CrossRef]
- Aqaei, F.; Zare, M.; Shafiekhani, A. Role of plasmonic Au nanoparticles embedded in the diamond-like carbon overlayer in the performance of CuFeO2 solar photocathodes. J. Solid State Electrochem. 2021, 25, 1139–1150. [Google Scholar] [CrossRef]
- Oh, Y.; Yang, W.; Tan, J.; Lee, H.; Park, J.; Moon, J. Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response. Nanoscale 2018, 10, 3720–3729. [Google Scholar] [CrossRef]
- Oh, Y.; Yang, W.; Kim, J.; Jeong, S.; Moon, J. Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture. ACS Appl. Mater. Interfaces 2017, 9, 14078–14087. [Google Scholar] [CrossRef] [PubMed]
- Bruera, A.; Elsenberg, A.; Borghi, M.; Dolcetti, G.; Bolelli, G.; Gärtner, F.; Schieda, M.; Klassen, T.; Lusvarghi, L. Aerosol Deposition of CuFeO2 Photocathode Coatings for Hydrogen Production. J. Therm. Spray Tech. 2024, 33, 1746–1770. [Google Scholar] [CrossRef]
- Fu, W.-R.; Yang, J.; Zhao, Z.-Y. Enhancing the photoelectrochemical performance of CuFeO2 photocathode through copper foam substrate with integrating trap light and conductivity. Mater. Sci. Semicond. Process. 2024, 174, 108233. [Google Scholar] [CrossRef]
- Präg, R.; Kölbach, M.; Abdi, F.F.; Ahmet, I.Y.; Schleuning, M.; Friedrich, D.; van de Krol, R. Photoelectrochemical Properties of CuFeO2 Photocathodes Prepared by Pulsed Laser Deposition. Chem. Mater. 2024, 36, 7764–7780. [Google Scholar] [CrossRef]
- Gu, J.; Wuttig, A.; Krizan, J.W.; Hu, Y.; Detweiler, Z.M.; Cava, R.J.; Bocarsly, A.B. Mg-Doped CuFeO2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide. J. Phys. Chem. C 2013, 117, 12415–12422. [Google Scholar] [CrossRef]
- Lohaus, C.; Klein, A.; Jaegermann, W. Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes. Nat. Commun. 2018, 9, 4309. [Google Scholar] [CrossRef]
- Bein, N.S.; Machado, P.; Coll, M.; Chen, F.; Makarovic, M.; Rojac, T.; Klein, A. Electrochemical Reduction of Undoped and Cobalt-Doped BiFeO3 Induced by Water Exposure: Quantitative Determination of Reduction Potentials and Defect Energy Levels Using Photoelectron Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 7071–7076. [Google Scholar] [CrossRef]
- Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737–743. [Google Scholar] [CrossRef]
- Jang, J.-W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 2015, 6, 7447. [Google Scholar] [CrossRef]
- Baran, T.; Visibile, A.; Busch, M.; He, X.; Wojtyla, S.; Rondinini, S.; Minguzzi, A.; Vertova, A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021, 26. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xiang, C.; Haussener, S.; Berger, A.D.; Lewis, N.S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6, 2984. [Google Scholar] [CrossRef]
- Hisatomi, T.; Dotan, H.; Stefik, M.; Sivula, K.; Rothschild, A.; Grätzel, M.; Mathews, N. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 2012, 24, 2699–2702. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Palacios-Padrós, A.; Kirchgeorg, R.; Tighineanu, A.; Schmuki, P. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. ChemSusChem 2014, 7, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Heine, V. Theory of Surface States. Phys. Rev. 1965, 138, A1689. [Google Scholar] [CrossRef]
- Louie, S.G.; Chelikowsky, J.R.; Cohen, M.L. Ionicity and the theory of Schottky barriers. Phys. Rev. B 1977, 15, 2154. [Google Scholar] [CrossRef]
- Ruan, Y.-C.; Ching, W.Y. An effective dipole theory for band lineups in semiconductor heterojunctions. J. Appl. Phys. 1987, 62, 2885–2897. [Google Scholar] [CrossRef]
- Tung, R.T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078. [Google Scholar] [CrossRef]
- Mead, C.A. Surface States on Semiconductor Crystals; Barriers on the Cd(Se:S) System. Appl. Phys. Lett. 1965, 6, 103–104. [Google Scholar] [CrossRef]
- Kurtin, S.; McGill, T.C.; Mead, C.A. Fundamental Transition in The Electronic Nature of Solids. Phys. Rev. Lett. 1969, 22, 1433. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24, 3659–3666. [Google Scholar] [CrossRef]
- Suzuki, I.; Huang, B.; Omata, T.; Klein, A. Fermi Energy Limitation at β-CuGaO2 Interfaces Induced by Electrochemical Oxidation/Reduction of Cu. ACS Appl. Energy Mater. 2020, 3, 9117–9125. [Google Scholar] [CrossRef]
- Siol, S.; Hellmann, J.C.; Tilley, S.D.; Graetzel, M.; Morasch, J.; Deuermeier, J.; Jaegermann, W.; Klein, A. Band Alignment Engineering at Cu2O/ZnO Heterointerfaces. ACS Appl. Mater. Interfaces 2016, 8, 21824–21831. [Google Scholar] [CrossRef] [PubMed]
- Hermans, Y.; Murcia-López, S.; Klein, A.; Jaegermann, W. BiVO4 Surface Reduction upon Water Exposure. ACS Energy Lett. 2019, 4, 2522–2528. [Google Scholar] [CrossRef]
- Oba, F.; Togo, A.; Tanaka, I.; Paier, J.; Kresse, G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B 2008, 77, 245202. [Google Scholar] [CrossRef]
- Janotti, A.; van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Persson, C.; Lany, S.; Zunger, A. Why can CuInSe2 be readily equilibrium-doped n-type but the wider-gap CuGaSe2 cannot? Appl. Phys. Lett. 2004, 85, 5860–5862. [Google Scholar] [CrossRef]
- Monch, W. Role of virtual gap states and defects in metal-semiconductor contacts. Phys. Rev. Lett. 1987, 58, 1260. [Google Scholar] [CrossRef]
- Poulain, R.; Proost, J.; Klein, A. Sputter Deposition of Transition Metal Oxides on Silicon: Evidencing the Role of Oxygen Bombardment for Fermi-Level Pinning. Phys. Status Solidi 2019, 216, 1900730. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, K.; Wallace, R.M.; Cho, K. Impact of Interfacial Oxygen Content on Bonding, Stability, Band Offsets, and Interface States of GaAs:HfO2 Interfaces. J. Phys. Chem. C 2010, 114, 22610–22618. [Google Scholar] [CrossRef]
- Rao, F.; Kim, M.; Freeman, A.J. Structural and electronic properties of transition-metal/BaTiO3(001) interfaces. Phys. Rev. 1997, 55, 13953. [Google Scholar] [CrossRef]
- Clark, S.J.; Robertson, J. Energy levels of oxygen vacancies in BiFeO3 by screened exchange. Appl. Phys. Lett. 2009, 94, 022902. [Google Scholar] [CrossRef]
- Klein, A. Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule. Thin Solid Film. 2012, 520, 3721–3728. [Google Scholar] [CrossRef]
- Augustin, A.; Santhosh Yesupatham, M.; Shenoy, S.; Dhileepan, M.D.; Neppolian, B.; Sekar, K. Organic-Inorganic Hybrid Material for Photocatalytic H2 Evolution: Electron Shuttling between Photoresponsive Nanocomposite and Co(II) Redox Mediator. ChemPhotoChem 2024, 8, e202400193. [Google Scholar] [CrossRef]
- Ye, S.; Shi, W.; Liu, Y.; Li, D.; Yin, H.; Chi, H.; Luo, Y.; Ta, N.; Fan, F.; Wang, X.; et al. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508. [Google Scholar] [CrossRef] [PubMed]
- Kronawitter, C.X.; Zegkinoglou, I.; Rogero, C.; Guo, J.-H.; Mao, S.S.; Himpsel, F.J.; Vayssieres, L. On the Interfacial Electronic Structure Origin of Efficiency Enhancement in Hematite Photoanodes. J. Phys. Chem. C 2012, 116, 22780–22785. [Google Scholar] [CrossRef]
- Zandi, O.; Beardslee, J.A.; Hamann, T. Substrate Dependent Water Splitting with Ultrathin α-Fe2O3 Electrodes. J. Phys. Chem. C 2014, 118, 16494–16503. [Google Scholar] [CrossRef]
- Hu, Y.; Boudoire, F.; Mayer, M.T.; Yoon, S.; Graetzel, M.; Braun, A. Function and Electronic Structure of the SnO2 Buffer Layer between the α-Fe2O3 Water Oxidation Photoelectrode and the Transparent Conducting Oxide Current Collector. J. Phys. Chem. C 2021, 125, 9158–9168. [Google Scholar] [CrossRef]
- Le Formal, F.; Grätzel, M.; Sivula, K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting. Adv. Funct. Mat. 2010, 20, 1099–1107. [Google Scholar] [CrossRef]
- Pailhé, N.; Wattiaux, A.; Gaudon, M.; Demourgues, A. Impact of structural features on pigment properties of α-Fe2O3 haematite. J. Solid State Chem. 2008, 181, 2697–2704. [Google Scholar] [CrossRef]
- Stefik, M.; Cornuz, M.; Mathews, N.; Hisatomi, T.; Mhaisalkar, S.; Grätzel, M. Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Lett. 2012, 12, 5431–5435. [Google Scholar] [CrossRef] [PubMed]
- Kondofersky, I.; Dunn, H.K.; Müller, A.; Mandlmeier, B.; Feckl, J.M.; Fattakhova-Rohlfing, D.; Scheu, C.; Peter, L.M.; Bein, T. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: The influence of scaffold doping density. ACS Appl. Mater. Interfaces 2015, 7, 4623–4630. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Qiu, R.; Mao, Z.; Han, Y.; Madhusudan, P.; Wang, X.; Wang, C.; Qi, C.; Yu, X.; Zeng, S.; et al. A review on copper current collector used for lithium metal batteries: Challenges and strategies. J. Energy Storage 2024, 100, 113683. [Google Scholar] [CrossRef]
- Bouziani, A.; Park, J.; Ozturk, A. Synthesis of α-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity. J. Photochem. Photobiol. A Chem. 2020, 400, 112718. [Google Scholar] [CrossRef]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.-H.; Rossell, M.D.; Yu, P.; Chu, Y.-H.; Scott, J.F.; Ager, J.W.; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef]
Material | Bandgap (eV) | Photocurrent Density (mA cm−2) | Stability (Hours) | Solar-to-Hydrogen Conversion Efficiency [%] | Toxicity | References |
---|---|---|---|---|---|---|
CuFeO2 | 1.55 | −1.51 at +0.4 VRHE | 50 | 10 at 400 nm | Low | [71] |
p-Si | 1.1–1.3 | −0.25 at +0 VRHE | 0.03 | Low | [72] | |
CdTe | 1.5 | −0.01 at 0.1 VRHE | High | [73] | ||
Cu(In,Ga)S2 | 1.0–1.7 | −5.25 at −0.4 VRHE | 5.4 | Moderate | [74] | |
CuBi2O4 | 1.8 | −0.6 at 0.3 VRHE | 8 | Low | [75] |
Reference | Device Structure | Photocurrent Density (mA cm−2) | Onset Potential (VRHE) | Stability | IPCE (%) | Faradaic Efficiency (%) | Electrolyte, Light Source |
---|---|---|---|---|---|---|---|
Wuttig et al. [79] | CuFeO2 | −0.43 at −1.4 VSCE | −0.2 V vs. SCE | 8 h (minimal self-reduction) | 0.1 M NaHCO3, 1 sun (100 mWcm−2) | ||
Jang et al. [80] | CuFeO2 | −0.3 at 0.4 VRHE | 0.65 | 3 at 300 nm | 1 M NaOH–Ar, 1 sun (100 mWcm−2) | ||
CuFeO2-CTA | −0.62 at 0.4 VRHE | 0.65 | 7 at 300 nm | 1 M NaOH–Ar, 1 sun (100 mWcm−2) | |||
CuFeO2-HMA | −1.3 at 0.4 VRHE | 0.65 | 14 at 300 nm | 1 M NaOH–Ar, 1 sun (100 mWcm−2) | |||
CuFeO2-HMA-NiFe | −1.7 at 0.4 VRHE | 0.65 | 1 M NaOH–Ar, 1 sun (100 mWcm−2) | ||||
CuFeO2-HMA-NiFe/RGO | −2.4 at 0.4 VRHE | 0.65 | 22 at 300 nm | 94 | 1 M NaOH–Ar, 1 sun (100 mW cm−2) | ||
Jiang et al. [81] | CuFeO2 | −0.1 at 0.4 VSCE | 1 M NaOH, 1 sun (100 mW cm−2) | ||||
Prévot et al. [71] | CuFeO2 | −0.025 at +0.4 VRHE | 0.9 | Ar-purged 1 M NaOH, 1 sun (100 mWcm−2) | |||
CuFeO2 | −1.51 at +0.4 VRHE | 0.9 | 40 h (stability with no reduction) | 10 at 400 nm | 1 M NaOH purged with O2, 1 sun (100 mWcm−2) | ||
CuFeO2 | −0.5 at +0.4 VRHE | 0.9 | MV2+ (0.01 M in 1 M NaOH), 1 sun (100 mWcm−2) | ||||
CuFeO2/AZO/TiO2/Pt | −0.8 at −0.2 VRHE | 0.4 | 50 min (stability with no reduction) | Ag-purged pH 6.1 (0.5 m Na2SO4), 1 sun (100 mWcm−2) | |||
Aqaei et al. [82] | CuFeO2 | −0.6 at 0.4 VRHE | 0.9 | 0.5 M KOH, Xe light source with 400 mW cm−2 intensity | |||
Au@DLC/CuFeO2 | −0.8 at 0.4 VRHE | 0.9 | 0.5 M KOH, Xe light source with 400 mW cm−2 intensity | ||||
Oh et al. [83] | SiO2@CuFeO2 | −0.3 at 0.6 VRHE | 0.9 | 1 M NaOH, 1 sun (100 mW cm2) | |||
PE-SiO2@CuFeO2 | −0.12 at 0.6 VRHE | 0.9 | 2 at 400 nm | 1 M NaOH, 1 sun (100 mWcm−2) | |||
SiO2@CuFeO2@CuAlO2 | −0.19 at 0.6 VRHE | 0.9 | 1 M NaOH, 1 sun (100 mWcm−2) | ||||
PE-SiO2@CuFeO2@CuAlO2 | −1.09 at 0.6 VRHE | 0.9 | 10 at 400 nm | 1 M NaOH, 1 sun (100 mWcm−2) | |||
Oh et al. [77] | CuFeO2 | −0.51 at 0 VRHE | 0.12 | Ar-purged 1 M NaOH (pH 13.5), 1 sun (100 mWcm−2) | |||
CuFeO2/C60/ CoFe LDH | −2.11 at 0 VRHE | 0.15 | 25 at 400 nm 4.8 at 600 nm | Ar-purged 1 M NaOH (pH 13.5), 1 sun (100 mWcm−2) | |||
IO CuFeO2 | −1.05 at 0 VRHE | 0.65 | Ar-purged 1 M NaOH (pH 13.5), 1 sun (100 mWcm−2) | ||||
IO CuFeO2/C60/ CoFe LDH | −5.2 at −0.1 VRHE | 0.65 | 17.5 at 600 nm | Ar-purged 1 M NaOH (pH 13.5), 1 sun (100 mWcm−2) | |||
Oh et al. [84] | Microsphere@CuFeO2 | −0.07 at 0.6 VRHE | 0.95 | 4.5 at 400 nm | Ar-purged 1 M NaOH (pH 14), 1 sun (100 mWcm−2) | ||
Microsphere@CuFeO2 | −0.2 at 0.6 VRHE | 0.9 | 4.5 at 400 nm | 1 M NaOH purged with O2, 1 sun (100 mW cm−2) | |||
Prévot et al. [68] | CuFeO2 | −1 at 0.35 VRHE | 0.75 | 10 at 400 nm | 1 M NaOH purged with O2, 1 sun (100 mW cm−2) | ||
CuAlO2/ CuFeO2 | −2.4 at 0.35 VRHE | 0.75 | 20 at 400 nm | 1 M NaOH purged with O2, 1 sun (100 mW cm−2) | |||
Bouziani et al. [85] | CuFeO2 | −0.34 at 0.44 VRHE | 10 min (slight decrease) | 1 M NaOH, 1 sun (100 mW cm−2) | |||
Fu et al. [86] | CuFeO2 | −0.04 at 0.44 VRHE | 10 min (slight decrease) | 1.85 at 350 nm | 0.1 M Na2SO4, 300 W xenon lamp | ||
Präg et al. [87] | CuFeO2 | 0.9 at 0.2 VRHE | 10 min (slight decrease) | 14 at 340 nm | 1 M NaOH, 1 sun (100 mW cm−2) |
Reference | Device Structure | Series Resistance RS (Ωcm2) | Charge- Transfer Resistance RCT (Ωcm2) | Constant Phase Element (CPE) CCT (Fcm−2) | Electrolyte, Light Source |
---|---|---|---|---|---|
Oh, Yunjung et al. [83] | PE-SiO2@CuFeO2 | 3.55 | 12992 | 1.93 × 10−5 | 1 M NaOH, 1 sun |
PE-SiO2@CuFeO2@CuAlO2 | 1.91 | 1754 | 2.65 × 10−5 | 1 M NaOH, 1 sun | |
Oh, Yunjung et al. [77] | CuFeO2/C60/CoFe LDH | 5.7 | 370.6 | 5.5 × 10−3 | 1 M NaOH, 1 sun |
IO CuFeO2/C60/CoFe LDH | 3.4 | 126.8 | 1.2 × 10−2 | 1 M NaOH, 1 sun |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Idrissi, M.; Mei, B.; Abd-Lefdil, M.; Atourki, L. Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting. Molecules 2025, 30, 1152. https://doi.org/10.3390/molecules30051152
El Idrissi M, Mei B, Abd-Lefdil M, Atourki L. Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting. Molecules. 2025; 30(5):1152. https://doi.org/10.3390/molecules30051152
Chicago/Turabian StyleEl Idrissi, Mohamed, Bastian Mei, Mohammed Abd-Lefdil, and Lahoucine Atourki. 2025. "Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting" Molecules 30, no. 5: 1152. https://doi.org/10.3390/molecules30051152
APA StyleEl Idrissi, M., Mei, B., Abd-Lefdil, M., & Atourki, L. (2025). Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting. Molecules, 30(5), 1152. https://doi.org/10.3390/molecules30051152