Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = deep-sea fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3124 KiB  
Review
Structural Diversity and Bioactivities of Marine Fungal Terpenoids (2020–2024)
by Minghua Jiang, Senhua Chen, Zhibin Zhang, Yiwen Xiao, Du Zhu and Lan Liu
Mar. Drugs 2025, 23(8), 300; https://doi.org/10.3390/md23080300 - 27 Jul 2025
Viewed by 444
Abstract
Marine-derived fungi have proven to be a rich source of structurally diverse terpenoids with significant pharmacological potential. This systematic review of 119 studies (2020–2024) identifies 512 novel terpenoids, accounting for 87% of the total discoveries to 2020, from five major classes (monoterpenes, sesquiterpenes, [...] Read more.
Marine-derived fungi have proven to be a rich source of structurally diverse terpenoids with significant pharmacological potential. This systematic review of 119 studies (2020–2024) identifies 512 novel terpenoids, accounting for 87% of the total discoveries to 2020, from five major classes (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, and triterpenes) isolated from 104 fungal strains across 33 genera. Sesquiterpenoids and diterpenoids constitute the predominant chemical classes, with Trichoderma, Aspergillus, Eutypella, and Penicillium being the most productive genera. These fungi were primarily sourced from distinct marine niches, including deep sea sediments, algal associations, mangrove ecosystems, and invertebrate symbioses. Notably, 57% of the 266 tested compounds exhibited diverse biological activities, encompassing anti-inflammatory, antibacterial, antimicroalgal, antifungal, cytotoxic effects, etc. The chemical diversity and biological activities of these marine fungal terpenoids underscore their value as promising lead compounds for pharmaceutical development. Full article
Show Figures

Figure 1

15 pages, 2004 KiB  
Article
Metabolic Blockade-Based Genome Mining of Malbranchea circinata SDU050: Discovery of Diverse Secondary Metabolites
by Hu Yang, Xiaowei Luo, Zhuo Shang, Kunlong Li, Jian Cai, Yingying Chen, Longchao Xin and Jianhua Ju
Mar. Drugs 2025, 23(1), 50; https://doi.org/10.3390/md23010050 - 20 Jan 2025
Cited by 1 | Viewed by 1546
Abstract
Malbranchea circinata SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation [...] Read more.
Malbranchea circinata SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type M. circinata SDU050, alongside five additional metabolite classes, including three novel cytochalasins (79), obtained from a mutant strain through the metabolic blockade strategy. Furthermore, bioinformatic analysis of the BGC associated with the isocoumarin sclerin (1) enabled the deduction of its biosynthetic pathway based on gene function predictions. Bioactivity assays demonstrated that sclerin (1) and (−)-mycousnine (10) exhibited weak antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus subtilis. These findings underscore the chemical diversity and biosynthetic potential of M. circinata SDU050 and highlight an effective strategy for exploring marine fungal metabolites. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Deep-Sea-Sourced Microbes)
Show Figures

Graphical abstract

23 pages, 9793 KiB  
Article
Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects
by Zi-Han Xu, Ming-Min Xie, Chun-Lan Xie, Xian-Wen Yang and Jun-Song Wang
Mar. Drugs 2025, 23(1), 49; https://doi.org/10.3390/md23010049 - 20 Jan 2025
Viewed by 1649
Abstract
Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, [...] Read more.
Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development. In this study, we isolated 44 natural products from deep-sea-derived fungi and identified isobisvertinol (17) as a compound with anti-inflammatory and ferroptosis-inhibiting effects. Using LPS-induced microglial inflammation and RSL3-induced neuronal ferroptosis models, we found that 17 targets TLR4 to provide neuroprotection. Molecular docking studies revealed that 17 inhibits TLR4 activation by occupying the hydrophobic pocket at the TLR4-MD2 binding site. Additionally, 17 suppresses TLR4, reducing p38 MAPK phosphorylation, and inhibits ferroptosis by decreasing lipid peroxidation and modulating mitochondrial membrane potential. Metabolomic analysis showed that 17 rescues alterations in multiple metabolic pathways induced by RSL3 and increases levels of antioxidant metabolites, including glutamine, glutamate, and glutathione. In summary, our results indicate that isobisvertinol (17) targets TLR4 in neural cells to reduce inflammation and inhibit p38 MAPK phosphorylation, while regulating metabolic pathways, mainly GSH synthesis, to provide antioxidant effects and prevent ferroptosis in neurons. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

28 pages, 6511 KiB  
Article
Identification and Characterization of Two Aryl Sulfotransferases from Deep-Sea Marine Fungi and Their Implications in the Sulfation of Secondary Metabolites
by Nicolas Graziano, Beatriz Arce-López, Tristan Barbeyron, Ludovic Delage, Elise Gerometta, Catherine Roullier, Gaëtan Burgaud, Elisabeth Poirier, Laure Martinelli, Jean-Luc Jany, Nolwenn Hymery and Laurence Meslet-Cladiere
Mar. Drugs 2024, 22(12), 572; https://doi.org/10.3390/md22120572 - 20 Dec 2024
Cited by 3 | Viewed by 1826
Abstract
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied [...] Read more.
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown. To address this knowledge gap, we conducted a comprehensive search of available genomes, resulting in the identification of 174 putative SULT genes in the Ascomycota phylum. Phylogenetic analysis and structural modeling revealed that these SULTs belong to the aryl sulfotransferase family, and they are divided into two potential distinct clusters of PAPS-dependent SULTs within the fungal kingdom. SULT genes from two marine fungi isolated from deep-sea hydrothermal vents, Hortaea werneckii UBOCC-A-208029 (HwSULT) and Aspergillus sydowii UBOCC-A-108050 SULT (AsSULT), were selected as representatives of each cluster. Recombinant proteins were expressed in Escherichia coli and biochemically characterized. HwSULT demonstrated high and versatile activity, while AsSULT appeared more substrate-specific. Here, HwSULT was used to sulfate the mycotoxin zearalenone, enhancing its cytotoxicity toward healthy feline intestinal cells. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

20 pages, 8399 KiB  
Article
Butyrolactone-I from Marine Fungal Metabolites Mitigates Heat-Stress-Induced Apoptosis in IPEC-J2 Cells and Mice Through the ROS/PERK/CHOP Signaling Pathway
by Xueting Niu, Shengwei Chen, Xinchen Wang, Jiaying Wen, Xiaoxi Liu, Yanhong Yong, Zhichao Yu, Xingbing Ma, A. M. Abd El-Aty and Xianghong Ju
Mar. Drugs 2024, 22(12), 564; https://doi.org/10.3390/md22120564 - 17 Dec 2024
Viewed by 1240
Abstract
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for [...] Read more.
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals. This study explored the protective effects of BTL-I against heat-stress-induced oxidative stress and apoptosis in IPEC-J2 cells and mice. Our findings demonstrated that BTL-I effectively inhibited the heat-stress-induced upregulation of HSP70 and HSP90, alleviating intestinal heat stress. Both in vitro and in vivo experiments revealed that heat stress increased intestinal cell apoptosis, with a significant upregulation of Bax/Bcl-2 expression, while BTL-I pretreatment significantly reduced apoptosis-related protein levels, showcasing its protective effects. Furthermore, BTL-I suppressed oxidative stress markers (ROS and MDA) while enhancing antioxidant activity (SOD levels). BTL-I also reduced the expression of p-PERK, p-eIF2α, ATF4, and CHOP, mitigating oxidative and endoplasmic reticulum stress in intestinal cells. In conclusion, BTL-I demonstrates the potential to improve animal resilience to heat stress, supporting sustainable livestock production systems. Its application as a natural, eco-friendly feed additive will contribute to the development of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Graphical abstract

16 pages, 5977 KiB  
Article
Novel Deep Sea Isoindole Alkaloid FGFC1 Exhibits Its Fibrinolytic Effects by Inhibiting Thrombin-Activatable Fibrinolysis Inhibitor
by Haixing Zhang, Xiaozhen Diao, Tingting Jiang, Mingjun Wei, Yue Su, Jingjing Shen, Chunlin Bao and Wenhui Wu
Pharmaceuticals 2024, 17(10), 1401; https://doi.org/10.3390/ph17101401 - 20 Oct 2024
Viewed by 1301
Abstract
Background: The thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance between blood clot formation (coagulation) and dissolution (fibrinolysis), which is mainly activated by thrombin bonded with thrombomodulin (TM). Methods: In this study, the investigation focused on the unique target TAFI [...] Read more.
Background: The thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance between blood clot formation (coagulation) and dissolution (fibrinolysis), which is mainly activated by thrombin bonded with thrombomodulin (TM). Methods: In this study, the investigation focused on the unique target TAFI of fungi fibrinolytic compound 1 (FGFC1), a novel fibrinolytic compound sourced from the deep sea. In this sense, the regulation of TAFI by FGFC1, in comparison to established TAFI inhibitors such as DS-1040 and PCTI in hPPP, was investigated, which was validated through the molecular docking of FGFC1 to TAFI. The inhibitory effect of FGFC1 on TAFI-mediating coagulation (ex vivo and in vitro) and its fibrinolytic effect (ex vivo) were investigated in hPPP and hCMEC/D3 cells, respectively, followed by SEM. Results: FGFC1 solutions ranging from 0.023 to 0.736 mM effectively inhibited TAFI activation. Notably, the 0.023 mM concentration demonstrated significant suppression, comparable to DS-1040 and PCTI. These inhibitory effects of FGFC1 (0.023–0.368 mM) were further validated through the enhancement in TAFI (TAFIa) activation by fibrins in the coagulum prior to proteolysis, resulting in the cleavage of TAFIa from 33 kDa to 28 kDa. Furthermore, these regulatory effects of FGFC1 on TAFI were demonstrated to have minimal association with TM-mediated control, as confirmed through a molecular docking analysis. FGFC1 (0.023–0.092 mM) was suggested to have obstructive effects on TAFI-mediated coagulation in the hPPP, which was demonstrated by the inhibition of clot aggregation, protein crystallization, and platelet anchoring, as observed through SEM. Simultaneously, FGFC1 (0.023 to 0.368 mM) significantly enhanced TAFI-mediated fibrinolysis, which was also supported by increased levels of t-PA, u-PA, and plasmin. Conclusions: From the above findings, FGFC1 is identified as a novel dual-target bioactive compound participating in blood formation/dissolution that demonstrates anti-coagulation and fibrinolytic effects by regulating TAFI activation, inhibiting TAFIa–fibrin combination, and initiating proteolysis. It also provided convincing evidence that TAFI plays a critical role in thrombolysis as a molecular link between coagulation and fibrinolysis. Furthermore, the application of FGFC1 was indicated as a potential therapeutic strategy in thromboembolic and hemorrhagic diseases. Full article
Show Figures

Figure 1

17 pages, 4513 KiB  
Article
Volatile Organic Compounds Produced by a Deep-Sea Bacterium Efficiently Inhibit the Growth of Pseudomonas aeruginosa PAO1
by Yuanyuan Hu, Ge Liu, Chaomin Sun and Shimei Wu
Mar. Drugs 2024, 22(5), 233; https://doi.org/10.3390/md22050233 - 20 May 2024
Cited by 4 | Viewed by 2137
Abstract
The deep-sea bacterium Spongiibacter nanhainus CSC3.9 has significant inhibitory effects on agricultural pathogenic fungi and human pathogenic bacteria, especially Pseudomonas aeruginosa, the notorious multidrug-resistant pathogen affecting human public health. We demonstrate that the corresponding antibacterial agents against P. aeruginosa PAO1 are volatile [...] Read more.
The deep-sea bacterium Spongiibacter nanhainus CSC3.9 has significant inhibitory effects on agricultural pathogenic fungi and human pathogenic bacteria, especially Pseudomonas aeruginosa, the notorious multidrug-resistant pathogen affecting human public health. We demonstrate that the corresponding antibacterial agents against P. aeruginosa PAO1 are volatile organic compounds (VOCs, namely VOC-3.9). Our findings show that VOC-3.9 leads to the abnormal cell division of P. aeruginosa PAO1 by disordering the expression of several essential division proteins associated with septal peptidoglycan synthesis. VOC-3.9 hinders the biofilm formation process and promotes the biofilm dispersion process of P. aeruginosa PAO1 by affecting its quorum sensing systems. VOC-3.9 also weakens the iron uptake capability of P. aeruginosa PAO1, leading to reduced enzymatic activity associated with key metabolic processes, such as reactive oxygen species (ROS) scavenging. Overall, our study paves the way to developing antimicrobial compounds against drug-resistant bacteria by using volatile organic compounds. Full article
(This article belongs to the Special Issue Bioactive Compounds from the Deep-Sea-Derived Microorganisms 2.0)
Show Figures

Graphical abstract

13 pages, 1906 KiB  
Article
Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth
by Stefano Varrella, Giulio Barone, Cinzia Corinaldesi, Alessio Giorgetti, Hidetaka Nomaki, Takuro Nunoura, Eugenio Rastelli, Michael Tangherlini, Roberto Danovaro and Antonio Dell’Anno
J. Fungi 2024, 10(1), 73; https://doi.org/10.3390/jof10010073 - 16 Jan 2024
Cited by 2 | Viewed by 2898
Abstract
Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but information on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison [...] Read more.
Hadal trenches host abundant and diversified benthic prokaryotic assemblages, but information on benthic fungi is still extremely limited. We investigated the fungal abundance and diversity in the Challenger Deep (at ca. 11,000 m depth) and the slope of the Mariana Trench in comparison with three sites of the adjacent abyssal plain. Our results indicate that trench sediments are a hotspot of fungal abundance in terms of the 18S rRNA gene copy number. The fungal diversity (as the number of amplicon sequence variants, ASVs) was relatively low at all sites (10–31 ASVs) but showed a high turnover diversity among stations due to the presence of exclusive fungal taxa belonging to Aspergillaceae, Trichosphaeriaceae, and Nectriaceae. Fungal abundance and diversity were closely linked to sediment organic matter content and composition (i.e., phytopigments and carbohydrates), suggesting a specialization of different fungal taxa for the exploitation of available resources. Overall, these findings provide new insights into the diversity of deep-sea fungi and the potential ecological role in trench sediments and pave the way for a better understanding of their relevance in one of the most extreme ecosystems on Earth. Full article
(This article belongs to the Special Issue Ecology and Molecular Diversity of Marine Fungi)
Show Figures

Figure 1

25 pages, 2208 KiB  
Review
Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms
by Shiwei Lv, Yufei Li, Sufang Zhao and Zongze Shao
Int. J. Mol. Sci. 2024, 25(1), 593; https://doi.org/10.3390/ijms25010593 - 2 Jan 2024
Cited by 61 | Viewed by 18865
Abstract
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect [...] Read more.
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea. Full article
(This article belongs to the Special Issue Biodegradation of Pollutants in the Environment: Omics Approaches 2.0)
Show Figures

Figure 1

14 pages, 2038 KiB  
Article
Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage
by Jun Fu, Xiaowei Luo, Miaoping Lin, Zimin Xiao, Lishan Huang, Jiaxi Wang, Yongyan Zhu, Yonghong Liu and Huaming Tao
Mar. Drugs 2023, 21(12), 616; https://doi.org/10.3390/md21120616 - 28 Nov 2023
Cited by 2 | Viewed by 2689
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse [...] Read more.
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy. Full article
(This article belongs to the Special Issue Bioactive Compounds from the Deep-Sea-Derived Microorganisms 2.0)
Show Figures

Figure 1

82 pages, 7151 KiB  
Review
Peptides from Marine-Derived Fungi: Chemistry and Biological Activities
by Salar Hafez Ghoran, Fatemeh Taktaz, Emília Sousa, Carla Fernandes and Anake Kijjoa
Mar. Drugs 2023, 21(10), 510; https://doi.org/10.3390/md21100510 - 26 Sep 2023
Cited by 22 | Viewed by 4442
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides [...] Read more.
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

10 pages, 750 KiB  
Article
Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens
by Chang-Peng Li, Zhen-Zhen Shi, Sheng-Tao Fang, Yin-Ping Song and Nai-Yun Ji
Molecules 2023, 28(17), 6220; https://doi.org/10.3390/molecules28176220 - 24 Aug 2023
Cited by 4 | Viewed by 1668
Abstract
Five new lipids, tricholixins A–E (15), and two known terpenoids, brasilane A (6) and harzianone A (7), were discovered from a deep-sea strain (R22) of the fungus Trichoderma lixii isolated from the cold seep sediments [...] Read more.
Five new lipids, tricholixins A–E (15), and two known terpenoids, brasilane A (6) and harzianone A (7), were discovered from a deep-sea strain (R22) of the fungus Trichoderma lixii isolated from the cold seep sediments of the South China Sea. Their structures and relative configurations were identified by meticulous analysis of MS and IR as well as NMR data. The absolute configuration of 5 was ascertained by dimolybdenum-induced ECD data in particular. Compounds 1 and 2 represent the only two new butenolides from marine-derived Trichoderma, and they further add to the structural diversity of these molecules. Although 6 has been reported from a basidiomycete previously, it is the first brasilane aminoglycoside of Trichoderma origin. During the assay against wheat-pathogenic fungi, both 1 and 2 inhibited Fusarium graminearum with an MIC value of 25.0 μg/mL, and 6 suppressed Gaeumannomyces graminis with an MIC value of 12.5 μg/mL. Moreover, the three isolates also showed low toxicity to the brine shrimp Artemia salina. Full article
Show Figures

Figure 1

25 pages, 3635 KiB  
Article
Induction and Characterisation of Lignocellulolytic Activities from Novel Deep-Sea Fungal Secretomes
by Bronwyn Dowd and Maria G. Tuohy
Fermentation 2023, 9(9), 780; https://doi.org/10.3390/fermentation9090780 - 23 Aug 2023
Cited by 3 | Viewed by 2350
Abstract
Fungi are increasingly recognised as being able to inhabit extreme environments. The deep sea is considered an extreme environment because of its low temperatures, high hydrostatic and lithostatic pressures, 3.5% salinity, and low oxygen, nutrient and light availability. Fungi inhabiting the deep sea [...] Read more.
Fungi are increasingly recognised as being able to inhabit extreme environments. The deep sea is considered an extreme environment because of its low temperatures, high hydrostatic and lithostatic pressures, 3.5% salinity, and low oxygen, nutrient and light availability. Fungi inhabiting the deep sea may have evolved to produce proteins that allow them to survive these conditions. Investigation and characterisation of fungal lignocellulolytic enzymes from extreme environments like the deep sea is needed, as they may have unusual adaptations that would be useful in industry. This work, therefore, aimed to profile in detail the lignocellulolytic capabilities of fungi isolated from deep-sea sediments in the Atlantic Ocean, and a comparative lignocellulolytic terrestrial isolate. The isolates were strains of Emericellopsis maritima, Penicillium chrysogenum, P. antarcticum and Talaromyces stollii. Lignocellulolytic enzyme induction was achieved using liquid-state fermentation (LSF) with wheat bran as the main carbon source, while enzyme characteristics were evaluated using biochemical assays and gel-based proteomics. This study revealed that the isolates were halotolerant, produced xylanase over wide pH and temperature ranges, and produced a variety of glycoside hydrolase and feruloyl esterase activities. The T. stollii secretome demonstrated remarkable levels of exo-glycoside hydrolase activity, with xylanase activity optimum between pH 1.5–6.0 and temperatures between 1–60 °C, making this isolate an ideal candidate for biotechnological applications. This study is the first to quantitatively characterise xylanase activities and exo-glycoside hydrolase activities secreted by E. maritima, P. antarcticum and a marine T. stollii strain. This study is also the first to quantitatively characterise xylanase activities by a marine strain of P. chrysogenum during LSF. Full article
(This article belongs to the Special Issue Fermentation: Screening, Enzyme Induction and Production)
Show Figures

Figure 1

23 pages, 2224 KiB  
Article
Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62
by Florent Magot, Gwendoline Van Soen, Larissa Buedenbender, Fengjie Li, Thomas Soltwedel, Laura Grauso, Alfonso Mangoni, Martina Blümel and Deniz Tasdemir
Mar. Drugs 2023, 21(2), 95; https://doi.org/10.3390/md21020095 - 28 Jan 2023
Cited by 16 | Viewed by 4624
Abstract
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by [...] Read more.
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (−)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations. Full article
(This article belongs to the Special Issue Marine Metabolomics 2023)
Show Figures

Figure 1

15 pages, 3585 KiB  
Article
Antimicrobial Potential of Metabolites in Fungal Strains Isolated from a Polluted Stream: Annulohypoxylon stygium WL1B5 Produces Metabolites against Extended-Spectrum Beta-Lactamase-Positive Escherichia coli
by Walter Oliva Pinto Filho Segundo, Roberta Silva de Oliveira, Rildo Mendes Lima, Paulo Alexandre Lima Santiago, Luciana Aires de Oliveira, Ana Cláudia Alves Cortez, Emerson Silva Lima, Érica Simplício de Souza, Hagen Frickmann and João Vicente Braga de Souza
Antibiotics 2023, 12(1), 27; https://doi.org/10.3390/antibiotics12010027 - 24 Dec 2022
Cited by 5 | Viewed by 2967
Abstract
The emergence of multidrug resistance in bacterial pathogens is a growing public health concern requiring solutions including the discovery of new antimicrobial drugs. Fungi have been used for decades as a source of antimicrobials. Ongoing screenings for newly characterized fungal strains producing antimicrobials [...] Read more.
The emergence of multidrug resistance in bacterial pathogens is a growing public health concern requiring solutions including the discovery of new antimicrobial drugs. Fungi have been used for decades as a source of antimicrobials. Ongoing screenings for newly characterized fungal strains producing antimicrobials include environments that are difficult to access like the deep sea, glaciers, wastewaters and environments polluted due to human activity. In the present study, fungal microorganisms were isolated from water samples taken from a polluted stream in the city of Manaus, AM, Brazil, and screened for antimicrobial effects against Escherichia coli. Using extracts from five isolates (Annulohypoxylon stygium WL1B5, Colletotrichum fructicola WL3B9, Clonostachys rosea WL5B18, Clonostachys rosea WL8B28 and Trichoderma harzianum WL9B49), antimicrobial activity against the reference strains Escherichia coli ATCC 25922 as well as E. coli NCTC 13353, an extended-spectrum beta-lactamase-positive strain, was observed. Inhibition zones ranged from 1 to 35.9 mm and a minimum inhibitory concentration of 400 µg/mL could be demonstrated. Assessments of the metabolites of Annulohypoxylon stygium WL1B5 allowed us to identify nodulisporone and daidzein, which have already been associated with antimicrobial activity. The findings confirm the feasibility of isolating fungal strains from polluted sites producing metabolites that can serve as potential future alternatives for the treatment of multidrug-resistant bacteria. Full article
Show Figures

Figure 1

Back to TopTop