Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,047)

Search Parameters:
Keywords = deep learning cluster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3547 KiB  
Article
Mapping the Intellectual Structure of Computational Risk Analytics in Banking and Finance: A Bibliometric and Thematic Evolution Study
by Sotirios J. Trigkas, Kanellos Toudas and Ioannis Chasiotis
Computation 2025, 13(7), 172; https://doi.org/10.3390/computation13070172 - 17 Jul 2025
Abstract
Modern financial practices introduce complex risks, which in turn force financial institutions to rely increasingly on computational risk analytics (CRA). The purpose of our research is to attempt to systematically explore the evolution and intellectual structure of CRA in banking using a detailed [...] Read more.
Modern financial practices introduce complex risks, which in turn force financial institutions to rely increasingly on computational risk analytics (CRA). The purpose of our research is to attempt to systematically explore the evolution and intellectual structure of CRA in banking using a detailed bibliometric analysis of the literature sourced from Web of Science from 2000 to 2025. A comprehensive search in the Web of Science (WoS) Core Collection yielded 1083 peer-reviewed publications, which we analyzed using analytical tools like VOSviewer 1.6.20 and Bibliometrix (Biblioshiny 5.0) so as to examine the dataset and uncover bibliometric characteristics like citation patterns, keyword occurrences, and thematic clustering. Our initial analysis results uncover the presence of key research clusters focusing on bankruptcy prediction, AI integration in financial services, and advanced deep learning applications. Furthermore, our findings note a transition of CRA from an emerging to an expanding domain, especially after 2019, with terms like machine learning (ML), artificial intelligence (AI), and deep learning (DL) being identified as prominent keywords and a recent shift towards blockchain, explainability, and financial stability being present. We believe that this study tries to address the need for an updated mapping of CRA, providing valuable insights for future academic inquiry and practical financial risk management applications. Full article
Show Figures

Figure 1

17 pages, 1301 KiB  
Article
Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement in Cloud Data Centers Using Deep Q-Networks and Agglomerative Clustering
by Maraga Alex, Sunday O. Ojo and Fred Mzee Awuor
Computers 2025, 14(7), 280; https://doi.org/10.3390/computers14070280 - 15 Jul 2025
Viewed by 70
Abstract
The fast expansion of cloud computing has raised carbon emissions and energy usage in cloud data centers, so creative solutions for sustainable resource management are more necessary. This work presents a new algorithm—Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement using Deep Q-Networks (DQNs) [...] Read more.
The fast expansion of cloud computing has raised carbon emissions and energy usage in cloud data centers, so creative solutions for sustainable resource management are more necessary. This work presents a new algorithm—Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual Machine Placement using Deep Q-Networks (DQNs) and Agglomerative Clustering (CARBON-DQN)—that intelligibly balances environmental sustainability, service level agreement (SLA), and energy efficiency. The method combines a deep reinforcement learning model that learns optimum placement methods over time, carbon-aware data center profiling, and the hierarchical clustering of virtual machines (VMs) depending on resource constraints. Extensive simulations show that CARBON-DQN beats conventional and state-of-the-art algorithms like GRVMP, NSGA-II, RLVMP, GMPR, and MORLVMP very dramatically. Among many virtual machine configurations—including micro, small, high-CPU, and extra-large instances—it delivers the lowest carbon emissions, lowered SLA violations, and lowest energy usage. Driven by real-time input, the adaptive decision-making capacity of the algorithm allows it to dynamically react to changing data center circumstances and workloads. These findings highlight how well CARBON-DQN is a sustainable and intelligent virtual machine deployment system for cloud systems. To improve scalability, environmental effect, and practical applicability even further, future work will investigate the integration of renewable energy forecasts, dynamic pricing models, and deployment across multi-cloud and edge computing environments. Full article
Show Figures

Figure 1

27 pages, 6169 KiB  
Article
Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
by Hua Xia, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang and Hongxia Luo
Land 2025, 14(7), 1472; https://doi.org/10.3390/land14071472 - 15 Jul 2025
Viewed by 63
Abstract
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address [...] Read more.
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities. Full article
Show Figures

Figure 1

21 pages, 1594 KiB  
Article
Implementation of a Conditional Latent Diffusion-Based Generative Model to Synthetically Create Unlabeled Histopathological Images
by Mahfujul Islam Rumman, Naoaki Ono, Kenoki Ohuchida, Ahmad Kamal Nasution, Muhammad Alqaaf, Md. Altaf-Ul-Amin and Shigehiko Kanaya
Bioengineering 2025, 12(7), 764; https://doi.org/10.3390/bioengineering12070764 - 15 Jul 2025
Viewed by 59
Abstract
Generative image models have revolutionized artificial intelligence by enabling the synthesis of high-quality, realistic images. These models utilize deep learning techniques to learn complex data distributions and generate novel images that closely resemble the training dataset. Recent advancements, particularly in diffusion models, have [...] Read more.
Generative image models have revolutionized artificial intelligence by enabling the synthesis of high-quality, realistic images. These models utilize deep learning techniques to learn complex data distributions and generate novel images that closely resemble the training dataset. Recent advancements, particularly in diffusion models, have led to remarkable improvements in image fidelity, diversity, and controllability. In this work, we investigate the application of a conditional latent diffusion model in the healthcare domain. Specifically, we trained a latent diffusion model using unlabeled histopathology images. Initially, these images were embedded into a lower-dimensional latent space using a Vector Quantized Generative Adversarial Network (VQ-GAN). Subsequently, a diffusion process was applied within this latent space, and clustering was performed on the resulting latent features. The clustering results were then used as a conditioning mechanism for the diffusion model, enabling conditional image generation. Finally, we determined the optimal number of clusters using cluster validation metrics and assessed the quality of the synthetic images through quantitative methods. To enhance the interpretability of the synthetic image generation process, expert input was incorporated into the cluster assignments. Full article
(This article belongs to the Section Biosignal Processing)
29 pages, 8563 KiB  
Article
A Bridge Crack Segmentation Algorithm Based on Fuzzy C-Means Clustering and Feature Fusion
by Yadong Yao, Yurui Zhang, Zai Liu and Heming Yuan
Sensors 2025, 25(14), 4399; https://doi.org/10.3390/s25144399 - 14 Jul 2025
Viewed by 155
Abstract
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy [...] Read more.
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy C-means (FCM) clustering and multi-feature fusion. A three-dimensional feature space is constructed using B-channel pixels and fuzzy clustering with c = 3, justified by the distinct distribution patterns of these three regions in the image, enabling effective preliminary segmentation. To enhance accuracy, connected domain labeling combined with a circularity threshold is introduced to differentiate linear cracks from granular noise. Furthermore, a 5 × 5 neighborhood search strategy, based on crack pixel amplitude, is designed to restore the continuity of fragmented cracks. Experimental results on the Concrete Crack and SDNET2018 datasets demonstrate that the proposed algorithm achieves an accuracy of 0.885 and a recall rate of 0.891, outperforming DeepLabv3+ by 4.2%. Notably, with a processing time of only 0.8 s per image, the algorithm balances high accuracy with real-time efficiency, effectively addressing challenges, such as missed fine cracks and misjudged broken cracks in noisy environments by integrating geometric features and pixel distribution characteristics. This study provides an efficient unsupervised solution for bridge damage detection. Full article
Show Figures

Figure 1

17 pages, 624 KiB  
Article
Parallel Simulation Multi-Sample Task Scheduling Approach Based on Deep Reinforcement Learning in Cloud Computing Environment
by Yuhao Xiao, Yping Yao and Feng Zhu
Mathematics 2025, 13(14), 2249; https://doi.org/10.3390/math13142249 - 11 Jul 2025
Viewed by 187
Abstract
Complex scenario analysis and evaluation simulations often involve multiple sets of simulation applications with different combinations of parameters, thus resulting in high computing power consumption, which is one of the factors that limits the efficiency of multi-sample parallel simulations. Cloud computing provides considerable [...] Read more.
Complex scenario analysis and evaluation simulations often involve multiple sets of simulation applications with different combinations of parameters, thus resulting in high computing power consumption, which is one of the factors that limits the efficiency of multi-sample parallel simulations. Cloud computing provides considerable amounts of cheap and convenient computing resources, thus providing efficient support for multi-sample simulation tasks. However, traditional simulation scheduling methods do not consider the collaborative parallel scheduling of multiple samples and multiple entities under multi-objective constraints. Deep reinforcement learning methods can continuously learn and adjust their strategies through interactions with the environment, demonstrating strong adaptability in response to dynamically changing task requirements. Therefore, herein, a parallel simulation multi-sample task scheduling method based on deep reinforcement learning in a cloud computing environment is proposed. The method collects cluster load information and simulation application information as state inputs in the cloud environment, designs a multi-objective reward function to balance the cost and execution efficiency, and uses deep Q-networks (DQNs) to train agents for intelligent scheduling of multi-sample parallel simulation tasks. In a real cloud environment, the proposed method demonstrates runtime reductions of 4–11% and execution cost savings of 11–22% compared to the Round-Robin algorithm, Best Fit algorithm, and genetic algorithm. Full article
Show Figures

Figure 1

23 pages, 10698 KiB  
Article
Unmanned Aerial Vehicle-Based RGB Imaging and Lightweight Deep Learning for Downy Mildew Detection in Kimchi Cabbage
by Yang Lyu, Xiongzhe Han, Pingan Wang, Jae-Yeong Shin and Min-Woong Ju
Remote Sens. 2025, 17(14), 2388; https://doi.org/10.3390/rs17142388 - 10 Jul 2025
Viewed by 263
Abstract
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery [...] Read more.
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery acquired by an unmanned aerial vehicle (UAV), integrated with lightweight deep learning models for leaf-level identification of downy mildew. To improve disease feature extraction, Simple Linear Iterative Clustering (SLIC) segmentation was applied to the images. Among the evaluated models, Vision Transformer (ViT)-based architectures outperformed Convolutional Neural Network (CNN)-based models in terms of classification accuracy and generalization capability. For late-stage disease detection, DeiT-Tiny recorded the highest test accuracy (0.948) and macro F1-score (0.913), while MobileViT-S achieved the highest diseased recall (0.931). In early-stage detection, TinyViT-5M achieved the highest test accuracy (0.970) and macro F1-score (0.918); however, all models demonstrated reduced diseased recall under early-stage conditions, with DeiT-Tiny achieving the highest recall at 0.774. These findings underscore the challenges of identifying early symptoms using RGB imagery. Based on the classification results, prescription maps were generated to facilitate variable-rate pesticide application. Overall, this study demonstrates the potential of UAV-based RGB imaging for precision agriculture, while highlighting the importance of integrating multispectral data and utilizing domain adaptation techniques to enhance early-stage disease detection. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

38 pages, 2956 KiB  
Review
The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review
by Wilhelm Grzesiak, Daniel Zaborski, Marcin Pluciński, Magdalena Jędrzejczak-Silicka, Renata Pilarczyk and Piotr Sablik
Animals 2025, 15(14), 2033; https://doi.org/10.3390/ani15142033 - 10 Jul 2025
Viewed by 188
Abstract
The aim of this review was to present selected machine learning (ML) algorithms used in dairy cattle farming in recent years (2020–2024). A description of ML methods (linear and logistic regression, classification and regression trees, chi-squared automatic interaction detection, random forest, AdaBoost, support [...] Read more.
The aim of this review was to present selected machine learning (ML) algorithms used in dairy cattle farming in recent years (2020–2024). A description of ML methods (linear and logistic regression, classification and regression trees, chi-squared automatic interaction detection, random forest, AdaBoost, support vector machines, k-nearest neighbors, naive Bayes classifier, multivariate adaptive regression splines, artificial neural networks, including deep neural networks and convolutional neural networks, as well as Gaussian mixture models and cluster analysis), with some examples of their application in various aspects of dairy cattle breeding and husbandry, is provided. In addition, the stages of model construction and implementation, as well as the performance indicators for regression and classification models, are described. Finally, time trends in the popularity of ML methods in dairy cattle farming are briefly discussed. Full article
(This article belongs to the Special Issue Machine Learning Methods and Statistics in Ruminant Farming)
Show Figures

Figure 1

23 pages, 3645 KiB  
Article
Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics
by Patrycja Kwiek, Filip Ciepiela and Małgorzata Jakubowska
Electronics 2025, 14(14), 2773; https://doi.org/10.3390/electronics14142773 - 10 Jul 2025
Viewed by 112
Abstract
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware [...] Read more.
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware loss functions to enhance synthetic blood cell image quality. Methods: RGB microscopic images from the BloodMNIST dataset (eight blood cell types, resolution 3 × 128 × 128) underwent preprocessing with k-means clustering to extract the dominant colors and UMAP for visualizing class similarity. Spearman correlation-based distance matrices were used to evaluate the discriminative power of each RGB channel. A MoE–cGAN architecture was developed with residual blocks and LeakyReLU activations. Expert generators were conditioned on cell type, and the generator’s loss was augmented with a Wasserstein distance-based term comparing red and green channel histograms, which were found most relevant for class separation. Results: The red and green channels contributed most to class discrimination; the blue channel had minimal impact. The proposed model achieved 0.97 classification accuracy on generated images (ResNet50), with 0.96 precision, 0.97 recall, and a 0.96 F1-score. The best Fréchet Inception Distance (FID) was 52.1. Misclassifications occurred mainly among visually similar cell types. Conclusions: Integrating histogram alignment into the MoE–cGAN training significantly improves the realism and class-specific variability of synthetic images, supporting robust model development under data scarcity in hematological imaging. Full article
Show Figures

Figure 1

24 pages, 2467 KiB  
Article
Laor Initialization: A New Weight Initialization Method for the Backpropagation of Deep Learning
by Laor Boongasame, Jirapond Muangprathub and Karanrat Thammarak
Big Data Cogn. Comput. 2025, 9(7), 181; https://doi.org/10.3390/bdcc9070181 - 7 Jul 2025
Viewed by 332
Abstract
This paper presents Laor Initialization, an innovative weight initialization technique for deep neural networks that utilizes forward-pass error feedback in conjunction with k-means clustering to optimize the initial weights. In contrast to traditional methods, Laor adopts a data-driven approach that enhances convergence’s stability [...] Read more.
This paper presents Laor Initialization, an innovative weight initialization technique for deep neural networks that utilizes forward-pass error feedback in conjunction with k-means clustering to optimize the initial weights. In contrast to traditional methods, Laor adopts a data-driven approach that enhances convergence’s stability and efficiency. The method was assessed using various datasets, including a gold price time series, MNIST, and CIFAR-10 across the CNN and LSTM architectures. The results indicate that the Laor Initialization achieved the lowest K-fold cross-validation RMSE (0.00686), surpassing Xavier, He, and Random. Laor demonstrated a high convergence success (final RMSE = 0.00822) and the narrowest interquartile range (IQR), indicating superior stability. Gradient analysis confirmed Laor’s robustness, achieving the lowest coefficients of variation (CV = 0.2230 for MNIST, 0.3448 for CIFAR-10, and 0.5997 for gold price) with zero vanishing layers in the CNNs. Laor achieved a 24% reduction in CPU training time for the Gold price data and the fastest runtime on MNIST (340.69 s), while maintaining efficiency on CIFAR-10 (317.30 s). It performed optimally with a batch size of 32 and a learning rate between 0.001 and 0.01. These findings establish Laor as a robust alternative to conventional methods, suitable for moderately deep architectures. Future research should focus on dynamic variance scaling and adaptive clustering. Full article
Show Figures

Figure 1

14 pages, 2571 KiB  
Article
Development of Deep Learning Models for Real-Time Thoracic Ultrasound Image Interpretation
by Austin J. Ruiz, Sofia I. Hernández Torres and Eric J. Snider
J. Imaging 2025, 11(7), 222; https://doi.org/10.3390/jimaging11070222 - 5 Jul 2025
Viewed by 316
Abstract
Thoracic injuries account for a high percentage of combat casualty mortalities, with 80% of preventable deaths resulting from abdominal or thoracic hemorrhage. An effective method for detecting and triaging thoracic injuries is point-of-care ultrasound (POCUS), as it is a cheap and portable noninvasive [...] Read more.
Thoracic injuries account for a high percentage of combat casualty mortalities, with 80% of preventable deaths resulting from abdominal or thoracic hemorrhage. An effective method for detecting and triaging thoracic injuries is point-of-care ultrasound (POCUS), as it is a cheap and portable noninvasive imaging method. POCUS image interpretation of pneumothorax (PTX) or hemothorax (HTX) injuries requires a skilled radiologist, which will likely not be available in austere situations where injury detection and triage are most critical. With the recent growth in artificial intelligence (AI) for healthcare, the hypothesis for this study is that deep learning (DL) models for classifying images as showing HTX or PTX injury, or being negative for injury can be developed for lowering the skill threshold for POCUS diagnostics on the future battlefield. Three-class deep learning classification AI models were developed using a motion-mode ultrasound dataset captured in animal study experiments from more than 25 swine subjects. Cluster analysis was used to define the “population” based on brightness, contrast, and kurtosis properties. A MobileNetV3 DL model architecture was tuned across a variety of hyperparameters, with the results ultimately being evaluated using images captured in real-time. Different hyperparameter configurations were blind-tested, resulting in models trained on filtered data having a real-time accuracy from 89 to 96%, as opposed to 78–95% when trained without filtering and optimization. The best model achieved a blind accuracy of 85% when inferencing on data collected in real-time, surpassing previous YOLOv8 models by 17%. AI models can be developed that are suitable for high performance in real-time for thoracic injury determination and are suitable for potentially addressing challenges with responding to emergency casualty situations and reducing the skill threshold for using and interpreting POCUS. Full article
(This article belongs to the Special Issue Learning and Optimization for Medical Imaging)
Show Figures

Figure 1

13 pages, 531 KiB  
Article
Adaptive Motion Planning Leveraging Speed-Differentiated Prediction for Mobile Robots in Dynamic Environments
by Tengfei Liu, Zihe Wang, Jiazheng Hu, Shuling Zeng, Xiaoxu Liu and Tan Zhang
Appl. Sci. 2025, 15(13), 7551; https://doi.org/10.3390/app15137551 - 4 Jul 2025
Viewed by 246
Abstract
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness [...] Read more.
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness and interpretability. A multi-sensor perception module is designed to classify obstacles as either static or dynamic, thereby enhancing environmental awareness and planning reliability. To address the challenge of motion prediction, we introduce the K-GRU Kalman method, which first applies K-means clustering to distinguish between high-speed and low-speed dynamic obstacles, then models their trajectories using a combination of Kalman filtering and gated recurrent units (GRUs). Compared to state-of-the-art RNN and LSTM-based predictors, the proposed method achieves superior accuracy and generalization. Extensive experiments in both simulated and real-world scenarios of varying complexity demonstrate the effectiveness of the framework. The results show an average planning success rate exceeding 60%, along with notable improvements in path safety and smoothness, validating the contribution of each module within the system. Full article
Show Figures

Figure 1

27 pages, 14035 KiB  
Article
Unsupervised Segmentation and Classification of Waveform-Distortion Data Using Non-Active Current
by Andrea Mariscotti, Rafael S. Salles and Sarah K. Rönnberg
Energies 2025, 18(13), 3536; https://doi.org/10.3390/en18133536 - 4 Jul 2025
Viewed by 287
Abstract
Non-active current in the time domain is considered for application to the diagnostics and classification of loads in power grids based on waveform-distortion characteristics, taking as a working example several recordings of the pantograph current in an AC railway system. Data are processed [...] Read more.
Non-active current in the time domain is considered for application to the diagnostics and classification of loads in power grids based on waveform-distortion characteristics, taking as a working example several recordings of the pantograph current in an AC railway system. Data are processed with a deep autoencoder for feature extraction and then clustered via k-means to allow identification of patterns in the latent space. Clustering enables the evaluation of the relationship between the physical meaning and operation of the system and the distortion phenomena emerging in the waveforms during operation. Euclidean distance (ED) is used to measure the diversity and pertinence of observations within pattern groups and to identify anomalies (abnormal distortion, transients, …). This approach allows the classification of new data by assigning data to clusters based on proximity to centroids. This unsupervised method exploiting non-active current is novel and has proven useful for providing data with labels for later supervised learning performed with the 1D-CNN, which achieved a balanced accuracy of 96.46% under normal conditions. ED and 1D-CNN methods were tested on an additional unlabeled dataset and achieved 89.56% agreement in identifying normal states. Additionally, Grad-CAM, when applied to the 1D-CNN, quantitatively identifies the waveform parts that influence the model predictions, significantly enhancing the interpretability of the classification results. This is particularly useful for obtaining a better understanding of load operation, including anomalies that affect grid stability and energy efficiency. Finally, the method has been also successfully further validated for general applicability with data from a different scenario (charging of electric vehicles). The method can be applied to load identification and classification for non-intrusive load monitoring, with the aim of implementing automatic and unsupervised assessment of load behavior, including transient detection, power-quality issues and improvement in energy efficiency. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 630 KiB  
Article
A Novel Feature-Scheduling Aggregation Clustering Framework Based on Convolutional Neural Networks
by Zhangyi Shen, Yu Jiao, Aohan Ji, Bingqing Ye, Yunfei Niu, Kaizhong Zuo, Peng Hu and Wenjie Li
Electronics 2025, 14(13), 2700; https://doi.org/10.3390/electronics14132700 - 4 Jul 2025
Viewed by 239
Abstract
This study presents a convolutional neural network (CNN)-based feature-scheduling aggregation clustering framework designed to address the limitations of conventional clustering algorithms in handling high-dimensional data structures. The proposed framework synergistically combines CNN’s automated feature extraction with adaptive feature-scheduling mechanisms and multi-level feature aggregation, [...] Read more.
This study presents a convolutional neural network (CNN)-based feature-scheduling aggregation clustering framework designed to address the limitations of conventional clustering algorithms in handling high-dimensional data structures. The proposed framework synergistically combines CNN’s automated feature extraction with adaptive feature-scheduling mechanisms and multi-level feature aggregation, enabling the effective capture of nonlinear data relationships and fine-grained pattern distinctions. The experimental results highlight the framework’s superior performance against existing algorithms, alongside its strong generalization capability. This framework advances cluster analysis methodology by providing an integrated deep learning architecture for complex data scenarios. Full article
Show Figures

Figure 1

23 pages, 939 KiB  
Article
Academic Emotions, Emotion Regulation, Academic Motivation, and Approaches to Learning: A Person-Centered Approach
by Christos Rentzios, Evangelia Karagiannopoulou and Georgios Ntritsos
Behav. Sci. 2025, 15(7), 900; https://doi.org/10.3390/bs15070900 - 3 Jul 2025
Viewed by 871
Abstract
Contemporary educational literature suggests that academic emotions and emotion regulation should be explored in tandem, while academic motivation has been discussed both as a self-regulation metacognitive construct and as a construct inherently tied to motivation. The present study uses a person-centered approach to [...] Read more.
Contemporary educational literature suggests that academic emotions and emotion regulation should be explored in tandem, while academic motivation has been discussed both as a self-regulation metacognitive construct and as a construct inherently tied to motivation. The present study uses a person-centered approach to explore profiles of university students based on academic emotions, emotion regulation, academic self-regulation, and approaches to learning. In addition, the impact of students’ profiles on academic performance (GPA) is investigated. The sample consists of 509 university students studying at a Greek university social science department. Cluster techniques and multivariate analysis of variance are used to identify the profiles and test for differences among them. Students were grouped in clusters that revealed both consistent and dissonant patterns of scores on the relevant variables. Analysis reveals three distinct profiles: (a) the “Anxious, effectively-engaged, and organized learners”, (b) the “Deep, Happy, and intrinsically motivated learners” and (c) the “Disengaged, Bored, and Suppressing Learners”. These profiles open new insights into educational literature, revealing links among learning, emotional, and motivational factors. Practical implications and directions for future research are discussed. Full article
Show Figures

Figure 1

Back to TopTop