Next Article in Journal
Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers
Next Article in Special Issue
Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques
Previous Article in Journal
Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate
Previous Article in Special Issue
Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Transparent Conducting Oxides—An Up-To-Date Overview

University of Salzburg, Hellbrunner Str. 34, Salzburg A-5020, Austria
Materials 2012, 5(4), 661-683; https://doi.org/10.3390/ma5040661
Submission received: 20 January 2012 / Revised: 9 March 2012 / Accepted: 28 March 2012 / Published: 19 April 2012
(This article belongs to the Special Issue Advances in Transparent Conducting Oxides)

Abstract

:
Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al), are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.

1. Introduction

Transparent conducting oxides (TCOs) are electrical conductive materials with a comparably low absorption of light. They are usually prepared with thin film technologies and used in opto-electrical devices such as solar cells, displays, opto-electrical interfaces and circuitries. Glass fibers are nearly lossless conductors of light, but electrical insulators; silicon and compound semiconductors are wavelength dependent optical resistors (generating mobile electrons), but dopant dependent electrical conductors. Transparent conducting oxides are highly flexible intermediate states with both these characteristics. Their conductivity can be tuned from insulating via semiconducting to conducting as well as their transparency adjusted. As they can be produced as n-type and p-type conductives, they open a wide range of power saving opto-electrical circuitries and technological applications.
A still valuable overview of transparent conductive oxides is given in [1], basics to material physics of TCOs are discussed in [2], some structural investigation of TCOs was made e.g., in [3], preparation of TCOs was discussed in [4] and substitutes for the most popular transparent conducting oxide, namely ITO (indium-tin oxide), are listed in [5]. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, ITO and the reasonably priced aluminum-doped zinc oxide (ZnO:Al) are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.
As transparent conducting oxides are usually compound semiconductors—where the nonmetal part is oxygen—they are discussed along their metal elements. Metals were used as compound materials or dopants (with just a few percent content).

2. Transparent Conducting Oxides (TCOs)

2.1. TCOs in General

In transparent conducting oxides (TCOs), the nonmetal part, B, consists of oxygen. In combination with different metals or metal-combinations, A, they lead to compound semiconductors, AyBz, with different opto-electrical characteristics. These opto-electrical characteristics can be changed by doping, AyBz:D (D = dopant), with metals, metalloids or nonmetals. Hence, metals can be part of the compound semiconductor itself, A, or can be a dopant, D. Scanning the periodic table of elements, with a view on the utilization of metals for TCOs, results in Table 1 (regarding just the 2nd and 3rd period, exclusively aluminum).
Table 1. Published results regarding transparent conducting oxide (TCO)-layers, containing metallic elements e.g., from the 2nd and 3rd period of the periodic table of the elements (PE, excluding aluminum), including examples for the later discussed ZnO’s and delafaossites (mayenites)—research with the web of knowledge using “TCO < name of element > oxide”.
Table 1. Published results regarding transparent conducting oxide (TCO)-layers, containing metallic elements e.g., from the 2nd and 3rd period of the periodic table of the elements (PE, excluding aluminum), including examples for the later discussed ZnO’s and delafaossites (mayenites)—research with the web of knowledge using “TCO < name of element > oxide”.
Period of the PECompound semiconductorDopantPreparationCharacterizationReference
2NiOLiPulsed Laser Deposition (different Li-concentr.)?[6]
No TCO-Layers with Be
3ZnONa, AlSol-gel, AnnealingSEM, Photoluminescence[7,8,9]
Cr2O3Mg, NSpray Pyrolysis?[10]
CuCrO2(Delafossite)MgSol-gel Technique?[11]
Mg1−xZnxOInPulsed Laser Deposition (different substrates)X-ray diffraction, HRTEM[12]
Mg1−xZnxOAlRadio Frequency Magnetron Sputtering (different substrates)?[13]
Mg12Al14O33 (“Mayenite”) ??[14]
Al
Outstanding good optical characteristics have been provided by tin-, indium- and zinc oxides (A = tin, indium, zinc). Well known is, for example, indium tin oxide (ITO), and the doping of zinc oxide with less than 5% aluminum (ZnO:Al). Moreover, doped delafossite and mayenite compounds are of upcoming interest (see Table 1). A variety of preparation and characterization methods was applied to investigate their different chemical structures and physical characteristics. These shall be briefly discussed.

2.2. Indium Tin Oxide (ITO)

Indium tin oxide (ITO) is a solid solution of indium(III) oxide (In2O3) and tin(IV) oxide (SnO2), with typically 90%wt In2O3, 10%wt SnO2. It is transparent and colorless as a thin film and yellowish to grey as bulk material. Indium tin oxide is the most widely used transparent conducting oxide (TCO [15]) because of its two key properties, its electrical conductivity and optical transparency. ITO thin films are still deposited with ion assisted plasma evaporation [16], (low temperature) electron beam evaporation [17,18,19], direct current (DC), pulsed DC (PDC), high power pulsed magnetron sputtering (HPPMS), radio frequency (RF) magnetron sputtering [20,21,22,23,24,25], thermal evaporation [25] or pulsed laser deposition (PLD) [26,27,28,29]. Post process thermal annealing steps are discussed for the example in [17,18,19,20], oxygen-plasma treatments in [30] and the influence of acids and bases on ITO thin films in [31]. Investigations were made on electrical [16,17,18,19,20,21,22,23,24,25,26,27,28,30,31], optical [16,17,18,19,20,21,22,23,24,25,26,28,31,32] and structural [17,21,22,26,28,29,32,33] properties of this ternary compound semiconductor. According to structural investigations, the focus was set on the border between amorphous and crystal phases [17] and the growth mechanisms (Volmer-Weber, Frank-van der Merwe) [29]. Band structure and work function are analyzed in [34,35,36].

2.3. Aluminum Doped Zinc Oxide (ZnO:Al)

Transparent conducting, aluminum doped zinc oxide thin films (AlxZnyOz, ZnO:Al) [37,38] contain about 2%wt aluminum and can be produced with spray pyrolysis [39,40,41,42,43,44], sol gel technology [45,46,47,48,49,50,51], electro deposition [52,53], vapor phase deposition [54,55], magnetron DC sputtering [56,57,58,59,60], magnetron RF sputtering [61,62,63,64] or a combination of both the sputter deposition methods [65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82]. Moreover, high quality deposition methods using thermal plasmas [83,84], (low pressure (LP), metal organic (MO), plasma enhanced (PE)) chemical vapor deposition (CVD) [85,86], electron beam evaporation [87], pulsed laser deposition [88,89,90,91,92,93] and atomic layer deposition [94] can be applied.
The underlying substrate—crystalline, amorphous or organic—may have an influence on the grown structure and the opto-electronic properties of the thin film [95,96,97,98,99], independent of the used deposition method. For example, in the case of solar cell production, an ultra-thin CdS buffer layer is usually the basis for ZnO:Al deposition [100,101]. Even if the substrate is identical, the layer thickness (deposition time, position upon the substrate) itself influences the physical values of the deposited thin film [102]. A variation of the physical values from the grown thin films can also be reached by changing process parameters, as temperature [103] or pressure [104,105], or by additions to the process gas, as oxygen [106] or hydrogen [107].
Commonly, pure zinc oxides [108,109] are n-doped with aluminum [110,111]. Alternatively, n-doping can be done with metals such as copper, Cu, silver, Ag, gallium, Ga, magnesium, Mg, cadmium, Cd, indium, In, tin, Sn, scandium, Sc, yttrium, Y, cobalt, Co, manganese, Mn, chrome, Cr, and boron, B [88,112,113,114,115,116,117,118,119,120]. p-Doping of ZnO is technologically difficult, but apart fom nitrogen, N, phosphorus, P, seems to be an adequate dopant [121,122,123,124,125,126,127,128].
The opto-electronic properties [129] of these TCO thin films can be changed by post process thermal annealing in an inert gas or reactive gas atmosphere [38,130,131,132]. Especially surface and interface states can be influenced [133,134]. The deterioration of ZnO:Al thin films is discussed in [135].

2.4. Delafossite and Mayenite Type Transparent Conducting Oxides

Commonly, ITO- and ZnO-based TCO thin films are n-doped, as p-doping has been shown to be technologically more difficult. Fortunately, for delafossite compound semiconductors this is vice versa. They typically show TCO properties with semiconducting p-type characteristics. Delafossites, CuxAyOz, are commonly ternary material combinations of copper, Cu, one (or more) further metal(s), A, (aboriginal iron, A = Fe) and oxygen, O.
Copper may be replaced by silver [136,137,138,139,140,141], palladium [139] or platinum [142]. As further metal, A, iron [143,144,145], cobalt [138] or chrome [146,147,148,149,150] (without doping hardly transparent) may be used as well as elements of the 2nd group of the periodic table of the elements—strontium [151,152,153,154], barium [155]—or the 3rd group—aluminum [149,156,157,158,159,160,161,162,163,164,165,166,167,168,169], gallium [168,169], indium [170], scandium [171,172], yttrium [173,174,175,176], lanthanum [175,176]. Moreover, other lanthanides such as praseodymium, neodymium samarium and europium have been applied [175,176,177], in order to get ternary semiconductor compounds.
Quaternary semiconductors as for example the Sb-based CuA2/3Sb1/3O2 (A = Mn, Co, Ni, Zn, Mg), respectively AgA2/3Sb1/3O2 (A = Ni, Zn) [138,140] or the Cr-based CuCr1−xAxO2 (A = Mg, Ca, Al) delafossites have been investigated [147,178].
Ag-Cu and Rh-Mg replacements were for example studied in the quinternary structure Cu1−xAgxRh1−yMgyO2 [179].
Oxygen off-stoichiometry, CuxAyO2+d, has been examined [175,180]. Oxy-sulphide delafossite type TCOs, CuxAyOzSα, were sputtered (CuLa1−xOS:Srx, x = 0%–5% [181]) or already existing delafossite-oxide films, Cu2In2O5, sulfurized to CuInS2, by annealing in H2S [182].
Delafossites have been grown from a melt by a slow cooling-method in air [166,183]. They were deposited using low temperature hydro/solvothermal processes [159,168,184], the sol-gel technology [146,147,149,153,185] and the spray pyrolysis technique [148,158]. Moreover, advanced methods such as (direct current (DC), radio frequency (RF)) magnetron sputtering of prefabricated targets [143,144,156,157,162,164,167,173,181,186], with varying temperature, pressure, oxygen flow or sputter energies [144,161,165], pulsed laser deposition [136,152,163,169,187,188], with varying temperature and pressure [187], thermal evaporation [174], e-beam evaporation technique [154], and (low-pressure (LP), metal-organic (MO)) chemical vapor deposition (CVD) [150] were applied.
Annealing in N2, O2, air [157,161,162,165] or argon [149] was examined, showing for example a reduction in CuO resp. spinel CuCr2O4 fraction and formation of highly crystalline films with single-phase delafossite CuCrO2 structure [148,164].
The CuAIIIO2 group shows increasing band gap from AIII = Al, Ga, to In. The largest gap CuInO2can be doped both n- and p-type but not the smaller gaps CuAlO2 and CuGaO2 [189]. Therefore, doping CuInO2 with Ca results in p-type, doping with Sn in n-type semiconducting TCO thin films [188,190]. Bidirectional doping is possible for CuFeO2, too (p-type: Mg, n-type: Sn [191]). In addition, the electronic structure of CuAO2 (A = Al, Ga, Y) was discussed in [192,193,194,195,196] and its luminescent properties in [197]. Defect analyses have been made with the screened-hybrid density functional theory [160].
Additional p-doping is usually performed with Ca, Mg or occasionally with K, in order to increase the conductivity resulting in e.g., CuInO2:Ca [151,187], Cu2In2O5:Ca [187], CuYO2:Ca [173,174], CuCrO2:Mg [138,148,198], CuScO2:Mg [138,172] or Cu2SrO2:K [152]. N-type doping of delafossite TCO thin films is normally done with Sn, e.g., CuInO2:Sn [188,190] or AgInO2:Sn [136]. Further discussion on doping of delafossite TCOs is shown in [199].
Because of the structural anisotropy of the CuAlO2-crystal, anisotropic electrical conductivity was detected in [200]. Ohmic contacts between CuInO2 and Cu are reported in [170].
The crystal structures and chemistries are by far the best investigated topics in delafossite (semi)conductor research and systematically discussed in [201,193]; the according temperature dependency is shown in [202].

3. Further Aspects to Technological Advances of Transparent Conducting Oxides

Reasons for technical advances in transparent conducting oxides are manifold—influencing aspects are: The investigation of adequate novel materials and material-combinations, as for example the first delafossites by Charles Friedel in 1873 (named after the French mineralogist and crystallographer Gabriel Delafosse); an increasing financial support for research according to political decisions, as for example the increased financial support of solar cell investigations and therefore of TCOs by the present nuclear power phase-out in Germany; the publication of new results, as research groups in industrial companies often reserve important information; and the efficiency of modern literature data-bases, as only included literature can be found and selected.
Therefore, technical advances in transparent conducting oxides may be illustrated researching the web of knowledge (Thomson Reuters). Applying e.g., the search item “TCO < name of element > oxide” leads to the carefully selected citation statistics, shown in Table 2. Again, the already discussed elements aluminum (Al), zinc (Zn), indium (In) and tin (Sn) show the by far highest nominal citation impacts. In order to demonstrate the technical advances in transparent conducting oxides, the gradient of citations over the years 2007 until 2011 shall be printed for these four elements in Figure 1. This indicates, that the focus of investigation was preferably set on ITO and that ATCO rises until 2010 by about 100 a year. Until 2011, the number of citations per year decreases—not only because this literature research was done in November 2011.
A T C O = c i t a t i o n y e a r
Table 2. Carefully selected citation report results for TCO-materials, containing metallic elements from the 2nd to the 7th period of the periodic table of the elements (PE)—researched with the web of knowledge using “TCO < name of element > oxide”.
Table 2. Carefully selected citation report results for TCO-materials, containing metallic elements from the 2nd to the 7th period of the periodic table of the elements (PE)—researched with the web of knowledge using “TCO < name of element > oxide”.
TopicCitation reportAv. Citations/Year
20072008200920102011Total
2nd Period
TCO Li oxide40375193.17
TCO Be oxidexxxxxxx
3rd Period
TCO Na oxide0000333
TCO Mg oxide87889408
TCO Al oxide1963063945004342122192.91
4th Period
TCO K oxide12531122.4
TCO Ca oxide511585475.88
Subgroup
TCO Sc oxidexxxxxxx
TCO Ti oxide1514503811414.25
TCO V oxide01913182
TCO Cr oxide322112283.5
TCO Mn oxide0031151.25
TCO Fe oxidexxxxxxx
TCO Co oxide0122323177518.75
TCO Ni oxide0002573.5
TCO Cu oxide184044737626833.5
TCO Zn oxide2754154877236123142184.82
TCO Ga oxide0115543710726.75
5th Period
TCO Rb oxidexxxxxxx
TCO Sr oxide27361223.14
Subgroup
TCO Y oxide0021141
TCO Zr oxide0001452.5
TCO Nb oxide248444510320.6
TCO Mo oxide1172435219819.6
TCO Tc oxide radioactive!
TCO Ru oxide381381366
TCO Rh oxidexxxxxxx
TCO Pd oxidexxxxxxx
TCO Ag oxide164357956732818.22
TCO Cd oxide3748541195950936.36
TCO In oxide2473283975463882511156.94
TCO Sn oxide3464064936415193755197.63
6th Period
TCO Cs oxidexxxxxxx
TCO Ba oxidexxxxxxx
Subgroup
TCO Hf oxidexxxxxxx
TCO Ta oxide7891910608.57
TCO W oxide355108345.67
TCO Re oxidexxxxxxx
TCO Os oxidexxxxxxx
TCO Ir oxidexxxxxxx
TCO Pt oxide1000120.4
TCO Au oxidexxxxxxx
TCO Hg oxide34953244.8
TCO Tl oxidexxxxxxx
TCO Pb oxidexxxxxxx
TCO Bi oxidexxxxxxx
Lanthanide Series
TCO La oxide0020131
TCO Ce oxide00110392.17
TCO Pr oxidexxxxxxx
TCO Nd oxidexxxxxxx
TCO Pm oxidexxxxxxx
TCO Sm oxide001108196.33
TCO Eu oxide00185144.67
TCO Gd oxide0001452.5
TCO Tb oxidexxxxxxx
TCO Dy oxide00096157.5
TCO Ho oxidexxxxxxx
TCO Er oxidexxxxxxx
TCO Tm oxidexxxxxxx
TCO Yb oxidexxxxxxx
TCO Lu oxidexxxxxxx
7th Period
TCO Fr oxidexxxxxxx
TCO Ra oxidexxxxxxx
Actinide Series
TCO Ac oxidexxxxxxx
TCO Th oxidexxxxxxx
TCO Pa oxidexxxxxxx
TCO U oxide radioactive!
radioactive!
Figure 1. Demonstration of the technical advances in transparent conducting oxides, using the gradient of citations of publications over the years 2007 until November 2011.
Figure 1. Demonstration of the technical advances in transparent conducting oxides, using the gradient of citations of publications over the years 2007 until November 2011.
Materials 05 00661 g001
Despite these four elements, let us regard the next five metals, which exhibit the most average citations per year in TCO-related publications, see Table 2, Figure 2. Hence, Cadmium (Cd) is discussed as CdO:D (D = Ga, Sn, Sm, Eu, Gd, or Dy), CdIn2O4 or Cd2SnO4, where H2-annealing is frequently applied to widen the energy gap [203,204,205].
Copper (Cu) represents the group of doped and undoped CuO2 and delafossites, see above.
Gallium (Ga) on the one hand is used as dopant, D (about 2%at), for ZnO and CdO. On the other hand Ga is the metallic part, A, of Ga2O3. Based on this, gallium zinc oxide (GZO: ZnGa2O4) is produced with 90%wt of Ga2O3 and 10%wt of ZnO. Moreover, aluminum gallium zinc oxide (AGZO) is a combination of aluminum zinc oxide (AZO) and GZO, respectively indium gallium zinc oxide (IGZO) a combination of IZO and GZO [206,207].
Niobium (Nb) is exclusively used as dopant, with an atomic concentration of about 3%at–6%at, primarily for TiO2:Nb but also for SnO2:Nb [208,209].
Molybdenum (Mo) is usually used in comparatively high conductive TCOs. Mo is a dopant for ZnO (MZO) or In2O3 (IMO). MoO is also applied in layer stacks with silver, Ag [210,211,212].
The upcoming importance of transparent conductive materials for thin film solar cells, opto-electrical interfaces, displays and opto-electrical circuitry widens the area of investigation. So, exotic dopants, such as sodium (Na) [213] and manganese (Mn) [214] for zinc oxides (ZnO), zirconium (Zr) [215], platinum (Pt) and tungsten (W) [216] for indium oxide (In2O3), ITO and IGZO or lanthanum (La) [217] for strontium stannate LaxSr1−xSnO3 have been discussed in the last few years.
Finally, ultra-thin metals without any oxygen content (except natural oxidation in air at room temperature)—as for example nickel (Ni)—have been applied as optical transparent conducting materials [218].
Figure 2. Demonstration of the technical advances in transparent conducting oxides, using the gradient of citations of publications over the years 2007 until November 2011.
Figure 2. Demonstration of the technical advances in transparent conducting oxides, using the gradient of citations of publications over the years 2007 until November 2011.
Materials 05 00661 g002

4. Conclusions

Based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides have been sketched; references for detailed information have been given for the interested reader. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al) have been discussed with view on preparation, characterization and special occurrences. For completion, typical p-type delafossite TCOs have been described the same way, providing a variety of references, as a detailed discussion is not reasonable within an overview-publication. Moreover, absolutely unusual, novel TCO materials have been discussed and their presence and development in the world of science pointed out. Trends have been shown.
As transparent conducting oxides are usually compound semiconductors—where the nonmetal part is oxygen—they have been discussed along their metal elements. Metals were used as compound materials or dopants (with just a few percent content).

Acknowledgments

The author acknowledges the support of the Christian Doppler Research Society, Austria.

References

  1. Chopra, K.L.; Major, S.; Pandya, D.K. Transparent conductors—A status review. Thin Solid Films 1983, 102, 1–46. [Google Scholar] [CrossRef]
  2. Edwards, P.P.; Porch, A.; Jones, M.O.; Morgan, D.V.; Perks, R.M. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004, 19, 2995–3002. [Google Scholar] [CrossRef] [PubMed]
  3. Kawazoe, H.; Ueda, K. Transparent conducting oxides based on the spinel structure. J. Am. Ceram. Soc. 1999, 82, 3330–3336. [Google Scholar] [CrossRef]
  4. Jarzebski, Z.M. Preparation and physical properties of transparent conducting oxide films. Phys. Stat. Sol. 1982, 71, 13–41. [Google Scholar] [CrossRef]
  5. Minami, T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films 2008, 516, 5822–5828. [Google Scholar] [CrossRef]
  6. Joshi, U.S.; Matsumoto, Y.; Itaka, K.; Sumiya, M.; Koinuma, H. Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties. Appl. Surf. Sci. 2006, 252, 2524–2528. [Google Scholar] [CrossRef]
  7. Wang, T.; Liu, Y.; Fang, Q.; Wu, M.; Sun, X.; Lu, F. Low temperature synthesis wide optical band gap Al and (Al, Na) co-doped ZnO thin films. Appl. Surf. Sci. 2011, 257, 2341–2345. [Google Scholar] [CrossRef]
  8. Wang, M. Comment on “low temperature synthesis wide optical band gap Al and (Al, Na) co-doped ZnO thin films”. Appl. Surf. Sci. 2011, 257, 8752–8753. [Google Scholar] [CrossRef]
  9. Wang, T.; Liu, Y. Response to the comment on “low temperature synthesis wide optical band gap Al and (Al, Na) co-doped ZnO thin films”. Appl. Surf. Sci. 2011, 257, 8754. [Google Scholar]
  10. Arca, E.; Fleischer, K.; Shvets, I.V. Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide. Appl. Phys. Lett. 2011, 99, 111910. [Google Scholar] [CrossRef]
  11. Götzendörfer, S.; Löbmann, P. Influence of single layer thickness on the performance of undoped and Mg-doped CuCrO2 thin films by sol–gel processing. J. Sol-Gel Sci. Technol. 2011, 57, 157–163. [Google Scholar]
  12. Lau, C.H.; Zhuang, L.; Wong, K.H. In-doped transparent and conducting cubic magnesium zinc oxide thin films grown by pulsed laser deposition. Phys. Stat. Sol. B 2007, 244, 1533–1537. [Google Scholar] [CrossRef]
  13. Ellmer, K.; Vollweiler, G. Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals. Thin Solid Films 2006, 496, 104–111. [Google Scholar] [CrossRef]
  14. Ingram, B.J.; Bertoni, M.I.; Poeppelmeier, K.R.; Mason, K.R. Point defects and transport mechanisms in transparent conducting oxides of intermediate conductivity. Thin Solid Films 2005, 486, 86–93. [Google Scholar] [CrossRef]
  15. Hartnagel, H.L. Semiconducting Transparent Thin Films; Institute of Physics Publishing: Bristol, UK, 1995; ISBN 978–0750303224. [Google Scholar]
  16. Laux, S.; Kaiser, N.; Zöller, A.; Götzelmann, R.; Lauth, H.; Bernitzki, H. Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 1998, 335, 1–5. [Google Scholar] [CrossRef]
  17. Paine, D.C.; Whitson, T.; Janiac, D.; Beresford, R.; Yang, C.O.; Lewis, B. A study of low temperature crystallization of amorphous thin film indium-tin-oxide. J. Appl. Phys. 1999, 85, 8445–8450. [Google Scholar] [CrossRef]
  18. Chen, C.H.; Chang, S.J.; Su, Y.K.; Chi, G.C.; Chi, J.Y.; Chang, C.A.; Sheu, J.K.; Chen, J.F. GaN metal-semiconductor-metal ultraviolet pho- todetectors with transparent indium-tin-oxide Schottky contacts. IEEE Photonics Technol. Lett. 2001, 13, 848–850. [Google Scholar] [CrossRef]
  19. Sheu, J.K.; Su, Y.K.; Chi, G.C.; Jou, M.J.; Chang, C.M. Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN. Appl. Phys. Lett. 1998, 72, 3317–3319. [Google Scholar] [CrossRef]
  20. Karasawa, T.; Miyata, Y. Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering. Thin Solid Films 1993, 223, 135–139. [Google Scholar] [CrossRef]
  21. Kim, S.T.; Lee, J.H.; Yang, J.Y.; Ryu, S.W.; Hong, J.S.; Hong, W.P.; Kim, J.J.; Kim, H.M.; Yang, J.M.; Park, S.H. The Electronic and optical properties of IZO thin films prepared by pulsed dc magnetron sputtering. J. Korean Phys. Soc. 2007, 50, 662–665. [Google Scholar] [CrossRef]
  22. Sittinger, V.; Ruske, F.; Werner, W.; Jacobs, C.; Szyszka, B.; Christie, D.J. High power pulsed magnetron sputtering of transparent conducting oxides. Thin Solid Films 2008, 516, 5847–5859. [Google Scholar] [CrossRef]
  23. Park, S.K.; Jeong, I.H.; Kim, W.K.; Kwak, M.G. Deposition of indium-tin-oxide films on polymer substrates for application in plastic-based flat panel displays. Thin Solid Films 2001, 397, 49–55. [Google Scholar] [CrossRef]
  24. Meng, L.-J.; dos Santos, M.P. Properties of indium tin oxide films prepared by RF reactive magnetron sputtering at different substrate temperature. Thin Solid Films 1998, 322, 56–62. [Google Scholar] [CrossRef]
  25. Horng, R.-H.; Wuu, D.-S.; Lien, Y.-C.; Lan, W.-H. Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Appl. Phys. Lett. 2001, 79, 2925: 1–2925: 3. [Google Scholar] [CrossRef]
  26. Kim, H.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 1999, 74, 3444: 1–3444: 3. [Google Scholar] [CrossRef]
  27. Ohta, H.; Orita, M.; Hirano, M.; Tanji, H.; Kawazoe, H.; Hosono, H. Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Appl. Phys. Lett. 2000, 76, 2740: 1–2740: 3. [Google Scholar] [CrossRef]
  28. Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
  29. Sun, X.W.; Huang, H.C.; Kwok, H.S. On the initial growth of indium tin oxide on glass. Appl. Phys. Lett. 1996, 68, 2663: 1–2663: 3. [Google Scholar] [CrossRef]
  30. Milliron, D.J.; Hill, I.G.; Shen, C.; Kahn, A.; Schwartz, J. Surface oxidation activates indium tin oxide for hole injection. J. Appl. Phys. 2000, 87, 572–576. [Google Scholar] [CrossRef]
  31. Nüesch, F.; Rothberg, L.J.; Forsythe, E.W.; Le, Q.T.; Gao, Y.L. A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases. Appl. Phys. Lett. 1999, 74, 880: 1–880: 3. [Google Scholar] [CrossRef]
  32. Synowicki, R.A. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 1998, 313, 394–397. [Google Scholar] [CrossRef]
  33. Ishida, T.; Kobayashi, H.; Nakato, Y. Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by X‐ray photoelectron spectroscopy and work‐function measurements. J. Appl. Phys. 1993, 73, 4344–4350. [Google Scholar] [CrossRef]
  34. Mryasov, O.N.; Freeman, A.J. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B 2001, 64, 233111–233113. [Google Scholar] [CrossRef]
  35. Sugiyama, K.; Ishii, H.; Ouchi, Y.; Seki, K. Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. J. Appl. Phys. 2000, 87, 295: 1–295: 4. [Google Scholar] [CrossRef]
  36. Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C.W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699–2701. [Google Scholar] [CrossRef]
  37. Jagadish, C. Zinc Oxide Bulk, Thin Films and Nanostructures, Processing, Properties and Applications; Jagadish, C., Pearton, S., Eds.; Elsevier: Oxford, UK, 2006. [Google Scholar]
  38. Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, 2nd ed.; Ellmer, K.; Klein, A.; Rech, B. (Eds.) Springer-Verlag: Berlin, Germany, 2008.
  39. Seeber, W.T.; Abou-Helal, M.O.; Barth, S.; Beil, D.; Höche, T.; Afify, H.H.; Demian, S.E. Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 1999, 2, 45–55. [Google Scholar] [CrossRef]
  40. Nunes, P.; Malik, A.; Fernandes, B.; Fortunato, E.; Vilarinho, P.; Martins, R. Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum 1999, 52, 45–49. [Google Scholar] [CrossRef]
  41. Nunes, P.; Fernandesa, B.; Fortunatoa, E.; Vilarinhob, P.; Martinsa, R. Performances presented by zinc oxide thinfilms deposited by spray pyrolysis. Thin Solid Films 1999, 337, 176–179. [Google Scholar] [CrossRef]
  42. Lokhande, B.J.; Uplane, M.D. Structural, optical and electrical studies on spray deposited highly oriented ZnO films. Appl. Surf. Sci. 2000, 167, 243–246. [Google Scholar] [CrossRef]
  43. Mondragón-Suárez, H.; Reyes, A.; Castanedo-Pérez, R.; Torres-Delgado, G.; Asomoza, R. ZnO:Al thin films obtained by chemical spray: effect of the Al concentration. Appl. Surf. Sci. 2002, 193, 52–59. [Google Scholar] [CrossRef]
  44. Gümü, C.; Ozkendir, O.M.; Kavak, H.; Ufuktepe, Y. Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis methode. J. Optoelectron. Adv. Mater. 2006, 8, 299–303. [Google Scholar]
  45. Jiménez-González, A.E.; Urueta, J.A.S.; Suárez-Parra, R. Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. J. Cryst. Growth 1998, 192, 430–438. [Google Scholar] [CrossRef]
  46. Schuler, T.; Aegerter, M.A. Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films 1999, 351, 125–131. [Google Scholar] [CrossRef]
  47. Natsume, Y.; Sakata, H. Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 2000, 372, 30–36. [Google Scholar] [CrossRef]
  48. Musat, V.; Teixeira, B.; Fortunato, E.; Monteiro, R.C.C.; Vilarinho, P. Al-doped ZnO thin films by sol–gel method. Surf. Coat. Tech. 2004, 180, 659–662. [Google Scholar] [CrossRef]
  49. Valle, G.G.; Hammer, P.; Pulcinelli, S.H.; Santilli, C.V. Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating. J. Eur. Ceram. Soc. 2004, 24, 1009–1013. [Google Scholar] [CrossRef]
  50. Maity, R.; Kundoo, S.; Chattopadhyay, K.K. Electrical characterization and Poole-Frenkel effect in sol-gel derived ZnO:Al thin films. Sol. Energ. Mat. Sol. C 2005, 86, 217–227. [Google Scholar] [CrossRef]
  51. Li, L.J.; Deng, H.; Dai, L.P.; Chen, J.J.; Yuan, Q.L.; Li, Y. Properties of Al heavy-doped ZnO thin films by RF magnetron sputtering. Mater. Res. Bull. 2006, 41, 354–358. [Google Scholar] [CrossRef]
  52. Gal, D.; Hodes, G.; Lincot, D.; Schock, H.-W. Electrochemical deposition of zinc oxide films from non-aqueous solution: A new buffer/window process for thin film solar cells. Thin Solid Films 2000, 361, 79–83. [Google Scholar] [CrossRef]
  53. Jia, S. Polyelectrolyte Assisted Preparation and Characterization of Nanostructured ZnO Thin Films. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2005. [Google Scholar]
  54. Ma, J.; Ji, F.; Ma, H.-L.; Li, S.-Y. Electrical and optical properties of ZnO: Al films prepared by an evaporation method. Thin Solid Films 1996, 279, 213–215. [Google Scholar] [CrossRef]
  55. Ma, J.; Ji, F.; Zhang, D.-H.; Ma, H.-L.; Li, S.-Y. Optical and electronic properties of transparent conducting ZnO and ZnO:Al films prepared by evaporating method. Thin Solid Films 1999, 357, 98–101. [Google Scholar] [CrossRef]
  56. Chen, M.; Pei, Z.L.; Sun, C.; Wen, L.S.; Wang, X. Formation of Al-doped ZnO films by dc magnetron reactive sputtering. Mater. Lett. 2001, 48, 194–198. [Google Scholar] [CrossRef]
  57. Ting, J.-M.; Tsai, B.S. DC reactive sputter deposition of ZnO:Al thin film on glass. Mater. Chem. Phys. 2001, 72, 273–277. [Google Scholar] [CrossRef]
  58. Fang, G.J.; Li, D.J.; Yao, B.-L. Fabrication and characterization of transparent conductive ZnO:Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO(ZnAl2O4) ceramic target. J. Cryst. Growth 2003, 247, 393–400. [Google Scholar] [CrossRef]
  59. Herrmann, D.; Oertel, M.; Menner, R.; Powalla, M. Analysis of relevant plasma parameters for ZnO:Al film deposition based on data from reactive and non-reactive DC magnetron sputtering. Surf. Coat. Tech. 2003, 174, 229–234. [Google Scholar] [CrossRef]
  60. Wang, W.W.; Diao, X.G.; Wang, Z.; Yang, M.; Wang, T.M.; Wu, Z. Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films. Thin Solid Films 2005, 491, 54–60. [Google Scholar] [CrossRef]
  61. Dimova-Malinovska, D.; Tzenov, N.; Tzolov, M.; Vassilev, L. Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films. Mater. Sci. Eng. 1998, B52, 59–62. [Google Scholar] [CrossRef]
  62. Chang, J.F.; Wang, H.L.; Hon, M.H. Studying of transparent conductive ZnO:Al thin films by RF reactive magnetron sputtering. J. Cryst. Growth 2000, 211, 93–97. [Google Scholar] [CrossRef]
  63. Chang, J.F.; Shen, C.C.; Hon, M.H. Growth characteristics and residual stress of RF magnetron sputtered ZnO:Al films. Ceram. Int. 2003, 29, 245–250. [Google Scholar] [CrossRef]
  64. Yoo, J.S.; Lee, J.; Kim, S.; Yoon, K.; Park, I.J.; Dhungel, S.K.; Karunagaran, B.; Mangalaraj, D.; Yi, J.S. High transmittance and low resistive ZnO:Al films for thinfilm solar cells. Thin Solid Films 2005, 480, 213–217. [Google Scholar] [CrossRef]
  65. Sieber, I.; Wanderka, N.; Urban, I.; Dörfel, I.; Schierhorn, E.; Fenske, F.; Fuhs, W. Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels. Thin Solid Films 1998, 330, 108–113. [Google Scholar] [CrossRef]
  66. Ellmer, K.; Cebulla, R.; Wendt, R. Transparent and conducting ZnO(:Al) films deposited by simultaneous RF- and DC-excitation of a magnetron. Thin Solid Films 1998, 317, 413–416. [Google Scholar] [CrossRef]
  67. Tominaga, K.; Umezu, N.; Mori, I.; Ushiro, T.; Moriga, T.; Nakabayashi, I. Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets. Thin Solid Films 1998, 334, 35–39. [Google Scholar] [CrossRef]
  68. Fenske, F.; Fuhs, W.; Nebauer, E.; Schöpke, A.; Selle, B.; Sieber, I. Transparent conductive ZnO:Al films by reactive co-sputtering from separate metallic Zn and Al targets. Thin Solid Films 1999, 343, 130–133. [Google Scholar] [CrossRef]
  69. Kluth, O.; Recha, B.; Houbena, L.; Wiedera, S.; Schöpea, G.; Benekinga, C.; Wagnera, H.; Löfflb, A.; Schockb, H.W. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 1999, 351, 247–253. [Google Scholar] [CrossRef]
  70. Szyszka, B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 1999, 351, 164–169. [Google Scholar] [CrossRef]
  71. Stadler, A. Analyzing UV/Vis/NIR spectra—Part II: Correct and efficient parameter extraction. IEEE Sens. J. 2011, 11, 897–904. [Google Scholar] [CrossRef]
  72. Zhang, D.H.; Yang, T.L.; Wang, Q.P.; Zhang, D.J. Electrical and optical properties of Al-doped transparent conducting ZnO films deposited on organic substrate by RF sputtering. Mater. Chem. Phys. 2001, 68, 233–238. [Google Scholar] [CrossRef]
  73. Müller, J.; Kluth, O.; Wieder, S.; Siekmann, H.; Schöpe, G.; Reetz, W.; Vetterl, O.; Lundszien, D.; Lambertz, A.; Finger, F.; et al. Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates. Sol. Energ. Mat. Sol. C 2001, 66, 275–281. [Google Scholar] [CrossRef]
  74. Müller, J.; Schöpe, G.; Kluth, O.; Rech, B.; Ruske, M.; Trube, J.; Szyszka, B.; Jiang, X.; Bräuer, G. Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells. Thin Solid Films 2001, 392, 327–333. [Google Scholar] [CrossRef]
  75. Tzolov, M.; Tzenov, N.; Dimova-Malinovska, D.; Kalitzova, M.; Pizzuto, C.; Vitali, G.; Zollo, G.; Ivanov, I. Modification of the structure of ZnO:Al films by control of the plasma parameters. Thin Solid Films 2001, 396, 274–279. [Google Scholar] [CrossRef]
  76. Hong, R.J.; Jiang, X.; Heide, G.; Szyszka, B.; Sittinger, V.; Werner, W. Growth behaviours and properties of the ZnO:Al films prepared by reactive mid-frequency magnetron sputtering. J. Cryst. Growth 2003, 249, 461–469. [Google Scholar] [CrossRef]
  77. Müller, J.; Schöpe, G.; Kluth, O.; Rech, B.; Sittinger, V.; Szyszka, B.; Geyer, R.; Lechner, P.; Schade, H.; Ruske, M.; et al. State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solar cells and modules. Thin Solid Films 2003, 442, 158–162. [Google Scholar] [CrossRef]
  78. Hong, R.J.; Jiang, X.; Szyszka, B.; Sittinger, V.; Pflug, A. Studies on ZnO: Al thin films deposited by in-line reactive mid-frequency magnetron sputtering. Appl. Surf. Sci. 2003, 207, 341–350. [Google Scholar] [CrossRef]
  79. Szyszka, B.; Sittinger, V.; Jiang, X.; Hong, R.J.; Werner, W.; Pflug, A.; Ruske, M.; Lopp, A. Transparent and conductive ZnO:Al films deposited by large area reactive magnetron sputtering. Thin Solid Films 2003, 442, 179–183. [Google Scholar] [CrossRef]
  80. Fu, E.G.; Zhuang, D.M.; Zhang, G.; Zhao, M.; Yang, W.F. Properties of transparent conductive ZnO:Al thin films prepared by magnetron sputtering. Microelectr. J. 2004, 35, 383–387. [Google Scholar] [CrossRef]
  81. Oh, B.-Y.; Jeong, M.-C.; Lee, W.; Myoung, J.-M. Properties of transparent conductive ZnO:Al films prepared by co-sputtering. J. Cryst. Growth 2005, 274, 453–457. [Google Scholar] [CrossRef]
  82. Lin, S.-S.; Huang, J.-L.; Šajgalik, P. Effects of substrate temperature on the properties of heavily Al-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering. Surf. Coat. Tech. 2005, 190, 39–47. [Google Scholar] [CrossRef]
  83. Groenen, R.; Linden, J.L.; van Lierop, H.R.M.; Schram, D.C.; Kuypers, A.D.; van de Sanden, M.C.M. An expanding thermal plasma for deposition of surface textured ZnO:Al with focus on thin film solar cell applications. Appl. Surf. Sci. 2001, 173, 40–43. [Google Scholar] [CrossRef]
  84. Lee, H.W.; Lau, S.P.; Wang, Y.G.; Tse, K.Y.; Hng, H.H.; Tay, B.K. Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. J. Cryst. Growth 2004, 268, 596–601. [Google Scholar] [CrossRef]
  85. Kim, Y.-J.; Kim, H.-J. Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition. Mater. Lett. 1999, 41, 159–163. [Google Scholar] [CrossRef]
  86. Groenen, R.; Löffler, J.; Sommeling, P.M.; Linden, J.L.; Hamers, E.A.G.; Schropp, R.E.I.; van de Sanden, M.C.M. Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD. Thin Solid Films 2001, 392, 226–230. [Google Scholar] [CrossRef]
  87. Aghamalyan, N.R.; Gambaryan, I.A.; Goulanian, E.K.; Hovsepyan, R.K.; Kostanyan, R.B.; Petrosyan, S.I.; Vardanyan, E.S.; Zerrouk, A.F. Influence of thermal annealing on optical and electrical properties of ZnO films prepared by electron beam evaporation. Semicond. Sci. Technol. 2003, 18, 525–529. [Google Scholar] [CrossRef]
  88. Ning, Z.Y.; Cheng, S.H.; Ge, S.B; Chao, Y.; Gang, Z.Q.; Zhang, Y.X.; Liu, Z.G. Preparation and characterization of ZnO:Al films by pulsed laser deposition. Thin Solid Films 1997, 307, 50–53. [Google Scholar] [CrossRef]
  89. Sun, X.W.; Kwok, H.S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys. 1999, 86, 408–411. [Google Scholar] [CrossRef]
  90. Kim, H; Piqué, A.; Horwitz, J.S.; Murata, H.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting. Thin Solid Films 2000, 377, 798–802. [Google Scholar]
  91. Dolbec, R.; Khakani, M.A.E; Serventi, A.M.; Trudeau, M.; Saint-Jacques, R.G. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser. Thin Solid Films 2002, 419, 230–236. [Google Scholar] [CrossRef]
  92. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, H.; Niki, S. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films 2003, 431, 369–372. [Google Scholar] [CrossRef]
  93. Vincze, A.; Kováč, J.; Novotný, I.; Bruncko, J.; Haško, D.; Šatka, A.; Shtereva, K. Preparation and properties of ZnO layers grown by various methods. Appl. Surf. Sci. 2008, 255, 1419–1422. [Google Scholar] [CrossRef]
  94. Elam, J.W.; George, S.M. Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem. Mater. 2003, 15, 1020–1028. [Google Scholar] [CrossRef]
  95. Yang, T.L.; Zhang, D.H.; Ma, J.; Ma, H.L.; Chen, Y. Transparent conducting ZnO:Al films deposited on organic substrates deposited by RF magnetron-sputtering. Thin Solid Films 1998, 326, 60–62. [Google Scholar] [CrossRef]
  96. Yoshino, Y.; Inoue, K.; Takeuchi, M.; Makino, T.; Katayama, Y.; Hata, T. Effect of substrate surface morphology and interface microstructure in ZnO thin films formed on various substrates. Vacuum 2000, 59, 403–410. [Google Scholar] [CrossRef]
  97. Zhang, D.H.; Yang, T.L.; Ma, J.; Wang, Q.P.; Gao, R.W.; Ma, H.L. Preparation of transparent conducting ZnO:Al films on polymer substrates by RF magnetron sputtering. Appl. Surf. Sci. 2000, 158, 43–48. [Google Scholar] [CrossRef]
  98. Hao, X.T.; Ma, J.; Zhang, D.H.; Yang, T.L.; Ma, H.L.; Yang, Y.G.; Cheng, C.F.; Huang, J. Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates. Appl. Surf. Sci. 2001, 183, 137–142. [Google Scholar] [CrossRef]
  99. Zhang, D.H.; Yang, T.L.; Wang, Q.P.; Zhang, D.J. Electrical and optical properties of Al-doped transparent conducting ZnO films deposited on organic substrate by RF sputtering. Mater. Chem. Phys. 2001, 68, 233–238. [Google Scholar] [CrossRef]
  100. Durrani, S.M.A.; Al-Shukri, A.M.; Iob, A.; Khawaja, E.E. Optical constants of zinc sulfide films determined from transmittance measurements. Thin Solid Films 2000, 379, 199–202. [Google Scholar] [CrossRef]
  101. Gunasekaran, M.; Ramasamy, P.; Ichimura1, M. Preparation of ternary Cd1−xZnxS alloy by photochemical deposition (PCD) and its application to photovoltaic devices. Phys. Status. Solidi C 2006, 3, 2656–2660. [Google Scholar] [CrossRef]
  102. Lin, S.-S.; Huang, J.-L. The effect of thickness on the properties of heavily Al-doped ZnO films by simultaneous rf and dc magnetron sputtering. Ceram. Int. 2004, 30, 497–501. [Google Scholar] [CrossRef]
  103. Chang, J.F.; Hon, M.H. The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films 2001, 386, 79–86. [Google Scholar] [CrossRef]
  104. Igasaki, Y.; Kanma, H. Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates. Appl. Surf. Sci. 2001, 169, 508–511. [Google Scholar] [CrossRef]
  105. Song, D.Y.; Aberle, A.G.; Xia, J. Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application. Appl. Surf. Sci. 2001, 195, 291–296. [Google Scholar] [CrossRef]
  106. Brehme, S.; Fenske, F.; Fuhs, W.; Nebauer, E.; Poschenrieder, M.; Selle, B.; Sieber, I. Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films. Thin Solid Films 1999, 342, 167–173. [Google Scholar] [CrossRef]
  107. Addonizio, M.L.; Antonaia, A.; Cantele, G.; Privato, C. Transport mechanisms of RF sputtered Al-doped ZnO films by H2 process gas dilution. Thin Solid Films 1999, 349, 93–99. [Google Scholar] [CrossRef]
  108. Look, D.C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. 2001, B80, 383–387. [Google Scholar] [CrossRef]
  109. Feddern, K. Synthese und Optische Eigenschaften von ZnO-Nanokristallen. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 2002. [Google Scholar]
  110. Reuß, F. Untersuchung des Dotierverhaltens und der mag. Eigenschaften von Epitaktischen ZnO-Heterostrukturen. Ph.D. Thesis, Universität Ulm, Ulm, Germany, 2005. [Google Scholar]
  111. Wischmeier, L. ZnO-Nanodrähte: Optische Eigenschaften und Ladungsträgerdynamik. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2007. [Google Scholar]
  112. Waugh, K.C. Comments on “The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity” [by T. Fujitani and J. Nakamura]. Catalysis Lett. 1999, 58, 163–165. [Google Scholar] [CrossRef]
  113. Reitz, T.L.; Ahmed, S.; Krumpelt, M.; Kumar, R.; Kung, H.H. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. J. Mol. Catal. A Chem. 2000, 162, 275–285. [Google Scholar] [CrossRef]
  114. Choi, Y.; Futagami, K.; Fujitani, T.; Nakamura, J. The role of ZnO in Cu/ZnO methanol synthesis catalysts—Morphology effect or active site model? Appl. Catal. A Gen. 2001, 208, 163–167. [Google Scholar] [CrossRef]
  115. Jeong, S.H.; Park, B.N.; Lee, S.B.; Boo, J.-H. Structural and optical properties of silver-doped zinc oxide sputtered films. Surf. Coat. Tech. 2005, 193, 340–344. [Google Scholar] [CrossRef]
  116. Cheong, K.Y.; Muti, N.; Ramanan, S.R. Electrical and optical studies of ZnO:Ga thin films fabricated via the sol–gel technique. Thin Solid Films 2002, 410, 142–146. [Google Scholar] [CrossRef]
  117. Lorenz, M.; Kaidashev, E.M.; von Wenckstern, H.; Riede, V.; Bundesmann, C.; Spemann, D.; Benndorf, G.; Hochmuth, H.; Rahm, A.; Semmelhack, H.-C.; et al. Optical and electrical properties of epitaxial (Mg, Cd)xZn1−xO, ZnO, and ZnO:(Ga, Al) thin films on c-plane sapphire grown by pulsed laser deposition. Solid State Electron. 2003, 47, 2205–2209. [Google Scholar] [CrossRef]
  118. Lee, J.-H.; Park, B.-O. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 2003, 426, 94–99. [Google Scholar] [CrossRef]
  119. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, H.; Niki, S. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films 2003, 431, 369–372. [Google Scholar] [CrossRef]
  120. Tominaga, K.; Takao, T.; Fukushima, A.; Moriga, T.; Nakabayashi, I. Film properties of ZnO:Al films deposited by co-sputtering of ZnO:Al and contaminated Zn targets with Co, Mn and Cr. Vacuum 2002, 66, 511–515. [Google Scholar] [CrossRef]
  121. Yamamoto, T. Codoping for the fabrication of p-type ZnO. Thin Solid Films 2002, 420, 100–106. [Google Scholar] [CrossRef]
  122. Wang, L.G.; Zunger, A. Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO. Phys. Rev. Lett. 2003, 90, 256401. [Google Scholar] [CrossRef] [PubMed]
  123. Grundmann, M. Europas erste bipolare ZnO-Diode. MaterialsNews. 15th Auguest 2006. Available online: www.materialsgate.de (accessed on 19 April 2012).
  124. Pan, M.; Nause, J.; Rengarajan, V.; Rondon, R.; Park, E.H.; Ferguson, I.T. Epitaxial growth and characterization of p-type ZnO. J. Electron. Mater. 2007, 36, 457–461. [Google Scholar] [CrossRef]
  125. Yang, L.L.; Ye, Z.Z.; Zhu, L.P.; Zeng, Y.J.; Lu, Y.F.; Zhao, B.H. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the Dopant source. J. Electron. Mater. 2007, 36, 498–501. [Google Scholar] [CrossRef]
  126. Xue, S.-W.; Zu, X.-T.; Shao, L.-X.; Yuan, Z.-L.; Xiang, X.; Deng, H. Preparation of p-type ZnO:(Al, N) by a combination of sol-gel and ion-implantation techniques. Chin. Phys. 2008, B17, 2240–2244. [Google Scholar]
  127. Grundmann, M.; Lorenz, M. Erfolgreiche Phosphor-Dotierung von ZnO-Nanodrähten. Available online: http://www.uni-protokolle.de/nachrichten/id/146856 (accessed on 24 February 2009).
  128. Jin, H.-J.; Song, M.-J.; Park, C.-B. A novel phenomenon: p-Type ZnO:Al films deposited on n-Si substrate. Physica B 2009, 404, 1097–1101. [Google Scholar] [CrossRef]
  129. Qiao, Z.H.; Agashe, C.; Mergel, D. Dielectric modeling of transmittance spectra of thin ZnO:Al films. Thin Solid Films 2006, 496, 520–525. [Google Scholar] [CrossRef]
  130. Lin, S.-S.; Huang, J.-L.; Šajgalik, P. The properties of heavily Al-doped ZnO films before and after annealing in the different atmos phere. Surf. Coat. Tech. 2004, 185, 254–263. [Google Scholar] [CrossRef]
  131. Oh, B.-Y.; Jeong, M.-C.; Kim, D.-S.; Lee, W.; Myoung, J.-M. Post-annealing of Al-doped ZnO films in hydrogen atmosphere. J. Cryst. Growth 2005, 281, 475–480. [Google Scholar] [CrossRef]
  132. Kuo, S.Y.; Chen, W.C.; Lai, F.-I; Cheng, C.P.; Kuo, H.C.; Wang, S.C.; Hsieh, W.H. Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 2006, 287, 78–84. [Google Scholar] [CrossRef]
  133. Martínez, M.A.; Gutiérrez, M.T.; Maffiotte, C. Chemical changes of ITO/p and ZnO/p interfaces as a function of deposition parameters. Surf. Coat. Tech. 1998, 110, 68–72. [Google Scholar] [CrossRef]
  134. Kluth, O.; Rech, B.; Houben, L.; Wieder, S.; Schöpe, G.; Beneking, C.; Wagner, H.; Löffl, A.; Schock, H.W. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 1999, 351, 247–253. [Google Scholar] [CrossRef]
  135. Klenk, R.; Linke, M.; Angermann, H.; Kelch, C.; Kirsch, M.; Klaer, J.; Köble, Ch. Die Stabilität von ZnO bei beschleunigter Alterung. In Proceedings of FVS Workshop (Session III), Berlin, Germany; 2005. [Google Scholar]
  136. Ibuki, S.; Yanagi, H.; Ueda, K.; Kawazoe, H.; Hosono, H. Preparation of n-type conductive transparent thin films of AgInO2:Sn with delafossite-type structure by pulsed laser deposition. J. Appl. Phys. 2000, 88, 3067: 1–3067: 3. [Google Scholar] [CrossRef]
  137. Otabe, T.; Ueda, K.; Kudoh, A.; Hosono, H.; Kawazoe, H. n-Type electrical conduction in transparent thin films of delafossite-type AgInO2. Appl. Phys. Lett. 1998, 72, 1036: 1–1036: 3. [Google Scholar] [CrossRef]
  138. Tate, J.; Jayaraj, M.K.; Draeseke, A.D.; Ulbrich, T.; Sleight, A.W.; Vanaja, K.A.; Nagarajan, R.; Wager, J.F.; Hoffman, R.L. p-Type oxides for use in transparent diodes. Thin Solid Films 2002, 411, 119–124. [Google Scholar] [CrossRef]
  139. Doumerc, J.-P.; Wichainchai, A.; Ammar, A.; Pouchard, M.; Hagenmuller, P. On magnetic properties of some oxides with delafossite-type structure. Mater. Res. Bull. 1986, 21, 745–752. [Google Scholar] [CrossRef]
  140. Nagarajan, R.; Uma, S.; Jayaraj, M.K.; Tate, J.; Sleight, A.W. New CuM2/3Sb1/3O2 and AgM2/3Sb1/3O2 compounds with the delafossite structure. Solid. State Sci. 2002, 4, 787–792. [Google Scholar] [CrossRef]
  141. Sheets, W.C.; Stampler, E.S.; Bertoni, M.I.; Sasaki, M.; Marks, T.J.; Mason, T.O.; Poeppelmeier, K.R. Silver Delafossite Oxides. Inorg. Chem. 2008, 47, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
  142. Marquardt, M.A.; Ashmore, N.A.; Cann, D.P. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films 2006, 496, 146–156. [Google Scholar] [CrossRef]
  143. Barnabé, A.; Mugnier, E.; Presmanes, L.; Tailhades, Ph. Preparation of delafossite CuFeO2 thin films by rf-sputtering on conventional glass substrate. Mater. Lett. 2006, 60, 3468–3470. [Google Scholar] [CrossRef] [Green Version]
  144. Mugnier, E.; Barnabé, A.; Presmanes, L.; Tailhades, Ph. Thin films preparation by rf-sputtering of copper/iron ceramic targets with Cu/Fe = 1: From nanocomposites to delafossite compounds. Thin Solid Films 2008, 516, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
  145. Singh, M.; Mehta, B.R. Effect of structural anisotropy on electronic conduction in delafossite tin doped copper indium oxide thin films. Appl. Phys. Lett. 2008, 93, 192104: 1–192104: 3. [Google Scholar] [CrossRef]
  146. Götzendörfer, S.; Löbmann, P. Influence of single layer thickness on the performance of undoped and Mg-doped CuCrO2 thin films by sol–gel processing. J. Sol-Gel Sci. Techn. 2011, 57, 157–163. [Google Scholar] [CrossRef]
  147. Götzendörfer, S.; Bywalez, R.; Löbmann, P. Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol–gel processing. J. Sol-Gel Sci. Techn. 2009, 52, 113–119. [Google Scholar] [CrossRef]
  148. Lim, S.H.; Desu, S.; Rastogi, A.C. Chemical spray pyrolysis deposition and characterization of p-type CuCr1−xMgxO2 transparent oxide semiconductor thin. J. Phys. Chem. Sol. 2008, 69, 2047–2056. [Google Scholar] [CrossRef]
  149. Götzendörfer, S.; Polenzky, C.; Ulrich, S.; Löbmann, P. Preparation of CuAlO2 and CuCrO2 thin films by sol–gel processing. Thin Solid Films 2009, 518, 1153–1156. [Google Scholar] [CrossRef]
  150. Mahapatra, S.; Shivashankar, S.A. Low-pressure metal–organic chemical vapor deposition of transparent and p-type conducting CuCrO2 thin films with high conductivity. Chem. Vapor Depos. 2003, 9, 238–240. [Google Scholar] [CrossRef]
  151. Ginley, D.; Roy, B.; Ode, A.; Warmsingh, C.; Yoshida, Y.; Parilla, P.; Teplin, C.; Kaydanova, T.; Miedaner, A.; Curtis, C.; et al. Non-vacuum and PLD growth of next generation TCO materials. Thin Solid Films 2003, 445, 193–198. [Google Scholar] [CrossRef]
  152. Kudo, A.; Yanagi, H.; Hosono, H.; Kawazoe, H. SrCu2O2: A p-type conductive oxide with wide band gap. Appl. Phys. Lett. 1998, 73, 220–222. [Google Scholar] [CrossRef]
  153. Roy, B.; Perkins, J.D.; Kaydanova, T.; Young, D.L.; Taylor, M.; Miedaner, A.; Curtis, C.; Kleebe, H.-J.; Readey, D.W.; Ginley, D.S. Preparation and characterization of sol–gel derived copper–strontium–oxide thin films. Thin Solid Films 2008, 516, 4093–4101. [Google Scholar] [CrossRef]
  154. Bobeico, E.; Varsano, F.; Minarini, C.; Roca, F. P-type strontium–copper mixed oxide deposited by e-beam evaporation. Thin Solid Films 2003, 444, 70–74. [Google Scholar] [CrossRef]
  155. Park, S.; Keszler, D.A.; Valencia, M.M.; Hoffman, R.L.; Bender, J.P.; Wager, J.F. Transparent p-type conducting BaCu2S2 films. Appl. Phys. Lett. 2002, 80, 4393: 1–4393: 2. [Google Scholar] [CrossRef]
  156. Banerjee, A.N.; Chattopadhyay, K.K. Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films. J. Appl. Phys. 2005, 97, 084308: 1–084308: 8. [Google Scholar] [CrossRef]
  157. Chen, H.Y.; Tsai, M.W. Delafossite-CuAlO2 thin films prepared by thermal annealing. J. Nano Res. 2011 2011, 13, 81–86. [Google Scholar]
  158. Rima, J.Y.; Songa, S.A.; Parka, S.B. Preparation of copper aluminium oxide by spray pyrolysis. Mater. Res. Soc. Symp. Proc. 2002, 703, 255–258. [Google Scholar]
  159. Sato, T.; Sue, K.; Tsumatori, H.; Suzuki, M.; Tanaka, S.; Kawai-Nakamura, A.; Saitoh, K.; Aida, K.; Hiaki, T. Hydrothermal synthesis of CuAlO2 with the delafossite structure in supercritical water. J. Supercrit. Fluid. 2008, 46, 173–177. [Google Scholar] [CrossRef]
  160. Scanlon, D.O.; Watson, G.W. Conductivity Limits in CuAlO2 from Screened-Hybrid Density Functional Theory. J. Phys. Chem. Lett. 2010, 1, 3195–3199. [Google Scholar] [CrossRef]
  161. Stevens, B.L.; Hoe, C.A.; Swanborg, C.; Tang, Y.; Zhou, C.; Grayson, M.; Poeppelmeier, K.R.; Barnett, S.A. DC reactive magnetron sputtering, annealing, and characterization of CuAlO2 thin films. J. Vac. Sci. Technol. A 2011, 29, 011018: 1–011018: 7. [Google Scholar] [CrossRef]
  162. Tsuboi, N.; Moriya, T.; Kobayashi, S.; Shimizu, H.; Kato, K.; Kaneko, F. Characterization of CuAlO2 Thin Films Prepared on Sapphire Substrates by Reactive Sputtering and Annealing. Jpn. J. Appl. Phys. 2008, 47, 592–595. [Google Scholar] [CrossRef]
  163. Yanagi, H.; Hase, T.; Ibuki, S.; Ueda, K.; Hosono, H. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. J. Appl. Phys. 2000, 88, 4159: 1–4159: 3. [Google Scholar] [CrossRef]
  164. Chen, H.-Y.; Tsai, M.-W. Delafossite-CuAlO2 films prepared by annealing of amorphous Cu-Al-O films at high temperature under controlled atmosphere. Thin Solid Films 2011, 519, 5966–5970. [Google Scholar] [CrossRef]
  165. Lu, Y.M.; He, Y.B.; Yang, B.; Polity, A.; Volbers, N.; Neumann, C.; Hasselkamp, D.; Meyer, B.K. RF reactive sputter deposition and characterization of transparent CuAlO2 thin films. Phys. Status. Solidi. C 2006, 3, 2895–2898. [Google Scholar] [CrossRef]
  166. Pellicer-Porres, J; Segura1, A.; Kim, D. Refractive index of the CuAlO2 delafossite. Semicond. Sci. Technol. 2009, 24, 015002. [Google Scholar] [CrossRef]
  167. Tsuboi, N.; Takahashi, Y.; Kobayashi, S.; Shimizu, H.; Kato, K.; Kaneko, F. Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets. J. Phys. Chem. Solids 2003, 64, 1671–1674. [Google Scholar] [CrossRef]
  168. Chavillon, B.; Cario, L.; Doussier-Brochard, C.; Srinivasan, R.; Le Pleux, L.; Pellegrin, Y.; Blart, E.; Odobel, F.; Jobic, S. Synthesis of light-coloured nanoparticles of wide band gap p-type semiconductors CuGaO2 and LaOCuS by low temperature hydro/solvothermal processes. Phys. Status Solidi. A 2010, 207, 1642–1646. [Google Scholar] [CrossRef]
  169. Ueda, K.; Hase, T.; Yanagi, H.; Kawazoe, H.; Hosono, H.; Ohta, H.; Orita, M.; Hirano, M. Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition. J. Appl. Phys. 2001, 89, 1790–1793. [Google Scholar] [CrossRef]
  170. Varandani, D.; Singh, B.; Mehta, B.R.; Singh, M.; Singh, V.N.; Gupta, D. Resistive switching mechanism in delafossite-transition metal oxide (CuInO2–CuO) bilayer structure. J. Appl. Phys. 2010, 107, 103703. [Google Scholar] [CrossRef]
  171. Duan, N.; Sleight, A.W.; Jayaraj, M.K.; Tate, J. Transparent p-type conducting CuScO2+x films. Appl. Phys. Lett. 2000, 77, 1325: 1–1325: 2. [Google Scholar] [CrossRef]
  172. Yanagi, H.; Park, S.; Draeseke, A.D.; Keszler, D.A.; Tate, J. p-Type conductivity in transparent oxides and sulfide fluorides. J. Solid State Chem. 2003, 175, 34–38. [Google Scholar] [CrossRef]
  173. Manoj, R.; Nisha, M.; Vanaja, K.A.; Jayaraj, M.K. Effect of oxygen intercalation on properties of sputtered CuYO2 for potential use as p-type transparent conducting films. Bull. Mater. Sci. 2008, 31, 49–53. [Google Scholar] [CrossRef]
  174. Jayaraj, M.K.; Draesekea, A.D.; Tatea, J.; Hoffmana, R.L. Wagera, J.F. Transparent p-n Heterojunction Thin Film Diodes. Mater. Res. Soc. Symp. P 2001, 666, F4.1.1–F4.1.9. [Google Scholar] [CrossRef]
  175. Isawa, K.; Yaegashi, Y.; Komatsu, M.; Nagano, M.; Sudo, S. Synthesis of delafossite-derived phases, RCuO2+δ with R = Y, La, Pr, Nd, Sm, and Eu, and observation of spin-gap-like behavior. Phys. Rev. B 1997, 56, 3457–3466. [Google Scholar]
  176. Isawa, K.; Yaegashi, Y.; Ogota, S.; Nagano, M.; Sudo, S. Thermoelectric power of delafossite-derived compounds, RCuO2+δ (R = Y, La, Pr, Nd, Sm, and Eu). Phys. Rev. B 1998, 57, 7950–7954. [Google Scholar]
  177. Attili, R.N.; Saxena, R.N.; Carbonari, A.W.; Filho, J.M. Delafossite oxides ABO2 (A = Ag, Cu; B = Al, Cr, Fe, In, Nd, Y) studied by perturbed-angular-correlation spectroscopy using a 111Ag(β-)111Cd probe. Phys. Rev. B 1998, 58, 2563–2569. [Google Scholar] [CrossRef]
  178. Okuda, T.; Beppu, Y.; Fujii, Y.; Onoe, T.; Terada, N.; Miyasaka, S. Specific heat of delafossite oxide CuCr1−xMgxO2 (0 ≤ x ≤ 0.03). Phys. Rev. B 2008, 77, 134423. [Google Scholar] [CrossRef]
  179. Shibasaki, S.; Kobayashi, W.; Terasaki, I. Transport properties of the delafossite Rh oxide Cu1−xAgxRh1−yMgyO2: Effect of Mg substitution on the resistivity and Hall coefficient. Phys. Rev. B 2006, 74, 235110. [Google Scholar] [CrossRef]
  180. Mugnier, E.; Barnabé, A.; Tailhades, P. Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 2006, 177, 607–612. [Google Scholar] [CrossRef]
  181. Ueda, K.; Inoue, S.; Hirose, S.; Kawazoe, H.; Hosono, H. Transparent p-type semiconductor: LaCuOS layered oxysulfide. Appl. Phys. Lett. 2000, 77, 2701: 1–2701: 3. [Google Scholar] [CrossRef]
  182. Wada, T.; Negami, T.; Nishitani, M. Preparation of CuInS2 films by sulfurization of CuInO films. Appl. Phys. Lett. 1993, 62, 1943: 1–1943: 3. [Google Scholar] [CrossRef]
  183. Shannon, R.D.; Rogers, D.B.; Prewitt, C.T. Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem. 1971, 10, 713–718. [Google Scholar] [CrossRef]
  184. Sheets, W.C.; Mugnier, E.; Barnabé, A.; Marks, T.J.; Poeppelmeier, K.R. Hydrothermal synthesis of delafossite-type oxides. Chem. Mater. 2006, 18, 7–20. [Google Scholar] [CrossRef]
  185. Wang, J.; Li, D.; Z.; Zhu, X.; Dong, W.; Fang, X. Preparation of the delafossite structure p type transparent conducting oxide thin films by sol-gel process. Prog. Chem. 2009, 21, 128–133. [Google Scholar]
  186. Singh, M.; Mehta, B.R. Effect of structural anisotropy on electronic conduction in delafossite tin doped copper indium oxide thin films. Appl. Phys. Lett. 2008, 93, 192104. [Google Scholar] [CrossRef]
  187. Teplin, C.W.; Kaydanova, T.; Young, D.L.; Perkins, J.D.; Ginley, D.S.; Ode, A.; Readey, D.W. A simple method for the preparation of transparent p-type Ca-doped CuInO2 films: Pulsed-laser deposition from air-sintered Ca-doped Cu2In2O5 targets. Appl. Phys. Lett. 2004, 85, 3789–3791. [Google Scholar] [CrossRef]
  188. Yanagi, H.; Hase, T.; Ibuki, S.; Ueda, K.; Hosono, H. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Appl. Phys. Lett. 2001, 78, 1583: 1–1583: 3. [Google Scholar] [CrossRef]
  189. Nie, X.; Wei, S.-H.; Zhang, S.B. Bipolar Doping and Band-Gap Anomalies in Delafossite Transparent Conductive Oxides. Phys. Rev. Lett. 2002, 88, 066405. [Google Scholar] [CrossRef] [PubMed]
  190. Yanagi, H.; Ueda, K.; Ohta, H.; Orita, M.; Hirano, M.; Hosono, H. Fabrication of all oxide transparent p–n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure. Solid State Commun. 2002, 121, 15–18. [Google Scholar] [CrossRef]
  191. Benko, F.A.; Koffyberg, F.P. Opto-electronic properties of p- and n-type delafossite, CuFeO2. J. Phys. Chem. Solids 1987, 48, 431–434. [Google Scholar] [CrossRef]
  192. Pellicer-Porres, J.; Segura1, A.; Gilliland, A.S.; Muñoz, A.; Rodríguez-Hernández, P.; Kim, D.; Lee, M.S.; Kim, T.Y. On the band gap of CuAlO2 delafossite. Appl. Phys. Lett. 2006, 88, 181904. [Google Scholar] [CrossRef]
  193. Buljan, A.; Alemany, P.; Ruiz, E. Electronic Structure and Bonding in CuMO2 (M = Al, Ga, Y) Delafossite-Type Oxides:  An Ab Initio Study. J. Phys. Chem. B 1999, 103, 8060–8066. [Google Scholar] [CrossRef]
  194. Katayama-Yoshida, H.; Koyanagi, T.; Funashima, H.; Harima, H.; Yanase, A. Engineering of nested Fermi surface and transparent conducting p-type Delafossite CuAlO2: possible lattice instability or transparent superconductivity? Solid State Commun. 2003, 126, 135–139. [Google Scholar] [CrossRef]
  195. Koyanagi, T.; Harima, H.; Yanase, A.; Katayama-yoshida, H. Materials design of p-type transparent conducting oxides of delafossite CuAlO2 by super-cell FLAPW method. J. Phys. Chem. Solids 2003, 64, 1443–1446. [Google Scholar] [CrossRef]
  196. Vidal, J.; Trani, F.; Bruneval, F.; Marques, M.A.L.; Botti, S. Effects of Electronic and Lattice Polarization on the Band Structure of Delafossite Transparent Conductive Oxides. Phys. Rev. Lett. 2010, 104, 136401. [Google Scholar] [CrossRef]
  197. Jacob, A.; Parent, C.; Boutinaud, P.; Flem, G.L.; Doumerc, J.P.; Ammar, A.; Elazhari, M.; Elaatmani, M. Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2. Solid State Commun. 1997, 103, 529–532. [Google Scholar] [CrossRef]
  198. Nagarajan, R.; Draeseke, A.D.; Sleight, A.W.; Tate, J. p-type conductivity in CuCr1−xMgxO2 films and powders. J. Appl. Phys. 2001, 89, 8022–8025. [Google Scholar] [CrossRef]
  199. Nagarajan, R.; Duan, N.; Jayaraj, M.K.; Li, J.; Vanaja, K.A.; Yokochi, A.; Draeseke, A.; Tate, J.; Sleight, A.W. p-Type conductivity in the delafossite structure. Int. J. Inorg. Mater. 2001, 3, 265–270. [Google Scholar] [CrossRef]
  200. Lee, M.S.; Kim, T.Y.; Kim, D. Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal. Appl. Phys. Lett. 2001, 79, 2028: 1–2028: 3. [Google Scholar] [CrossRef]
  201. Marquardt, M.A.; Ashmore, N.A.; Cann, D.P. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films 2006, 496, 146–156. [Google Scholar] [CrossRef]
  202. Li, J.; Sleight, A.W.; Jones, C.Y.; Toby, B.H. Trends in negative thermal expansion behavior for AMO2 (A = Cu or Ag; M = Al, Sc, In, or La) compounds with the delafossite structure. J. Solid State Chem. 2005, 178, 285–294. [Google Scholar] [CrossRef]
  203. Dakhel, A.A. Influence of dysprosium doping on the electrical and optical properties of CdO thin films. Sol. Energy 2009, 83, 934–939. [Google Scholar] [CrossRef]
  204. Coutts, T.J.; Young, D.L.; Li, X.; Mulligan, W.P.; Wu, X. Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4. J. Vac. Sci. Technol. A 2000, 18, 2646–2660. [Google Scholar] [CrossRef]
  205. Dakhel, A.A. Influence of hydrogenation on the electrical and optical properties of CdO:Tl thin films. Thin Solid Films 2008, 517, 886–890. [Google Scholar] [CrossRef]
  206. Kim, S.; Seo, J.; Jang, H.W.; Bang, J.; Lee, W.; Lee, T.; Myoung, J.-M. Effects of H2 ambient annealing in fully 0 0 2-textured ZnO: Ga thin films grown on glass substrates using RF magnetron co-sputter deposition. Appl. Surf. Sci. 2009, 255, 4616–4622. [Google Scholar] [CrossRef]
  207. Kang, J.; Kim, H.W.; Lee, C. Electrical resistivity and transmittance properties of Al and Ga-codoped ZnO thin films. J. Korean Phys. Soc. 2010, 56, 576–579. [Google Scholar] [CrossRef]
  208. Hojo, M.; Okimura, K. Effect of Annealing with Ar Plasma Irradiation for Transparent Conductive Nb-Doped TiO2 Films on Glass Substrate. Jpn. J. Appl. Phys. 2009, 48, 08HK06: 1–08HK06: 6. [Google Scholar] [CrossRef]
  209. Wang, Y.; Brezesinski, T.; Antonietti, M.; Smarsly, B. Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 2009, 3, 1373–1378. [Google Scholar]
  210. Lin, Y.C.; Wang, B.L.; Yen, W.T.; Ha, C.T.; Peng, C. Effect of process conditions on the optoelectronic characteristics of ZnO:Mo thin films prepared by pulsed direct current magnetron sputtering. Thin Solid Films 2010, 518, 4928–4934. [Google Scholar] [CrossRef]
  211. Prathap, P.; Devi, G.G.; Subbaiah, Y.P.V.; Ganesan, V.; Reddy, K.T.R.; Yi, J. Preparation and characterization of sprayed In2O3:Mo films. Phys. Status Solid. A 2008, 205, 1947–1951. [Google Scholar] [CrossRef]
  212. Cattin, L.; Morsli, M.; Dahou, F.; Abe, S.Y.; Khelil, A.; Bernède, J.C. Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells. Thin Solid Films 2010, 518, 4560–4563. [Google Scholar] [CrossRef]
  213. Wang, Y.; Li, H.; Ji, L.; Zhao, F.; Liu, X.; Kong, Q.; Wang, Y.; Quan, W.; Zhou, H.; Chen, J. The effect of duty cycle on the microstructure and properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering. J. Phys. D Appl. Phys. 2010, 43, 505401. [Google Scholar] [CrossRef]
  214. Wang, T.; Fang, Q.; Wu, M.; Sun, X.; Lu, F. Low temperature synthesis wide optical band gap Al and (Al, Na) co-doped ZnO thin films. Appl. Surf. Sci. 2011, 257, 2341–2345. [Google Scholar] [CrossRef]
  215. Kumar, S.R.S.; Malar, P.; Osipowicz, T.; Banerjee, S.S.; Kasiviswanathan, S. Ion beam studies on reactive DC sputtered manganese doped indium tin oxide thin films. Nucl. Instrum. Meth. Phys. Res. B 2008, 266, 1421–1424. [Google Scholar] [CrossRef]
  216. Gessert, T.; Yoshida, Y.; Fesenmaier, C.; Duenow, J.; Coutts, T. TCO thin films with permittivity control. Symposium on thin-film compound semiconductor photovoltaics. Mater. Res. Soc. 2009, 1165, 247–252. [Google Scholar] [CrossRef]
  217. Li, J.; Wang, X.; Shi, S.; Song, X.; Lv, J.; Cui, J.; Sun, Z. Optical and wetting properties of CuAlO2 films prepared by radio frequency magnetron sputtering. Proc. Asia Display 2007, 1799–1802. [Google Scholar]
  218. Giurgola, S.; Rodriguez, A.; Martinez, L.; Vergani, P.; Lucchi, F.; Benchabane, S.; Pruneri, V. Ultra thin nickel transparent electrodes. J. Mater. Sci. 2009, 20, S181–S184. [Google Scholar]

Share and Cite

MDPI and ACS Style

Stadler, A. Transparent Conducting Oxides—An Up-To-Date Overview. Materials 2012, 5, 661-683. https://doi.org/10.3390/ma5040661

AMA Style

Stadler A. Transparent Conducting Oxides—An Up-To-Date Overview. Materials. 2012; 5(4):661-683. https://doi.org/10.3390/ma5040661

Chicago/Turabian Style

Stadler, Andreas. 2012. "Transparent Conducting Oxides—An Up-To-Date Overview" Materials 5, no. 4: 661-683. https://doi.org/10.3390/ma5040661

Article Metrics

Back to TopTop