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Abstract: In the quest for efficient and cost-effective photovoltaic absorber materials beyond sil-
icon, considerable attention has been directed toward exploring alternatives. One such material,
zincblende-derived Cu2ZnSnS4 (CZTS), has shown promise due to its ideal band gap size and high
absorption coefficient. However, challenges such as structural defects and secondary phase formation
have hindered its development. In this study, we examine the potential of another compound,
Cu2ZnSnO4 (CZTO), with a similar composition to CZTS as a promising alternative. Employing
ab initio density function theory (DFT) calculations in combination with an evolutionary structure
prediction algorithm, we identify that the crystalline phase of delafossite structure is the most stable
among the 900 (meta)stable CZTO. Its thermodynamic stability at room temperature is also confirmed
by the molecular dynamics study. Excitingly, this new phase of CZTO displays a direct band gap
where the dipole-allowed transition occurs, making it a strong candidate for efficient light absorp-
tions. Furthermore, the estimation of spectroscopic limited maximum efficiency (SLME) directly
demonstrates the high potential of delafossite-CZTO as a photovoltaic absorber. Our numerical
results suggest that delafossite-CZTO holds promise for future photovoltaic applications.

Keywords: computational material design; photovoltaic absorber; delafossite oxides

1. Introduction

The efficiency of a photovoltaic cell depends heavily on the material used as an ab-
sorber. Silicon (Si) is currently the most widely used absorber due to its abundance and
affordability. Though the size of its band gap is favorable for visible light absorption, it
exhibits limited absorption properties in the visible spectrum owing to the indirect nature
of its band gap. Accordingly, Si requires thick wafers to absorb light, leading to low power
conversion efficiency (PCE) and increasing costs [1]. GaAs [2], Cu2InGaSe4 (CIGS) [3],
and halide perovskites such as CH3NH3PbI3 [4] have been explored as alternative ma-
terials to overcome these limitations. GaAs and CIGS have better absorption properties
than Si but are made of expensive elements such as gallium (Ga) and indium (In) [5,6].
Halide perovskites are emerging as a promising class of photovoltaic absorbers due to their
outstanding absorption properties [4]. However, they currently suffer from various insta-
bilities associated with organic molecules. Finding new materials with superior absorption
properties, high stability, and lower production prices is still a key obstacle for developing
next-generation photovoltaic cells and making solar energy an alternative energy resource
to fossil fuels [7,8].

Cu2ZnSnS4 (CZTS), which possesses a zincblende-derived structure, has attracted consid-
erable attention as a potential alternative to CIGS, primarily due to its potential to overcome
the limitation of CIGS [9,10]. CZTS comprises earth-abundant, non-toxic, and cost-effective
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elements, namely zinc (Zn) and tin (Sn), and exhibits favorable properties such as a band
gap size of 1.45 eV [11] and a high absorption coefficient of 104 cm−1 [12]. However, de-
spite extensive research, CZTS-based solar cells have yet to surpass an efficiency of 12% [13],
largely owing to issues such as phase separation and the emergence of several structural
defects [14]. On the other hand, Cu2ZnSnO4 (CZTO), which consists of oxygen (O) with the
same number of valence electrons as other chalcogen elements, could potentially demonstrate
similar physical properties to CIGS and CZTS. Furthermore, if successfully synthesized, CZTO
would offer its own advantages, as oxide compounds generally exhibit high stability under
various ambient environments [15]. Nonetheless, it is worth noting that, to the best of our
knowledge, the thermodynamic and physical properties of a quaternary oxide CZTO have
not been investigated yet in both theory and experiment.

In this paper, we explore the most stable crystal structure within the quaternary CZTO
compound, known as delafossite-CZTO. Delafossite oxide belongs to a class of metal oxides
where triangular A and hexagonal BO2 atomic layers stack alternately, forming a unique
three-dimensional structure. This stable phase is identified through the particle swarm
optimization (PSO) process. The delafossite-CZTO exhibits a direct band gap and dipole-
allowed transitions, facilitating robust light absorption. Spectroscopic limited maximum
efficiency (SLME) analysis indicates that this new phase of CZTO offers higher efficiency
compared to other oxide materials. This work highlights the potential of delafossite-CZTO
as an efficient and promising photovoltaic absorber with desirable properties such as high
efficiency, low cost, low toxicity, and high stability.

2. Results

By employing the particle swarm optimization (PSO) algorithm based on ab initio
density functional theory (DFT) calculations, we have identified the thermodynamically
stable crystal structures among quaternary CZTO compounds. During the optimization
process, we relaxed the volume of the crystal structure while keeping the ratio of atoms
fixed (i.e., Cu:Zn:Sn:O = 2:1:1:4). Among 900 crystal structures considered, those deviating
by 0.7 meV/atom or less from the most stable structure are presented (denoted by a blue
circle in Figure 1a). The most stable structure, resembling a delafossite oxide, features
alternating triangular and hexagonal layers of Cu and Zn0.5Sn0.5O2 (denoted as delafossite-
CZTO) (see Figure 1c). Surprisingly, the expected stable kesterite and stannite phases, akin
to CIGS and CZTS, were energetically less favorable. The total energy of kesterite and
stannite structures was 200 and 204 meV/atom higher, respectively, than delafossite-CZTO.
Refer to Appendix A for computational and experimental details.

When determining the stability of a structure, it is not enough to simply rely on the
strength of its cohesive energy. A structure could still be prone to spontaneous changes if
there are negative frequencies in its vibrations, which would suggest structural instability.
To assess this, we studied the vibrational properties of delafossite-CZTO, as shown in
Figure 2a. The absence of negative frequencies along the high-symmetry line in the phonon
band suggests that delafossite-CZTO is dynamically stable. However, while phonon
dispersion can provide some insight into the structure’s stability, it does not definitively tell
us whether the structure might collapse at a specific temperature. To determine whether the
new delafossite-CZTO structure can remain stable at room temperature (300 K), we used
canonical molecular dynamics (MD) simulations using a 3 × 3 × 3 supercell. Figure 2b
shows how the total potential energy evolved over a 3 ps MD simulation and provides
a snapshot of the final structure. Our findings confirm that delafossite-CZTO structure
maintains stability at room temperature (300 K).
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Figure 1. Computational search for thermodynamically stable Cu2ZrSnO4 (CZTO). (a) Relative total 
energy ΔE with respect to the most stable structure as a function of volume for CZTO. The stable 
structures are found by using the particle swarm optimization (PSO) algorithm. The most stable 
structure is color-coded blue. (b) The low-energy structures of CZTO are found by the PSO algo-
rithm. The crystal structures are color-coded and ordered according to the energy hierarchy, i.e., the 
first one is the most stable structure. (c) Top and side views of the most stable structure within our 
materials search in CZTO: delafossite structure. The black solid line shows a unit cell of the struc-
ture. 
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metry points. (b) Total potential energy as a function of time during canonical MD simulations at 

Figure 1. Computational search for thermodynamically stable Cu2ZrSnO4 (CZTO). (a) Relative total
energy ∆E with respect to the most stable structure as a function of volume for CZTO. The stable
structures are found by using the particle swarm optimization (PSO) algorithm. The most stable
structure is color-coded blue. (b) The low-energy structures of CZTO are found by the PSO algorithm.
The crystal structures are color-coded and ordered according to the energy hierarchy, i.e., the first one
is the most stable structure. (c) Top and side views of the most stable structure within our materials
search in CZTO: delafossite structure. The black solid line shows a unit cell of the structure.
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Figure 2. Structural stability of delafossite-CZTO. (a) Phonon band structures along the high-
symmetry points. (b) Total potential energy as a function of time during canonical MD simulations at
room temperature with the final structural at the end of the simulation time of 3 ps (inset). The black
dashed line represents the potential average from the MD simulation at room temperature.

Having checked the structural stabilities of delafossite-CZTO, we move to the elec-
tronic structure and its properties. The efficiency of a photovoltaic absorber is determined
by several factors, including the bulk optical property of the absorber, the type and distri-
bution of structural defects within the absorber, and the artifacts induced by the fabrication
of the device. Among these, the intrinsic factors, i.e., the bulk optical properties, are mainly
determined by the electronic structure of the absorber material. Thus, we calculated the
band structure of delafossite-CZTO, which emerges as the most stable phase, using DFT
calculations at the GGA-PBE and GW0 levels. As shown in Figure 3a, delafossite-CZTO
exhibits a direct band gap at the Γ point in both GGA-PBE and GW0 calculations, sug-
gesting that the direct band transition positions in lower energy than other indirect band
transitions. Here, the valence and conduction bands in delafossite-CZTO comprise Cu d
and Zn/Sn p orbitals. The transition between the two orbitals is dipole-allowed across the
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direct band gap. Thus, the light is absorbed strongly when the dipole-allowed transition
occurs [16]. The size of the direct band gap is estimated to be 1.58 eV (GW0), very close to
that of the ideal photovoltaic absorber (~1.34 eV) according to the Shockley and Queisser
(SQ) criterion [1]. These results indicate that delafossite-CZTO has a preferable electronic
structure for the application of a photovoltaic absorber. To note, the gap size differs sig-
nificantly by 1.32 eV for 1.58 eV (GW0) and 0.26 eV (GGA-PBE). The GGA-PBE method
commonly underestimates band gaps due to self-interaction errors. The GW0 approach
corrects this error, providing a more accurate band gap prediction.
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Figure 3. Electronic structure of delafossite-CZTO. (a) Band structure of delafossite-CZTO. Blue
dashed and red solid lines represent energy bands calculated from DFT-PBE and GW0, respectively.
The valence band maximum is set to zero. (b) Absorption spectra ε2 from GW + BSE (red solid
line) and GW + RPA (blue dashed line). The dotted gray lines indicate photon energy equal to the
quasiparticle energy gap.

The absorption spectrum ε2(ω) (the imaginary part of the dielectric function) of
delafossite-CZTO is estimated based on the GW calculations, as shown in Figure 3b. We
further solve the Bethe–Salpeter equation (BSE) with quasiparticle energy bands to consider
the photo-excited electron and hole interactions. We chose the twenty occupied orbitals,
and six unoccupied orbitals suffice to converge ε2(ω) up to 5.0 eV. The absorption spectra
obtained from GW + BSE are compared with the non-interacting case (GW + RPA). Both
GW + BSE and GW + RPA spectra do not show superior optical absorption in energy below
Eg (denoted as the dashed line in Figure 3b), but the electron–hole interactions shift the
overall absorption spectra to the lower photon energy range [10,17]. The red shift of the
absorption spectra above Eg generally improve the efficiency of a photovoltaic absorber
because the light absorption within the solar spectral range is enhanced by the redshift.
In addition, an exciton forms at 2.08 eV (indicated by the red line in Figure 3b), further
augmenting the absorption coefficient within the visible range (see Figure 4a).

To computationally screen new absorber candidates effectively, having a descriptor
that captures a photovoltaic absorber’s intrinsic properties is essential. The classical descrip-
tor is simply the band gap, which Shockley and Queisser (SQ) suggested [18]. Based on this
SQ criterion, the optimal band gap is ~1.34 eV for the maximum solar conversion efficiency
to 33.16% for a single-junction solar cell. However, it is obvious that this descriptor is
insufficient because the numerous materials with similar sizes of the optimized band gap
exhibit poor photovoltaic efficiency in experiments. A more sophisticated model, a widely
used descriptor of the efficiency of a photovoltaic absorber, is the spectroscopic limited
maximum efficiency (SLME; η) [19]. This can be estimated by DFT calculations as follows:

η =
Pmax

Pin
=

max
{(

jsc − j0
(

eeV/kT − 1
))

V
}

V∫ ∞
0 EISUN(E)dE
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Here, jsc = e
∫ ∞

0 a(E)ISUN(E)dE is the short-circuit current density where a(E) = 1 −
e−2α(E)L is the photon absorptivity and ISUN(E) is the AM1.5G solar spectrum. j0 = jr0/ fr
is the reverse saturation current density, jr0 = eπ

∫ ∞
0 a(E)Ibb(E, T)dE is the rates of emission

and absorption through the cell surface, Ibb(E, T) is the black-body spectrum at temperature

T, fr = e(Eg−Eda
g )/kT is the fraction of the radiative recombination current, and Eg and Eda

g
denote the band gap and direct-allowed band gap. Accordingly, the property-related inputs
are the absorption coefficient α(E), the fraction of the radiative recombination current fr,
the thickness L, and the temperature T. Note that extrinsic effects such as structural defects
and fabrication-induced artifacts are not considered in the SLME.

The SLME of delafossite-CZTO is calculated as a function of thickness to evaluate the
potential efficiency of this new material, as shown in Figure 4b. For the thickness L = 2.0 µm
and the temperature T = 300 K, the SLME of delafossite-CZTO is about 28.2%. The SLME
of CZTO is relatively high compared to other oxide materials proposed as promising pho-
tovoltaic absorbers (see Table 1) [20–25]. The SLME in Table 1 is evaluated for the thickness
L = 2.0 µm and temperature T = 300 K; the SLME is strongly dependent on the thickness and
the temperature of the photovoltaic absorber. The estimation of the SLME directly suggests
that delafossite-CZTO could be an efficient photovoltaic absorber. Here, it is worth recalling
that CZTO has several additional advantages for real applications, such as element abundance,
low cost, low toxicity, and high stability under an ambient environment.

Table 1. Spectroscopic limited maximum efficiency (SLME) of oxide compounds proposed as promis-
ing photovoltaic absorbers. The SLME are evaluated for the thickness L = 2.0 µm and temperature
T = 300 K. The SLME of CdTe is also included for reference [20–25].

SLME (%) SLME (%)

Cu2ZnSnO4 28.2 Cu2O 0.5
CuGaO2 32.6 Cu2O:Zn 8.0
CuInO2 31.9 Ba2SnNbO6 26.5

SnO 5.3 Na2Tl0.25Bi0.75O6 15.5
2D-SnO 13.4 SrBaVBiO6 16.8

Sn0.75Zn0.25O 22.2 CdTe (ref) 30.1

To synthesize the promising quaternary compound CZTO, we have tried high-temperature
sintering up to T = 1673 K and under ambient conditions using an alumina crucible. Figure S1
shows the X-ray diffraction (XRD) 2θ scan of the synthesized specimen. The XRD pattern is
unveiled but is not to be analyzed with theoretically predicted CZTO structures. Rather, the
XRD pattern can be interpreted with four stable binary and ternary compounds: Zn2SnO4,
SnO2, Cu2O, and CuO. The XRD peak intensities of Cu2O and CuO are relatively weaker than
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those of Zn2SnO4 and SnO2, which might be attributed to the volatile nature of Cu atoms
and the reaction between CuxO and the alumina crucible [26]. This result indicates that the
precise control of stoichiometry (particularly the amount of Cu atoms) is crucial for synthesizing
CZTO. Still, there are various alternative methods to try for synthesizing CZTO compounds; for
example, quartz sealing, pressure-controlled heat treatment, and rapid liquid phase synthesis
through arc discharge, as well as thin-film synthesis via physical vapor deposition methods like
sputtering and pulsed laser deposition (PLD). The experimental validation of our work remains
for future work.

3. Conclusions

Finding efficient and cost-effective materials for photovoltaic absorbers is crucial for
advancing solar energy technology and achieving sustainable energy solutions. Our study
explored CZTO compounds as promising alternatives to conventional absorber materials,
employing ab initio DFT calculations and the PSO algorithm. We identified the most
stable crystal structure, known as delafossite structure, which exhibited a direct band gap
conducive to effective light absorption. SLME analysis underscored CZTO’s high efficiency
potential. If the discovered phase of CZTO is synthesized, it will present a compelling
option for next-generation photovoltaic cells, with the material’s abundance, low cost, low
toxicity, and potential stability under operating conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13243111/s1. Figure S1: X-ray diffraction (XRD) 2θ scan of a synthesized
bulk specimen; Figure S2: Crystal structure of zincblende-derived CZTO; Figure S3: The convergence of
the quasiparticle band gap with respect to the number of bands on a 5 × 5 × 5 k-grid on CZTO.
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Appendix A

Appendix A.1. Crystal Prediction Calculations

To identify energetically stable structures of CZTO, we perform crystal prediction
calculations using the particle swarm optimization (PSO) algorithm implemented in crystal
structure analysis by particle swarm optimization (CALYPSO) [27]. At the beginning of the
simulation, we start with 50 random structures within 3D space groups, and the structural
evolution proceeds up to six generations based on the PSO scheme for the three different
volumes. A total of 900 structures were generated without any symmetry constraint. Out
of 900 initial structures, we obtained 503 optimized structures. The total energies of the
configurations are calculated using the all-electron full-potential FHI-aims code [28–30]
with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation function [31]. The tight
numerical settings and 4 × 4 × 4 k-point grids are used in these calculations. All structures
are fully optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [32] algorithm,
with a maximum force component below 10−3 eV/Å. After that, we also checked the
structure optimization with more dense k-point grids 8 × 8 × 8 using the Vienna Ab initio
Simulation Package (VASP) [33,34].

Appendix A.2. Ab Initio Density Functional Theory (DFT) Calculations

In our present investigation of the electronic and optical properties of CZTO, we employ
density functional theory (DFT) with the projector-augmented wave (PAW) method [35], as
implemented in the Vienna Ab initio Simulation Package (VASP) [33,34]. The exchange and
correlation function used the generalized gradient approximation (GGA) in the Perdew–Burke–
Ernzerhof (PBE) form [31]. A cutoff of 420 eV was set for the plane-wave expansion of the wave
function. Our GW calculations are of the GW0 [36,37] type and include self-consistency with five
iterations. To ensure convergence of the relevant quantities, we considered a total of 450 bands.
For GW0 calculations, Brillouin zone (BZ) sampling was conducted with a 5 × 5 × 5 grid. We
also solved the Bethe–Salpeter Equation (BSE) [17,38–42] using quasiparticle energy bands to
evaluate the optical absorption spectrum, ε2(ω) (the imaginary part of the dielectric function),
and exciton energy levels of CZTO. We considered the top twenty occupied and six unoccupied
orbitals to achieve convergence of ε2(ω) up to 5.0 eV. The absorption spectra obtained with
electron–hole interaction (GW +BSE) are compared with those obtained in the non-interacting
case (GW0).

Appendix A.3. Synthesis and Characterization

In this study, the bulk samples were prepared via the solid-state reaction method. To
begin, we prepared powders of Cu2O, ZnO, and SnO2 in the molar ratio of 1:1:1, ensuring
an error level of ±0.5 mg during weighing. These powders were mixed thoroughly and
pressurized at 10 MPa for 5 min to form a pellet. The prepared pellets were reacted in the
atmosphere using a box furnace. The heat treatment process involved raising the temperature
from 295 to 1475 K at a rate of 200 K/h and holding it at 1475 K for 16 h. The crystal structure
of the bulk sample was examined by X-ray diffraction (XRD) with Cu radiation (X’pert3 X-ray
Diffractometer). Diffraction patterns were collected at room temperature.
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