Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,057)

Search Parameters:
Keywords = degradation of pharmaceuticals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1677 KiB  
Review
Sustainable, Targeted, and Cost-Effective Laccase-Based Bioremediation Technologies for Antibiotic Residues in the Ecosystem: A Comprehensive Review
by Rinat Ezra, Gulamnabi Vanti and Segula Masaphy
Biomolecules 2025, 15(8), 1138; https://doi.org/10.3390/biom15081138 - 7 Aug 2025
Abstract
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. [...] Read more.
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. However, the elimination of toxic end products generated by physicochemical methods and the need for industrial applications pose significant challenges. Hence, environmentally sustainable, green, and readily available approaches for the transformation and degradation of these antibiotic compounds are being sought. Herein, we review the impact of sustainable fungal laccase-based bioremediation strategies. Fungal laccase enzyme is considered one of the most active enzymes for biotransformation and biodegradation of antibiotic residue in vitro. For industrial applications, the low laccase yields in natural and genetically modified hosts may constitute a bottleneck. Methods to screen for high-laccase-producing sources, optimizing cultivation conditions, and identifying key genes and metabolites involved in extracellular laccase activity are reviewed. These include advanced transcriptomics, proteomics, and metagenomics technologies, as well as diverse laccase-immobilization technologies with different inert carrier/support materials improving enzyme performance whilst shifting from experimental assays to in situ monitoring of residual toxicity. Still, more basic and applied research on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics that are recalcitrant and prevalent, is needed. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

20 pages, 2618 KiB  
Article
Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
by Liina Onga, Niina Dulova and Eneliis Kattel-Salusoo
Water 2025, 17(15), 2303; https://doi.org/10.3390/w17152303 - 3 Aug 2025
Viewed by 219
Abstract
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, [...] Read more.
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, Fe2+ and UVA-light activated peroxo compounds were applied for the degradation and mineralization of a glucocorticoid, 25.5 µM DXM, in ultrapure water (UPW). The treatment efficacies were validated in real spring water (SW). A 120 min target pollutant degradation followed pseudo first-order reaction kinetics when an oxidant/Fe2+ dose 10/1 or/and UVA irradiation were applied. Acidic conditions (a pH of 3) were found to be more favorable for DXM oxidation (≥99%) regardless of the activated peroxo compound. Full conversion of DXM was not achieved, as the maximum TOC removal reached 70% in UPW by the UVA/H2O2/Fe2+ system (molar ratio of 10/1) at a pH of 3. The higher efficacy of peroxymonosulfate-based oxidation in SW could be induced by chlorine, bicarbonate, and carbonate ions; however, it is not applicable for peroxydisulfate and hydrogen peroxide. Overall, consistently higher efficacies for HO-dominated oxidation systems were observed. The findings from the current paper could complement the knowledge of oxidative removal of low-level DXM in real water matrices. Full article
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 258
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Reducing Energy Penalty in Wastewater Treatment: Fe-Cu-Modified MWCNT Electrodes for Low-Voltage Electrofiltration of OMC
by Lu Yu, Jun Zeng, Xiu Fan, Fengxiang Li and Tao Hua
Energies 2025, 18(15), 4077; https://doi.org/10.3390/en18154077 - 1 Aug 2025
Viewed by 191
Abstract
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable [...] Read more.
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable for treating these new types of pollutants has become a research hotspot in recent years. Membrane filtration, adsorption, advanced oxidation, and electrochemical advanced oxidation technologies can effectively treat new organic pollutants. The electro-advanced oxidation process based on sulfate radicals is renowned for its non-selectivity, high efficiency, and environmental friendliness, and it can improve the dewatering performance of sludge after wastewater treatment. Therefore, in this study, octyl methoxycinnamate (OMC) was selected as the target pollutant. A new type of electrochemical filtration device based on the advanced oxidation process of sulfate radicals was designed, and a new type of modified carbon nanotube material electrode was synthesized to enhance its degradation effect. In a mixed system of water and acetonitrile, the efficiency of the electrochemical filtration device loaded with the modified electrode for degrading OMC is 1.54 times that at room temperature. The experimental results confirmed the superiority and application prospects of the self-designed treatment scheme for organic pollutants, providing experience and a reference for the future treatment of PPCP pollution. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 271
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

17 pages, 1268 KiB  
Article
Community Composition and Diversity of β-Glucosidase Genes in Soils by Amplicon Sequence Variant Analysis
by Luis Jimenez
Genes 2025, 16(8), 900; https://doi.org/10.3390/genes16080900 - 28 Jul 2025
Viewed by 189
Abstract
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the [...] Read more.
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the degradation of cellulose by producing glucose from the conversion of the disaccharide cellobiose. Different soils from the states of Delaware, Maryland, New Jersey, and New York were analyzed by direct DNA extraction, PCR analysis, and next generation sequencing of amplicon sequences coding for β-glucosidase genes. To determine the community structure and diversity of microorganisms carrying β-glucosidase genes, amplicon sequence variant analysis was performed. Results showed that the majority of β-glucosidase genes did not match any known phylum or genera with an average of 84% of sequences identified as unclassified. The forest soil sample from New York showed the highest value with 95.62%. When identification was possible, the bacterial phyla Pseudomonadota, Actinomycetota, and Chloroflexota were found to be dominant microorganisms with β-glucosidase genes in soils. The Delaware soil showed the highest diversity with phyla and genera showing the presence of β-glucosidase gene sequences in bacteria, fungi, and plants. However, the Chloroflexota genus Kallotanue was detected in 3 out of the 4 soil locations. When phylogenetic analysis of unclassified β-glucosidase genes was completed, most sequences aligned with the Chloroflexota genus Kallotenue and the Pseudomonadota species Sphingomonas paucimobilis. Since most sequences did not match known phyla, there is tremendous potential to discover new enzymes for possible biotechnological and pharmaceutical applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

26 pages, 1943 KiB  
Review
Alternative Solvents for Pectin Extraction: Effects of Extraction Agents on Pectin Structural Characteristics and Functional Properties
by Alisa Pattarapisitporn and Seiji Noma
Foods 2025, 14(15), 2644; https://doi.org/10.3390/foods14152644 - 28 Jul 2025
Viewed by 225
Abstract
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, [...] Read more.
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, and alter its physicochemical and functional properties. Although novel methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE) are recognized as environmentally friendly alternatives, they frequently use acids or alkalis as solvents. This review focuses on pectin extraction methods that do not involve acidic or alkaline solvents such as chelating agents, super/subcritical water, and deep eutectic solvents (DESs) composed of neutral components. This review also discusses how these alternative extraction methods can preserve or modify the key structural features of pectin, thereby influencing its monosaccharide composition, molecular conformation, and interactions with other biopolymers. Furthermore, the influence of these structural variations on the rheological properties, gelling behaviors, and potential applications of pectin in the food, pharmaceutical, and biomedical fields are discussed. This review provides insights into alternative strategies for obtaining structurally intact and functionally diverse pectin by examining the relationship between the extraction conditions and pectin functionality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

35 pages, 1660 KiB  
Article
Efficient Assessment and Optimisation of Medium Components Influencing Extracellular Xylanase Production by Pediococcus pentosaceus G4 Using Statistical Approaches
by Noor Lutphy Ali, Hooi Ling Foo, Norhayati Ramli, Murni Halim and Karkaz M. Thalij
Int. J. Mol. Sci. 2025, 26(15), 7219; https://doi.org/10.3390/ijms26157219 - 25 Jul 2025
Viewed by 229
Abstract
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the [...] Read more.
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the safety of xylanase-producing microorganisms. The utilisation of renewable polymers for enzyme production is becoming a cost-effective alternative. Among the prospective candidates, non-pathogenic lactic acid bacteria (LAB) are promising for safe and eco-friendly applications. Our investigation revealed that Pediococcus pentosaceus G4, isolated from plant sources, is a notable producer of extracellular xylanase. Improving the production of extracellular xylanase is crucial for viable industrial applications. Therefore, the current study investigated the impact of various medium components and optimised the selected medium composition for extracellular xylanase production of P. pentosaceus G4 using Plackett–Burman Design (PBD) and Central Composite Design (CCD) statistical approaches. According to BPD analysis, 8 out of the 19 investigated factors (glucose, almond shell, peanut shell, walnut shell, malt extract, xylan, urea, and magnesium sulphate) demonstrated significant positive effects on extracellular xylanase production of P. pentosaceus G4. Among them, glucose, almond shells, peanut shells, urea, and magnesium sulphate were identified as the main medium components that significantly (p < 0.05) influenced the production of extracellular xylanase of P. pentosaceus G4. The optimal concentrations of glucose, almond shells, peanut shells, urea, and magnesium sulphate, as determined via CCD, were 26.87 g/L, 16 g/L, 30 g/L, 2.85 g/L, and 0.10 g/L, respectively. The optimised concentrations resulted in extracellular xylanase activity of 2.765 U/mg, which was similar to the predicted extracellular xylanase activity of 2.737 U/mg. The CCD-optimised medium yielded a 3.13-fold enhancement in specific extracellular xylanase activity and a 7.99-fold decrease in production costs compared to the commercial de Man, Rogosa and Sharpe medium, implying that the CCD-optimised medium is a cost-effective medium for extracellular xylanase production of P. pentosaceus G4. Moreover, this study demonstrated a positive correlation between extracellular xylanase production, growth, lactic acid production and the amount of sugar utilised, implying the multifaceted interactions of the physiological variables affecting extracellular xylanase production in P. pentosaceus G4. In conclusion, statistical methods are effective in rapidly assessing and optimising the medium composition to enhance extracellular xylanase production of P. pentosaceus G4. Furthermore, the findings of this study highlighted the potential of using LAB as a cost-effective producer of extracellular xylanase enzymes using optimised renewable polymers, offering insights into the future use of LAB in producing hemicellulolytic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 620
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 374
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 404
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

15 pages, 1322 KiB  
Article
Stability Toolkit for the Appraisal of Bio/Pharmaceuticals’ Level of Endurance (STABLE) as a Framework and Software to Evaluate the Stability of Pharmaceuticals
by Fotouh R. Mansour, Marcello Locatelli and Alaa Bedair
Analytica 2025, 6(3), 25; https://doi.org/10.3390/analytica6030025 - 18 Jul 2025
Viewed by 388
Abstract
The Stability Toolkit for the Appraisal of Bio/Pharmaceuticals’ Level of Endurance (STABLE) is introduced and proposed as a comprehensive tool and software to evaluate the stability of active pharmaceutical ingredients (APIs) under various stress conditions. In the pharmaceutical industry, stability testing is a [...] Read more.
The Stability Toolkit for the Appraisal of Bio/Pharmaceuticals’ Level of Endurance (STABLE) is introduced and proposed as a comprehensive tool and software to evaluate the stability of active pharmaceutical ingredients (APIs) under various stress conditions. In the pharmaceutical industry, stability testing is a critical step in the drug development process, ensuring the quality, safety, and efficacy of APIs. Traditional stability tests—such as real-time, accelerated, and forced degradation testing—often face challenges, including inconsistent interpretation and implementation across different regions and organizations. STABLE addresses these challenges by providing a standardized and holistic approach to assessing drug stability across five key stress conditions: oxidative, thermal, acid-catalyzed hydrolysis, base-catalyzed hydrolysis, and photostability. Beyond its role as an evaluation tool, STABLE also serves as a practical guide for chemists, encouraging a more complete and thoughtful approach to stability studies. While many investigations focus solely on acid- and base-catalyzed hydrolysis, other critical conditions—such as photostability—are often underexplored or entirely omitted. By highlighting the importance of evaluating all relevant degradation pathways, STABLE promotes more robust and informed stability testing protocols. The index utilizes a color-coded scoring system to quantify and compare stability, facilitating consistent assessments across different APIs. This paper discusses the methodology of STABLE, including the scoring system and specific criteria applied under each condition. This tool is introduced to reflect intrinsic degradation susceptibility under forced conditions. The software is freely available as an open-source tool at bit.ly/STABLE2025, enabling broader accessibility and implementation across the pharmaceutical research community. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Article
Is Ozonation Treatment Efficient to Provide Safe Reclaimed Water? Assessing the Effects of Synthetic Wastewater Effluents in Human Cell Models
by Ana Teresa Rocha, Fátima Jesus, Helena Oliveira, João Gomes and Joana Luísa Pereira
Appl. Sci. 2025, 15(14), 7784; https://doi.org/10.3390/app15147784 - 11 Jul 2025
Viewed by 266
Abstract
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect [...] Read more.
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect considering the use of reclaimed water. We aimed at understanding the potential impacts of ozonation on the quality of reclaimed water for human use through cell viability assays with human skin keratinocytes (HaCaT cell line). Under this context, the cytotoxicity of synthetic effluents contaminated with methyl- and propylparaben, paracetamol, sulfamethoxazole, and carbamazepine, both individually and in mixtures, was assessed before and after ozonation. The viability of HaCaT cells decreased after exposure to untreated synthetic effluents, denoting the cytotoxicity of the tested PPCPs singly and more prominently in mixtures (especially in those combining two and three PPCPs). A similar pattern was observed when testing effluents treated with ozonation. Since the parent contaminants were fully removed during ozonation, the observed cytotoxicity relates to degradation by-products and interactive effects among them. This study suggests that ozonation is poorly efficient in reducing cytotoxicity, as required for the safe use of ozone-treated reclaimed water in activities involving direct contact with human skin. Full article
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 292
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

46 pages, 1588 KiB  
Review
Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications
by Shivshankar Chaudhari, Sunilesh Chakravarty, YoungHo Cho, JinWon Seo, MinYoung Shon and SeungEun Nam
Processes 2025, 13(7), 2212; https://doi.org/10.3390/pr13072212 - 10 Jul 2025
Viewed by 561
Abstract
Organic solvent nanofiltration (OSN) has emerged as a transformative platform for molecular separation, offering energy-efficient and high-performance alternatives to conventional separation techniques across the food, petrochemical, and pharmaceutical industries. At the core of this advancement lie polyamide membranes, whose exceptional chemical resilience, tunable [...] Read more.
Organic solvent nanofiltration (OSN) has emerged as a transformative platform for molecular separation, offering energy-efficient and high-performance alternatives to conventional separation techniques across the food, petrochemical, and pharmaceutical industries. At the core of this advancement lie polyamide membranes, whose exceptional chemical resilience, tunable architecture, and compatibility with a wide range of organic solvents have positioned them as the material of choice for industrial OSN applications. Recent progress encompassing nanostructured additives, controlled interfacial polymerization, and advanced crosslinking strategies has led to significant improvements in membrane selectivity, permeability, and operational stability. As OSN continues to gain traction in sustainable chemical processing, enabling reductions in both energy consumption and environmental waste, ongoing challenges such as membrane fouling, structural degradation, and limited solvent resistance remain critical barriers to broader adoption. This review critically examines the role of polyamide membranes in OSN, emphasizing their structural versatility, physicochemical attributes, and capacity to meet the growing demands of sustainable separation technologies. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop