The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review
Simple Summary
Abstract
1. Introduction
2. Characteristics of Selected ML Models
2.1. Linear Regression (LR)
2.2. Logistic Regression (LogR)
2.3. Multivariate Adaptive Regression Splines (MARS)
2.4. Naive Bayes Classifier (NBC)
2.5. Support Vector Machine (SVM)
2.6. Decision Trees
2.7. Artificial Neural Network (ANN)
2.8. Cluster Analysis (CA)
2.9. k-Nearest Neighbor (k-NN)
2.10. Gaussian Mixture Model (GMM)
2.11. Quality Assessment of Models
2.12. Quality Measures for Regression Models
- Relative prediction error (E):
- Mean prediction error (ME):
- Mean absolute prediction error (MAE):
- Global relative approximation error (RAE):
- Mean squared error (MSE), which is the mean square of the differences between the actual and predicted values:
- Root mean squared error (RMSE):
2.13. Quality Measures for Classification Models
2.14. Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC)
2.15. Model Development
2.16. Dimensionality Reduction
2.17. Multimodal Learning and Data Fusion
2.18. Trends of ML Use in Dairy Cattle Farming
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LR | Linear regression |
LogR | Logistic regression |
CA | Cluster analysis |
RF | Random forest |
ANN | Artificial neural network |
SVM | Support vector machine |
k-NN | K-nearest neighbor |
NBC | Naive bayes classifier |
CART | Classification and regression tree |
MARS | Multivariate adaptive regression spline |
CHAID | Chi-squared automatic interaction detection |
DNN | Deep neural network |
CNN | Convolutional neural network |
GMM | Gaussian mixture model |
References
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking Environment Control Strategy of Confined Animal Housing Systems through Precision Livestock Farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Neethirajan, S. The Role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Melak, A.; Aseged, T.; Shitaw, T. The Influence of Artificial Intelligence Technology on the Management of Livestock Farms. Int. J. Distrib. Sens. Netw. 2024, 2024, 8929748. [Google Scholar] [CrossRef]
- Breiman, L. Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of Machine Learning in Animal Behaviour Studies. Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Valkenborg, D.; Rousseau, A.-J.; Geubbelmans, M.; Burzykowski, T. Unsupervised Learning. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 877–882. [Google Scholar] [CrossRef]
- Sieredzinski, J.; Zaborski, D. The Use of Machine Learning Methods for Computed Tomography Image Classification in the COVID-19 Pandemic: A Review. Rev. Epidemiol. Controle Infecção 2025, 15, 109–120. [Google Scholar] [CrossRef]
- Hossain, M.E.; Kabir, M.A.; Zheng, L.; Swain, D.L.; McGrath, S.; Medway, J. A Systematic Review of Machine Learning Techniques for Cattle Identification: Datasets, Methods and Future Directions. Artif. Intell. Agric. 2022, 6, 138–155. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Ferguson, N.S. Optimization: A Paradigm Change in Nutrition and Economic Solutions. Adv. Pork Prod. 2014, 25, 121–127. [Google Scholar]
- Sharma, R.; Sharma, K.; Khanna, A. Study of Supervised Learning and Unsupervised Learning. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 588–593. [Google Scholar] [CrossRef]
- Monshouwer, R. Detection of Subclinical Ketosis in Dairy Cows Using Behaviour Sensor Data. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar]
- Fu, Q.; Shen, W.; Wei, X.; Zhang, Y.; Xin, H.; Su, Z.; Zhao, C. Prediction of the Diet Energy Digestion Using Kernel Extreme Learning Machine: A Case Study with Holstein Dry Cows. Comput. Electron. Agric. 2020, 169, 105231. [Google Scholar] [CrossRef]
- Wagner, N.; Antoine, V.; Mialon, M.-M.; Lardy, R.; Silberberg, M.; Koko, J.; Veissier, I. Machine Learning to Detect Behavioural Anomalies in Dairy Cows under Subacute Ruminal Acidosis. Comput. Electron. Agric. 2020, 170, 105233. [Google Scholar] [CrossRef]
- Battini, M.; Agostini, A.; Mattiello, S. Understanding Cows’ Emotions on Farm: Are Eye White and Ear Posture Reliable Indicators? Animals 2019, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Shahinfar, S.; Khansefid, M.; Haile-Mariam, M.; Pryce, J.E. Machine Learning Approaches for the Prediction of Lameness in Dairy Cows. Animal 2021, 15, 100391. [Google Scholar] [CrossRef]
- Nikoloski, S.; Murphy, P.; Kocev, D.; Džeroski, S.; Wall, D.P. Using Machine Learning to Estimate Herbage Production and Nutrient Uptake on Irish Dairy Farms. J. Dairy Sci. 2019, 102, 10639–10656. [Google Scholar] [CrossRef]
- Shahinfar, S.; Page, D.; Guenther, J.; Cabrera, V.; Fricke, P.; Weigel, K. Prediction of Insemination Outcomes in Holstein Dairy Cattle Using Alternative Machine Learning Algorithms. J. Dairy Sci. 2014, 97, 731–742. [Google Scholar] [CrossRef]
- Cairo, F.C.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Lage, C.F.A.; Fonseca, A.P.; Borges, A.M.; Alves, B.R.C.; Dórea, J.R.R. Applying Machine Learning Techniques on Feeding Behavior Data for Early Estrus Detection in Dairy Heifers. Comput. Electron. Agric. 2020, 179, 105855. [Google Scholar] [CrossRef]
- Marques, T.C.; Marques, L.R.; Fernandes, P.B.; de Lima, F.S.; do Prado Paim, T.; Leão, K.M. Machine Learning to Predict Pregnancy in Dairy Cows: An Approach Integrating Automated Activity Monitoring and On-Farm Data. Animals 2024, 14, 1567. [Google Scholar] [CrossRef]
- Ma, W.; Qiu, Z.; Song, J.; Li, J.; Cheng, Q.; Zhai, J.; Ma, C. A Deep Convolutional Neural Network Approach for Predicting Phenotypes from Genotypes. Planta 2018, 248, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Beskorovajni, R.; Jovanović, R.; Pezo, L.; Popović, N.; Tolimir, N.; Mihajlović, L.; Surlan-Momirović, G. Mathematical Modeling for Genomic Selection in Serbian Dairy Cattle. Genetika 2021, 53, 1105–1115. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Mrode, R.; Ojango, J.M.K.; Okeyo, A.M.; Mwacharo, J.M. Genomic Selection and Use of Molecular Tools in Breeding Programs for Indigenous and Crossbred Cattle in Developing Countries: Current Status and Future Prospects. Front. Genet. 2019, 9, 694. [Google Scholar] [CrossRef]
- Chafai, N.; Hayah, I.; Houaga, I.; Badaoui, B. A Review of Machine Learning Models Applied to Genomic Prediction in Animal Breeding. Front. Genet. 2023, 14, 1150596. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum.-Cent. Intell. Syst. 2023, 4, 77–92. [Google Scholar] [CrossRef]
- Otsuka, J. Why Does Statistics Matter to Philosophy? Tetsugaku-Kenkyu J. Philos. Stud. 2021, 606, 1–24. [Google Scholar]
- Boulesteix, A.; Schmid, M. Machine Learning versus Statistical Modeling. Biom. J. 2014, 56, 588–593. [Google Scholar] [CrossRef]
- Shmueli, G. To Explain or to Predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Kao, M.; Mayo, D.G.; Shech, E. Introduction to Recent Issues in Philosophy of Statistics: Evidence, Testing, and Applications. Synthese 2023, 201, 120. [Google Scholar] [CrossRef]
- Schober, P.; Vetter, T.R. Logistic Regression in Medical Research. Anesth. Analg. 2021, 132, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Filzmoser, P.; Nordhausen, K. Robust Linear Regression for High-dimensional Data: An Overview. WIREs Comput. Stats. 2021, 13, e1524. [Google Scholar] [CrossRef]
- Eyduran, E.; Zaborski, D.; Waheed, A.; Celik, S.; Karadas, K.; Grzesiak, W. Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan. Pak. J. Zool. 2017, 49, 257–265. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Etemadi, S.; Khashei, M. Etemadi Multiple Linear Regression. Measurement 2021, 186, 110080. [Google Scholar] [CrossRef]
- Norouzian, M.A.; Bayatani, H.; Alavijeh, M.V. Comparison of Artificial Neural Networks and Multiple Linear Regression for Prediction of Dairy Cow Locomotion Score. Vet. Res. Forum 2021, 12, 33–37. [Google Scholar]
- Chen, X.; Zheng, H.; Wang, H.; Yan, T. Can Machine Learning Algorithms Perform Better than Multiple Linear Regression in Predicting Nitrogen Excretion from Lactating Dairy Cows. Sci. Rep. 2022, 12, 12478. [Google Scholar] [CrossRef]
- Abdallah, F.D.; Gouda, H.F. Comparison of Curve Estimation Regression Methods in Predicting Protein Amount from Total Milk Yield in Holstein Dairy Cattle. Assiut Vet. Med. J. 2024, 70, 156–165. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Madsen, P.; Li, R.; Liu, W.; Bao, P.; Xue, G.; Gao, Y.; Di, X.; Su, G. Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population. Front. Genet. 2020, 11, 586155. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; Chapman and Hall/CRC: New York, NY, USA, 2019. [Google Scholar]
- Wang, L.; Liu, J.; Qian, F. Wind Speed Frequency Distribution Modeling and Wind Energy Resource Assessment Based on Polynomial Regression Model. Int. J. Electr. Power Energy Syst. 2021, 130, 106964. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning: With Applications in Python; Springer Texts in Statistics; Springer International Publishing: Cham, Germany, 2023; ISBN 978-3-031-38746-3. [Google Scholar]
- Kyriazos, T.; Poga, M. Application of Machine Learning Models in Social Sciences: Managing Nonlinear Relationships. Encyclopedia 2024, 4, 1790–1805. [Google Scholar] [CrossRef]
- Lee, D.; Yoo, D.; Kim, H.; Seo, J. Negative Association between High Temperature-Humidity Index and Milk Performance and Quality in Korean Dairy System: Big Data Analysis. J. Anim. Sci. Technol. 2023, 65, 588. [Google Scholar] [CrossRef] [PubMed]
- Subhita, P.; Nehara, M.; Pannu, U.; Bairwa, M.; Meena, R. Comparative Study of Multiple Linear Regression and Artificial Neural Network for Prediction of First Lactation 305-Days Milk Yield in Tharparkar Cattle. Indian J. Dairy Sci. 2023, 76, 64–68. [Google Scholar]
- Zaborski, D.; Grzesiak, W.; Pilarczyk, R. Detection of Difficult Calvings in the Polish Holstein-Friesian Black-and-White Heifers. J. Appl. Anim. Res. 2016, 44, 42–53. [Google Scholar] [CrossRef]
- Zabor, E.C.; Reddy, C.A.; Tendulkar, R.D.; Patil, S. Logistic Regression in Clinical Studies. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 271–277. [Google Scholar] [CrossRef]
- Grzesiak, W.; Zaborski, D.; Sablik, P.; Żukiewicz, A.; Dybus, A.; Szatkowska, I. Detection of Cows with Insemination Problems Using Selected Classification Models. Comput. Electron. Agric. 2010, 74, 265–273. [Google Scholar] [CrossRef]
- Berrendero, J.R.; Bueno-Larraz, B.; Cuevas, A. On Functional Logistic Regression: Some Conceptual Issues. TEST 2023, 32, 321–349. [Google Scholar] [CrossRef]
- Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1. [Google Scholar]
- Liang, J.; Bi, G.; Zhan, C. Multinomial and Ordinal Logistic Regression Analyses with Multi-Categorical Variables Using R. Ann. Transl. Med. 2020, 8, 982. [Google Scholar] [CrossRef]
- Avizheh, M.; Dadpasand, M.; Dehnavi, E.; Keshavarzi, H. Application of Machine-Learning Algorithms to Predict Calving Difficulty in Holstein Dairy Cattle. Anim. Prod. Sci. 2023, 63, 1095–1104. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Zhao, Z.; Wang, H.; Chen, M.; Jia, B. Prediction of Health Disorders in Dairy Cows Monitored with Collar Based on Binary Logistic Analysis. Arq. Bras. Med. Veterinária Zootec. 2023, 75, 467–475. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Lu, R.; Duan, T.; Wang, M.; Liu, H.; Feng, S.; Gong, X.; Wang, H.; Wang, J.; Cui, Z.; Liu, Y. The Application of Multivariate Adaptive Regression Splines in Exploring the Influencing Factors and Predicting the Prevalence of HbA1c Improvement. Ann. Palliat. Med. 2021, 10, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Zaborski, D.; Ali, M.; Eyduran, E.; Grzesiak, W.; Tariq, M.M.; Abbas, F.; Waheed, A.; Tirink, C. Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via Various Data Mining Algorithms. Pak. J. Zool. 2019, 51, 421–431. [Google Scholar] [CrossRef]
- Put, R.; Xu, Q.S.; Massart, D.L.; Vander Heyden, Y. Multivariate Adaptive Regression Splines (MARS) in Chromatographic Quantitative Structure–Retention Relationship Studies. J. Chromatogr. A 2004, 1055, 11–19. [Google Scholar] [CrossRef]
- Zhou, Y.; Leung, H. Predicting Object-Oriented Software Maintainability Using Multivariate Adaptive Regression Splines. J. Syst. Softw. 2007, 80, 1349–1361. [Google Scholar] [CrossRef]
- Vázquez-Martínez, I.; Tirink, C.; Casanova-Lugo, F.; Pozo-Leyva, D.; Mota-Rojas, D.; Kalmagambetov, M.B.; Uskenov, R.; Gülboy, Ö.; Garcia-Herrera, R.A.; Chay-Canul, A.J. Predicting the Body Weight of Crossbred Holstein × Zebu Dairy Cows Using Multivariate Adaptive Regression Splines Algorithm. J. Dairy Res. 2024, 91, 267–272. [Google Scholar] [CrossRef]
- Onak, Ö.N.; Erenler, T.; Dogrusoz, Y.S. A Novel Data-Adaptive Regression Framework Based on Multivariate Adaptive Regression Splines for Electrocardiographic Imaging. IEEE Trans. Biomed. Eng. 2021, 69, 963–974. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Randall, L.V.; Kim, D.-H.; Abdelrazig, S.M.; Bollard, N.J.; Hemingway-Arnold, H.; Hyde, R.M.; Thompson, J.S.; Green, M.J. Predicting Lameness in Dairy Cattle Using Untargeted Liquid Chromatography–Mass Spectrometry-Based Metabolomics and Machine Learning. J. Dairy Sci. 2023, 106, 7033–7042. [Google Scholar] [CrossRef]
- Altay, Y.; Aytekin, İ.; Eyduran, E. Use of Multivariate Adaptive Regression Splines, Classification Tree and Roc Curve in Diagnosis of Subclinical Mastitis in Dairy Cattle. J. Hell. Vet. Med. Soc. 2022, 73, 3817–3826. [Google Scholar] [CrossRef]
- Zin, T.T.; Maw, S.Z.; Tin, P.; Horii, Y.; Hama, H. Predicting Dairy Cow Calving Time Using Markov Monte Carlo Simulation and Naïve Bayes Classifier. Image Process. Tech. 2023, 1, 10–12. [Google Scholar]
- Vehtari, A.; Ojanen, J. A Survey of Bayesian Predictive Methods for Model Assessment, Selection and Comparison. Stat. Surv. 2012, 6, 142–228. [Google Scholar] [CrossRef]
- Grzesiak, W.; Zaborski, D.; Sablik, P.; Pilarczyk, R. Detection of Difficult Conceptions in Dairy Cows Using Selected Data Mining Methods. Anim. Sci. Pap. Rep. 2011, 29, 293–302. [Google Scholar]
- Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. [Google Scholar] [CrossRef]
- Nguyen, T.T.S.; Do, P.M.T. Classification Optimization for Training a Large Dataset with Naïve Bayes. J. Comb. Optim. 2020, 40, 141–169. [Google Scholar] [CrossRef]
- Domingos, P.; Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Rish, I. An Empirical Study of the Naive Bayes Classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Seattle, WA, USA, 4 August 2001; Volume 3, pp. 41–46. [Google Scholar]
- Zhang, H.; Yu, P.; Ren, J.-X.; Li, X.-B.; Wang, H.-L.; Ding, L.; Kong, W.-B. Development of Novel Prediction Model for Drug-Induced Mitochondrial Toxicity by Using Naïve Bayes Classifier Method. Food Chem. Toxicol. 2017, 110, 122–129. [Google Scholar] [CrossRef]
- Alwateer, M.; Almars, A.M.; Areed, K.N.; Elhosseini, M.A.; Haikal, A.Y.; Badawy, M. Ambient Healthcare Approach with Hybrid Whale Optimization Algorithm and Naïve Bayes Classifier. Sensors 2021, 21, 4579. [Google Scholar] [CrossRef]
- Zubair, M.; Owais, M.; Mahmood, T.; Iqbal, S.; Usman, S.M.; Hussain, I. Enhanced Gastric Cancer Classification and Quantification Interpretable Framework Using Digital Histopathology Images. Sci. Rep. 2024, 14, 22533. [Google Scholar] [CrossRef]
- Zhang, H. Exploring Conditions for the Optimality of Naïve Bayes. Int. J. Patt. Recogn. Artif. Intell. 2005, 19, 183–198. [Google Scholar] [CrossRef]
- Di Nunzio, G.M. A New Decision to Take for Cost-Sensitive Naïve Bayes Classifiers. Inf. Process. Manag. 2014, 50, 653–674. [Google Scholar] [CrossRef]
- Khajenezhad, A.; Bashiri, M.A.; Beigy, H. A Distributed Density Estimation Algorithm and Its Application to Naive Bayes Classification. Appl. Soft Comput. 2021, 98, 106837. [Google Scholar] [CrossRef]
- Ampomah, E.K.; Nyame, G.; Qin, Z.; Addo, P.C.; Gyamfi, E.O.; Gyan, M. Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm. Informatica 2021, 45, 243–256. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Support Vector Method. In Artificial Neural Networks—ICANN’97; Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1997; Volume 1327, pp. 261–271. ISBN 978-3-540-63631-1. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory, Adaptive and Learning Systems for Signal Processing, Communications and Control; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Jakkula, V. Tutorial on Support Vector Machine (Svm). Sch. EECS Wash. State Univ. 2006, 37, 3. [Google Scholar]
- Abdullah, D.M.; Abdulazeez, A.M. Machine Learning Applications Based on SVM Classification a Review. Qubahan Acad. J. 2021, 1, 81–90. [Google Scholar] [CrossRef]
- Hsu, B.-M. Comparison of Supervised Classification Models on Textual Data. Mathematics 2020, 8, 851. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support Vector Machine. In Machine Learning; Elsevier: San Diego, CA, USA, 2020; pp. 101–121. [Google Scholar]
- Gacar, B.K.; Kocakoç, İ.D. Regression Analyses or Decision Trees? Manisa Celal Bayar Üniversitesi Sos. Bilim. Derg. 2020, 18, 251–260. [Google Scholar]
- Koc, Y.; Eyduran, E.; Akbulut, O. Application of Regression Tree Method for Different Data from Animal Science. Pak. J. Zool. 2017, 49, 599–607. [Google Scholar] [CrossRef]
- Ali, M.; Eyduran, E.; Tariq, M.M.; Tirink, C.; Abbas, F.; Bajwa, M.A.; Baloch, M.H.; Nizamani, A.H.; Waheed, A.; Awan, M.A. Comparison of Artificial Neural Network and Decision Tree Algorithms Used for Predicting Live Weight at Post Weaning Period from Some Biometrical Characteristics in Harnai Sheep. Pak. J. Zool. 2015, 47, 1579–1585. [Google Scholar]
- Daniya, T.; Geetha, M.; Kumar, K.S. Classification and Regression Trees with Gini Index. Adv. Math. Sci. J. 2020, 9, 8237–8247. [Google Scholar] [CrossRef]
- Tittonell, P.; Shepherd, K.D.; Vanlauwe, B.; Giller, K.E. Unravelling the Effects of Soil and Crop Management on Maize Productivity in Smallholder Agricultural Systems of Western Kenya—An Application of Classification and Regression Tree Analysis. Agric. Ecosyst. Environ. 2008, 123, 137–150. [Google Scholar] [CrossRef]
- Bayraktar, M.; Shoshin, O. Estimation of the Associations between GH and DGAT1 Genes and Growth Traits by Using Decision Tree in Awassi Sheep. Anim. Biotechnol. 2022, 33, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Wójcik-Gront, E.; Studnicki, M. Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a Cart Model. Agriculture 2021, 11, 92. [Google Scholar] [CrossRef]
- Oliveira, E.; Branquinho Filho, D. Automatic Classification of Journalistic Documents on the Internet1. Transinformação 2017, 29, 245–255. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1996; Volume 96, pp. 148–156. [Google Scholar]
- Hatwell, J.; Gaber, M.M.; Azad, R.M.A. CHIRPS: Explaining Random Forest Classification. Artif. Intell. Rev. 2020, 53, 5747–5788. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčíková, N.; Mészáros, G.; Simčič, M.; Zaborski, D. Classification of Cattle Breeds Based on the Random Forest Approach. Livest. Sci. 2023, 267, 105143. [Google Scholar] [CrossRef]
- Zaborski, D.; Proskura, W.S.; Grzesiak, W.; Różańska-Zawieja, J.; Sobek, Z. The Comparison between Random Forest and Boosted Trees for Dystocia Detection in Dairy Cows. Comput. Electron. Agric. 2019, 163, 104856. [Google Scholar] [CrossRef]
- Wang, J.; Bell, M.; Liu, X.; Liu, G. Machine-Learning Techniques Can Enhance Dairy Cow Estrus Detection Using Location and Acceleration Data. Animals 2020, 10, 1160. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zaborski, D.; Grzesiak, W.; Kotarska, K.; Szatkowska, I.; Jedrzejczak, M. Detection of Difficult Calvings in Dairy Cows Using Boosted Classification Trees. Indian J. Anim. Res. 2014, 48, 452–458. [Google Scholar] [CrossRef]
- Frery, J.; Habrard, A.; Sebban, M.; Caelen, O.; He-Guelton, L. Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD, Skopje, North Macedonia, 18–22 September 2017; Part I 10. Springer: Cham, Switzerland, 2017; pp. 20–35. [Google Scholar]
- Jun, M.-J. A Comparison of a Gradient Boosting Decision Tree, Random Forests, and Artificial Neural Networks to Model Urban Land Use Changes: The Case of the Seoul Metropolitan Area. Int. J. Geogr. Inf. Sci. 2021, 35, 2149–2167. [Google Scholar] [CrossRef]
- Zaborski, D.; Proskura, W.S.; Wojdak-Maksymiec, K.; Grzesiak, W. Identification of Cows Susceptible to Mastitis Based on Selected Genotypes by Using Decision Trees and a Generalized Linear Model. Acta Vet. 2016, 66, 317–335. [Google Scholar] [CrossRef]
- Mahajan, P.; Uddin, S.; Hajati, F.; Moni, M.A. Ensemble Learning for Disease Prediction: A Review. Healthcare 2023, 11, 1808. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, T.R.; Vinoth Kumar, V.; Vivek, V.; Karthick Raghunath, K.M.; Sindhu Madhuri, G. Early Predictive Model for Breast Cancer Classification Using Blended Ensemble Learning. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 188–197. [Google Scholar] [CrossRef]
- Sauer, J.; Mariani, V.C.; Dos Santos Coelho, L.; Ribeiro, M.H.D.M.; Rampazzo, M. Extreme Gradient Boosting Model Based on Improved Jaya Optimizer Applied to Forecasting Energy Consumption in Residential Buildings. Evol. Syst. 2022, 13, 577–588. [Google Scholar] [CrossRef]
- Gorgulu, O. Prediction of 305-Day Milk Yield in Brown Swiss Cattle Using Artificial Neural Networks. S. Afr. J. Anim. Sci. 2012, 42, 280–287. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.R.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A Review of Deep Learning Applications for Genomic Selection. BMC Genom. 2021, 22, 19. [Google Scholar] [CrossRef]
- Vieira, S.; Pinaya, W.H.L.; Garcia-Dias, R.; Mechelli, A. Deep Neural Networks. In Machine Learning; Elsevier: San Diego, CA, USA, 2020; pp. 157–172. [Google Scholar]
- Kılıçarslan, S.; Adem, K.; Çelik, M. An Overview of the Activation Functions Used in Deep Learning Algorithms. J. New Results Sci. 2021, 10, 75–88. [Google Scholar] [CrossRef]
- Bircanoğlu, C.; Arıca, N. A Comparison of Activation Functions in Artificial Neural Networks. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Pereira, F.C.; Borysov, S.S. Machine Learning Fundamentals. In Mobility Patterns, Big Data and Transport Analytics; Elsevier: Amsterdam, The Netherlands; Cambridge, MA, USA, 2019; pp. 9–29. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Weng, Z.; Fan, L.; Zhang, Y.; Zheng, Z.; Gong, C.; Wei, Z. Facial Recognition of Dairy Cattle Based on Improved Convolutional Neural Network. IEICE Trans. Inf. Syst. 2022, 105, 1234–1238. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Han, M.; Song, L.; Shang, Y.; Zhang, X.; Song, H. Using a CNN-LSTM for Basic Behaviors Detection of a Single Dairy Cow in a Complex Environment. Comput. Electron. Agric. 2021, 182, 106016. [Google Scholar] [CrossRef]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodríguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C. Body Condition Estimation on Cows from Depth Images Using Convolutional Neural Networks. Comput. Electron. Agric. 2018, 155, 12–22. [Google Scholar] [CrossRef]
- Denholm, S.J.; Brand, W.; Mitchell, A.P.; Wells, A.T.; Krzyzelewski, T.; Smith, S.L.; Wall, E.; Coffey, M.P. Predicting Bovine Tuberculosis Status of Dairy Cows from Mid-Infrared Spectral Data of Milk Using Deep Learning. J. Dairy Sci. 2020, 103, 9355–9367. [Google Scholar] [CrossRef] [PubMed]
- Plonsky, L. Advancing Quantitative Methods in Second Language Research; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis; Wiley: Chichester, UK, 2011. [Google Scholar]
- Hofmans, J.; Ceulemans, E.; Steinley, D.; Van Mechelen, I. On the Added Value of Bootstrap Analysis for K-Means Clustering. J. Classif. 2015, 32, 268–284. [Google Scholar] [CrossRef]
- Ma, S.; Yao, Q.; Masuda, T.; Higaki, S.; Yoshioka, K.; Arai, S.; Takamatsu, S.; Itoh, T. Development of Noncontact Body Temperature Monitoring and Prediction System for Livestock Cattle. IEEE Sens. J. 2021, 21, 9367–9376. [Google Scholar] [CrossRef]
- Reynolds, D.A. Gaussian Mixture Models. Encycl. Biom. 2009, 741, 3. [Google Scholar]
- Gogebakan, M. A Novel Approach for Gaussian Mixture Model Clustering Based on Soft Computing Method. IEEE Access 2021, 9, 159987–160003. [Google Scholar] [CrossRef]
- Kai, Z.; Shuqing, H.A.N.; Guodong, C.; Saisai, W.U.; Jifang, L.I.U. Gait Phase Recognition of Dairy Cows Based on Gaussian Mixture Model and Hidden Markov Model. Smart Agric. 2022, 4, 53. [Google Scholar]
- Nagel, E.; Newman, J.R. Godel’s Proof, Revised Edition.; New York University Press: New York, NY, USA; London, UK, 2001; ISBN 0-8147-5816-9. [Google Scholar]
- Ivachnienko, A.G.; Jurackovskij, J.P. Modelirovanie Sloznych System Po Eksperimentalnych Dannych; Radio i Sviaz: Moskva, Russia, 1987. [Google Scholar]
- Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Adkinson, A.Y.; Abouhawwash, M.; VandeHaar, M.J.; Gaddis, K.P.; Burchard, J.; Peñagaricano, F.; White, H.M.; Weigel, K.A.; Baldwin, R.; Santos, J.E.P. Assessing Different Cross-Validation Schemes for Predicting Novel Traits Using Sensor Data: An Application to Dry Matter Intake and Residual Feed Intake Using Milk Spectral Data. J. Dairy Sci. 2024, 107, 8084–8099. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Zhang, W.; Goh, A.T. Multivariate Adaptive Regression Splines and Neural Network Models for Prediction of Pile Drivability. Geosci. Front. 2016, 7, 45–52. [Google Scholar] [CrossRef]
- Hodson, T.O. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model. Dev. Discuss. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean Squared Error, Deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Afzal, S.; Iqbal, M.; Afzal, A. On the Number of Independent Components: An Adjusted Coefficient of Determination Based Approach. Electron. J. Appl. Stat. Anal. 2021, 14, 13–27. [Google Scholar]
- Sathyanarayanan, S.; Tantri, B.R. Confusion Matrix-Based Performance Evaluation Metrics. Afr. J. Biomed. Res. 2024, 27, 4023–4031. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Matthews Correlation Coefficient (MCC) Should Replace the ROC AUC as the Standard Metric for Assessing Binary Classification. BioData Min. 2023, 16, 4. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Di Biasi, L.; De Marco, F.; Auriemma Citarella, A.; Castrillón-Santana, M.; Barra, P.; Tortora, G. Refactoring and Performance Analysis of the Main CNN Architectures: Using False Negative Rate Minimization to Solve the Clinical Images Melanoma Detection Problem. BMC Bioinform. 2023, 24, 386. [Google Scholar] [CrossRef]
- Oliveira, D.A.B.; Pereira, L.G.R.; Bresolin, T.; Ferreira, R.E.P.; Dorea, J.R.R. A Review of Deep Learning Algorithms for Computer Vision Systems in Livestock. Livest. Sci. 2021, 253, 104700. [Google Scholar] [CrossRef]
- Markoulidakis, I.; Kopsiaftis, G.; Rallis, I.; Georgoulas, I.; Doulamis, A.; Doulamis, N. Confusion Matrix Analysis for NPS. In Proceedings of the 24th Pan-Hellenic Conference on Informatics, Athens, Greece, 20–22 November 2020; ACM: New York, NY, USA, 2021; pp. 192–196. [Google Scholar]
- Chicco, D. Ten Quick Tips for Machine Learning in Computational Biology. BioData Min. 2017, 10, 35. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020. [Google Scholar] [CrossRef]
- Rai, T.; Morisi, A.; Bacci, B.; Bacon, N.J.; Dark, M.J.; Aboellail, T.; Thomas, S.A.; La Ragione, R.M.; Wells, K. Keeping Pathologists in the Loop and an Adaptive F1-Score Threshold Method for Mitosis Detection in Canine Perivascular Wall Tumours. Cancers 2024, 16, 644. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S. Deep Learning-Based Imbalanced Data Classification for Drug Discovery. J. Chem. Inf. Model. 2020, 60, 4180–4190. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Informative than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Reliable than Balanced Accuracy, Bookmaker Informedness, and Markedness in Two-Class Confusion Matrix Evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef]
- Burfeind, O.; Sepúlveda, P.; Von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Evaluation of a Scoring System for Rumen Fill in Dairy Cows. J. Dairy Sci. 2010, 93, 3635–3640. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Fethke, N.B.; Nonnenmann, M.W.; Rodriguez, A.; de Porras, D.G.R. Reliability of Observational-and Machine-Based Teat Hygiene Scoring Methodologies. J. Dairy Sci. 2019, 102, 7494–7502. [Google Scholar] [CrossRef]
- Kang, D.; Park, S.; Paik, J. SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss. IEEE Access 2020, 8, 104357–104370. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, R.; Huang, P.; Wang, T.; Hu, M.; Scarsbrook, A.F.; Frangi, A.F. Dynamic Feature Learning for COVID-19 Segmentation and Classification. Comput. Biol. Med. 2022, 150, 106136. [Google Scholar] [CrossRef] [PubMed]
- Bertels, J.; Eelbode, T.; Berman, M.; Vandermeulen, D.; Maes, F.; Bisschops, R.; Blaschko, M.B. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11765, pp. 92–100. ISBN 978-3-030-32244-1. [Google Scholar]
- Alidoost, M.; Ghodrati, V.; Ahmadian, A.; Shafiee, A.; Hassani, C.H.; Bedayat, A.; Wilson, J.L. Model Utility of a Deep Learning-Based Segmentation Is Not Dice Coefficient Dependent: A Case Study in Volumetric Brain Blood Vessel Segmentation. Intell.-Based Med. 2023, 7, 100092. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 658–666. [Google Scholar]
- Salman, M.M.; Nawaz, M.; Yaqub, T.; Mushtaq, M.H. Milk Microbiota of Holstein Friesian Cattle Reared in Lahore: Association with Mastitis. Saudi J. Biol. Sci. 2024, 31, 103984. [Google Scholar] [CrossRef] [PubMed]
- Polo, T.C.F.; Miot, H.A. Use of ROC Curves in Clinical and Experimental Studies. J. Vasc. Bras. 2020, 19, e20200186. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Flach, P.A. ROC Analysis. In Encyclopedia of Machine Learning and Data Mining; Springer: New York, NY, USA, 2016; pp. 1–8. [Google Scholar]
- Janssens, A.C.J.; Martens, F.K. Reflection on Modern Methods: Revisiting the Area under the ROC Curve. Int. J. Epidemiol. 2020, 49, 1397–1403. [Google Scholar] [CrossRef]
- Monaghan, T.F.; Rahman, S.N.; Agudelo, C.W.; Wein, A.J.; Lazar, J.M.; Everaert, K.; Dmochowski, R.R. Foundational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value. Medicina 2021, 57, 503. [Google Scholar] [CrossRef]
- Pontius, R.G.; Parmentier, B. Recommendations for Using the Relative Operating Characteristic (ROC). Landsc. Ecol. 2014, 29, 367–382. [Google Scholar] [CrossRef]
- Hamadani, A.; Ganai, N.A.; Bashir, J. Artificial Neural Networks for Data Mining in Animal Sciences. Bull. Natl. Res. Cent. 2023, 47, 68. [Google Scholar] [CrossRef]
- Tuyttens, F.A.; Molento, C.F.; Benaissa, S. Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Yang, Y.; Lessmann, S.; Ma, T.; Sung, M.-C.; Johnson, J.E. Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting. Eur. J. Oper. Res. 2020, 283, 217–234. [Google Scholar] [CrossRef]
- Taheri, S.; Mammadov, M. Learning the Naive Bayes Classifier with Optimization Models. Int. J. Appl. Math. Comput. Sci. 2013, 23, 787–795. [Google Scholar] [CrossRef]
- Jeong, D.H.; Jeong, B.K.; Leslie, N.; Kamhoua, C.; Ji, S.-Y. Designing a Supervised Feature Selection Technique for Mixed Attribute Data Analysis. Mach. Learn. Appl. 2022, 10, 100431. [Google Scholar] [CrossRef]
- Chicco, D.; Oneto, L.; Tavazzi, E. Eleven Quick Tips for Data Cleaning and Feature Engineering. PLoS Comput. Biol. 2022, 18, e1010718. [Google Scholar] [CrossRef]
- Soeharsono, S.; Mulyati, S.; Utama, S.; Wurlina, W.; Srianto, P.; Restiadi, T.I.; Mustofa, I. Prediction of Daily Milk Production from the Linear Body and Udder Morphometry in Holstein Friesian Dairy Cows. Vet. World 2020, 13, 471. [Google Scholar] [CrossRef]
- Mustafa, S.S.; Huang, J.; Perrotta, K.; Chambers, C.; Namazy, J. COVID-19 and Pregnancy: Interrelationships with Asthma and Allergy. J. Allergy Clin. Immunol. Pract. 2023, 11, 3597–3604. [Google Scholar] [CrossRef]
- Smith, L.I. A Tutorial on Principal Components Analysis. 2002. Available online: https://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf (accessed on 30 April 2025).
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Deutsch, H.-P.; Beinker, M.W. Principal Component Analysis. In Derivatives and Internal Models; Springer International Publishing: Cham, Switzerland, 2019; pp. 793–804. ISBN 978-3-030-22898-9. [Google Scholar]
- Fong, S.; Pabis, K.; Latumalea, D.; Dugersuren, N.; Unfried, M.; Tolwinski, N.; Kennedy, B.; Gruber, J. Principal Component-Based Clinical Aging Clocks Identify Signatures of Healthy Aging and Targets for Clinical Intervention. Nat. Aging 2024, 4, 1137–1152. [Google Scholar] [CrossRef]
- Sanad, S.S.; Gharib, M.G.; Ali, M.A.E.; Farag, A.M. Prediction of Milk Production of Holstein Cattle Using Principal Component Analysis. J. Anim. Poult. Prod. 2021, 12, 1–5. [Google Scholar] [CrossRef]
- Miekley, B.; Traulsen, I.; Krieter, J. Principal Component Analysis for the Early Detection of Mastitis and Lameness in Dairy Cows. J. Dairy Res. 2013, 80, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Coheur, L.; Tilley, P. A Review of Multimodal AI in Veterinary Diagnosis: Current Trends, Challenges, and Future Directions. IEEE Access 2025, 13, 97846–97858. [Google Scholar] [CrossRef]
- Vu, H.; Prabhune, O.C.; Raskar, U.; Panditharatne, D.; Chung, H.; Choi, C.; Kim, Y. MmCows: A Multimodal Dataset for Dairy Cattle Monitoring. Adv. Neural Inf. Process. Syst. 2024, 37, 59451–59467. [Google Scholar]
- Russello, H.; van der Tol, R.; Kootstra, G. T-LEAP: Occlusion-Robust Pose Estimation of Walking Cows Using Temporal Information. Comput. Electron. Agric. 2022, 192, 106559. [Google Scholar] [CrossRef]
- Afridi, H.; Ullah, M.; Nordbø, Ø.; Hoff, S.C.; Furre, S.; Larsgard, A.G.; Cheikh, F.A. Analyzing Data Modalities for Cattle Weight Estimation Using Deep Learning Models. J. Imaging 2024, 10, 72. [Google Scholar] [CrossRef]
- Themistokleous, K.S.; Sakellariou, N.; Kiossis, E. A Deep Learning Algorithm Predicts Milk Yield and Production Stage of Dairy Cows Utilizing Ultrasound Echotexture Analysis of the Mammary Gland. Comput. Electron. Agric. 2022, 198, 106992. [Google Scholar] [CrossRef]
- Kate, M.; Neethirajan, S. Decoding Bovine Communication with AI and Multimodal Systems∼Advancing Sustainable Livestock Management and Precision Agriculture. 2025. Available online: https://www.researchgate.net/publication/389667368_Decoding_Bovine_Communication_with_AI_and_Multimodal_Systems_Advancing_Sustainable_Livestock_Management_and_Precision_Agriculture (accessed on 25 June 2025).
- Gutiérrez-Reinoso, M.A.; Aponte, P.M.; García-Herreros, M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals 2023, 13, 1588. [Google Scholar] [CrossRef]
- Ferreira, R.E.; de Luis Balaguer, M.A.; Bresolin, T.; Chandra, R.; Rosa, G.J.; White, H.M.; Dórea, J.R. Multi-Modal Machine Learning for the Early Detection of Metabolic Disorder in Dairy Cows Using a Cloud Computing Framework. Comput. Electron. Agric. 2024, 227, 109563. [Google Scholar] [CrossRef]
- Li, D.; Yan, G.; Li, F.; Lin, H.; Jiao, H.; Han, H.; Liu, W. Optimized Machine Learning Models for Predicting Core Body Temperature in Dairy Cows: Enhancing Accuracy and Interpretability for Practical Livestock Management. Animals 2024, 14, 2724. [Google Scholar] [CrossRef]
- Mota, L.F.M.; Giannuzzi, D.; Pegolo, S.; Trevisi, E.; Ajmone-Marsan, P.; Cecchinato, A. Integrating On-Farm and Genomic Information Improves the Predictive Ability of Milk Infrared Prediction of Blood Indicators of Metabolic Disorders in Dairy Cows. Genet. Sel. Evol. 2023, 55, 23. [Google Scholar] [CrossRef]
- Xue, M.-Y.; Xie, Y.-Y.; Zhong, Y.; Ma, X.-J.; Sun, H.-Z.; Liu, J.-X. Integrated Meta-Omics Reveals New Ruminal Microbial Features Associated with Feed Efficiency in Dairy Cattle. Microbiome 2022, 10, 32. [Google Scholar] [CrossRef]
- Taneja, M.; Byabazaire, J.; Jalodia, N.; Davy, A.; Olariu, C.; Malone, P. Machine Learning Based Fog Computing Assisted Data-Driven Approach for Early Lameness Detection in Dairy Cattle. Comput. Electron. Agric. 2020, 171, 105286. [Google Scholar] [CrossRef]
- Liang, M.; Chang, T.; An, B.; Duan, X.; Du, L.; Wang, X.; Miao, J.; Xu, L.; Gao, X.; Zhang, L. A Stacking Ensemble Learning Framework for Genomic Prediction. Front. Genet. 2021, 12, 600040. [Google Scholar] [CrossRef] [PubMed]
- Hyde, R.M.; Down, P.M.; Bradley, A.J.; Breen, J.E.; Hudson, C.; Leach, K.A.; Green, M.J. Automated Prediction of Mastitis Infection Patterns in Dairy Herds Using Machine Learning. Sci. Rep. 2020, 10, 4289. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.A.; Aghalari, A.; Marufuzzaman, M.; Stone, A.E. Predicting Dairy Cattle Heat Stress Using Machine Learning Techniques. J. Dairy Sci. 2021, 104, 501–524. [Google Scholar] [CrossRef]
- Bresolin, T.; Dórea, J.R. Infrared Spectrometry as a High-Throughput Phenotyping Technology to Predict Complex Traits in Livestock Systems. Front. Genet. 2020, 11, 923. [Google Scholar] [CrossRef]
- Ren, K.; Bernes, G.; Hetta, M.; Karlsson, J. Tracking and Analysing Social Interactions in Dairy Cattle with Real-Time Locating System and Machine Learning. J. Syst. Archit. 2021, 116, 102139. [Google Scholar] [CrossRef]
- Chung, H.; Li, J.; Kim, Y.; Van Os, J.M.; Brounts, S.H.; Choi, C.Y. Using Implantable Biosensors and Wearable Scanners to Monitor Dairy Cattle’s Core Body Temperature in Real-Time. Comput. Electron. Agric. 2020, 174, 105453. [Google Scholar] [CrossRef]
- Cabezas, J.; Yubero, R.; Visitación, B.; Navarro-García, J.; Algar, M.J.; Cano, E.L.; Ortega, F. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Entropy 2022, 24, 336. [Google Scholar] [CrossRef]
- Keceli, A.S.; Catal, C.; Kaya, A.; Tekinerdogan, B. Development of a Recurrent Neural Networks-Based Calving Prediction Model Using Activity and Behavioral Data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Bovo, M.; Agrusti, M.; Benni, S.; Torreggiani, D.; Tassinari, P. Random Forest Modelling of Milk Yield of Dairy Cows under Heat Stress Conditions. Animals 2021, 11, 1305. [Google Scholar] [CrossRef] [PubMed]
- Giordano, J.O.; Sitko, E.M.; Rial, C.; Pérez, M.M.; Granados, G.E. Symposium Review: Use of Multiple Biological, Management, and Performance Data for the Design of Targeted Reproductive Management Strategies for Dairy Cows. J. Dairy Sci. 2022, 105, 4669–4678. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Eaglen, S.A.; Maltecca, C.; Mulder, H.A.; Pryce, J.E. The Future of Phenomics in Dairy Cattle Breeding. Anim. Front. 2020, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Dórea, J.R.R.; Borchers, M.R.; Wallace, R.L.; Bertics, S.J.; DeNise, S.K.; Weigel, K.A.; White, H.M. Comparison of Methods to Predict Feed Intake and Residual Feed Intake Using Behavioral and Metabolite Data in Addition to Classical Performance Variables. J. Dairy Sci. 2021, 104, 8765–8782. [Google Scholar] [CrossRef]
- Ghahramani, N.; Shodja, J.; Rafat, S.A.; Panahi, B.; Hasanpur, K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front. Genet. 2021, 12, 712306. [Google Scholar] [CrossRef]
- Mota, L.F.; Pegolo, S.; Baba, T.; Peñagaricano, F.; Morota, G.; Bittante, G.; Cecchinato, A. Evaluating the Performance of Machine Learning Methods and Variable Selection Methods for Predicting Difficult-to-Measure Traits in Holstein Dairy Cattle Using Milk Infrared Spectral Data. J. Dairy Sci. 2021, 104, 8107–8121. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Chu, M.; Kang, X.; Liu, G. Application of Infrared Thermography and Machine Learning Techniques in Cattle Health Assessments: A Review. Biosyst. Eng. 2023, 230, 361–387. [Google Scholar] [CrossRef]
- Sejian, V.; Shashank, C.G.; Silpa, M.V.; Madhusoodan, A.P.; Devaraj, C.; Koenig, S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere 2022, 13, 1642. [Google Scholar] [CrossRef]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Mota, L.F.; Giannuzzi, D.; Bisutti, V.; Pegolo, S.; Trevisi, E.; Schiavon, S.; Gallo, L.; Fineboym, D.; Katz, G.; Cecchinato, A. Real-Time Milk Analysis Integrated with Stacking Ensemble Learning as a Tool for the Daily Prediction of Cheese-Making Traits in Holstein Cattle. J. Dairy Sci. 2022, 105, 4237–4255. [Google Scholar] [CrossRef]
- Cernek, P.; Bollig, N.; Anklam, K.; Döpfer, D. Hot Topic: Detecting Digital Dermatitis with Computer Vision. J. Dairy Sci. 2020, 103, 9110–9115. [Google Scholar] [CrossRef] [PubMed]
- Salau, J.; Krieter, J. Instance Segmentation with Mask R-CNN Applied to Loose-Housed Dairy Cows in a Multi-Camera Setting. Animals 2020, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
- Borghart, G.M.; O’Grady, L.E.; Somers, J.R. Prediction of Lameness Using Automatically Recorded Activity, Behavior and Production Data in Post-Parturient Irish Dairy Cows. Ir. Vet. J. 2021, 74, 4. [Google Scholar] [CrossRef] [PubMed]
- Gebreyesus, G.; Milkevych, V.; Lassen, J.; Sahana, G. Supervised Learning Techniques for Dairy Cattle Body Weight Prediction from 3D Digital Images. Front. Genet. 2023, 13, 947176. [Google Scholar] [CrossRef]
Predicted Values | Real Values | |
---|---|---|
Positive Class | Negative Class | |
Positive class | True Positive (TP) | False Positive (FP) |
Negative class | False Negative (FN) | True Negative (TN) |
Predicted Values | Real Values | ||
---|---|---|---|
A | B | C | |
A | TPA | FNB/A | FNC/A |
B | FNA/B | TPB | FNC/B |
C | FNA/C | FNB/C | TPC |
Area of Application | Modalities | Example |
---|---|---|
Sound analysis | Acoustics + natural language processing | Kate and Neethirajan [182] |
Physiological-behavioral monitoring | Video + ultrawideband + sensors | Vu et al. [178] |
Lameness/position assessment | Video + temporal data | Rusello et al. [179] |
Body weight estimation | RGB + depth + segmentation | Afridi et al. [180] |
Milk production | Ultrasound imaging + deep learning | Themistokleous et al. [181] |
Influence of genes on milk production and cow health | Genetic and phenotypic data | Gutiérrez-Reinoso et al. [183] |
Using sensors to track activity and temperature, combined with production data | Data from health and production monitoring systems | Ferreira et al. [184] |
Impact of weather conditions on milk yield | Environmental and production data | Li et al. [185] |
Using laboratory test results with data on supplementation and rearing | Laboratory and management data | Mota et al. [186] |
Cow_ID | Timestamp | Temp (°C) | Steps No. | Rumination Time (min) | Moo Frequency (Hz) | Moo Type | Video Posture | Milk Yield (l) | Heat Indicator |
---|---|---|---|---|---|---|---|---|---|
235 | 22 May 2024 08:00 | 38.4 | 472 | 510 | 350 | “distress” | “lying” | 29.3 | 0.81 |
235 | 22 May 2024 20:00 | 38.9 | 215 | 430 | 410 | “normal” | “standing” | 28.5 | 0.97 |
Model | Web of Science | Scopus | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2023 | 2024 | Total | 2020 | 2021 | 2022 | 2023 | 2024 | Total | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
LR | 1320 | 1580 | 1630 | 1550 | 1570 | 7650 | 22 | 29 | 21 | 22 | 26 | 120 | 27 | 40 | 23 | 29 | 30 | 149 |
LogR | 909 | 1070 | 1150 | 1100 | 1110 | 5339 | 39 | 58 | 38 | 43 | 48 | 226 | 45 | 72 | 68 | 60 | 74 | 319 |
ANN | 358 | 513 | 689 | 764 | 823 | 3147 | 1 | 2 | 4 | 2 | 2 | 11 | 8 | 10 | 11 | 14 | 12 | 55 |
CA | 385 | 496 | 458 | 470 | 482 | 2291 | 6 | 6 | 6 | 4 | 9 | 31 | 14 | 17 | 8 | 11 | 17 | 67 |
RF | 223 | 309 | 407 | 468 | 550 | 1957 | 8 | 8 | 14 | 12 | 11 | 53 | 9 | 14 | 16 | 27 | 22 | 88 |
SVM | 158 | 194 | 290 | 274 | 301 | 1217 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 9 | 3 | 15 | 9 | 42 |
Adaboost | 27 | 36 | 58 | 63 | 55 | 239 | 1 | 0 | 1 | 1 | 1 | 4 | 1 | 0 | 0 | 1 | 1 | 3 |
k-NN | 34 | 40 | 74 | 66 | 113 | 327 | 0 | 0 | 2 | 2 | 0 | 4 | 2 | 4 | 4 | 5 | 4 | 19 |
NBC | 27 | 33 | 51 | 48 | 51 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
CART | 24 | 34 | 44 | 36 | 39 | 177 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 5 |
CHAID | 10 | 7 | 26 | 17 | 21 | 81 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 2 |
GMM | 1 | 9 | 2 | 3 | 3 | 18 | 1 | 1 | 2 | 0 | 0 | 4 | 1 | 0 | 3 | 0 | 0 | 4 |
MARS | 1 | 1 | 3 | 3 | 6 | 14 | 1 | 0 | 2 | 1 | 1 | 5 | 0 | 0 | 2 | 0 | 2 | 4 |
Rank | Ref. | Method | Application Field | Number of Citations | |
---|---|---|---|---|---|
Web of Science Core Collection | Remaining Web of Science Databases | ||||
1 | [187] | RF | Classification of the microbiome on the basis of rumen metabolites | 80 | 91 |
2 | [188] | Hybrid clustering and classification model (RF, k-NN) | Lameness detection | 72 | 75 |
3 | [140] * | Deep learning (Mask R-CNN, Faster R-CNN, YOLO v3 and v4, DeepLab v3, U-Net, ResNet, Inception, Xception, and VGG16) | Computer vision for animal identification and behavior, feed intake, animal body weight, and others | 71 | 80 |
4 | [189] | Stacking ensemble learning framework (SELF), support vector regression (SVR), kernel ridge regression (KRR) and elastic net (ENET), genomic best linear unbiased prediction (GBLUP), BayesB | Predicting genomic estimated breeding values | 42 | 48 |
5 | [190] | RF | Mastitis detection | 39 | 41 |
6 | [191] | LogR, Gaussian naïve Bayes, RF | Heat stress prediction | 36 | 42 |
7 | [192] * | Partial least squares, ANN, SVM, Bayes B, LR, principal components regression | Prediction of milk composition, feed efficiency, methane emission, fertility, energy balance, health status and meat quality traits from infrared spectrometric data | 35 | 39 |
8 | [193] | Long-term recurrent convolutional networks | Monitoring the activity and social behavior in cows | 34 | 35 |
9 | [194] | Long short-term memory (LSTM) network, gated recurrent unit (GRU), bidirectional LSTM (BLSTM), and stacked LSTM | Monitoring of cow body temperature | 34 | 42 |
10 | [195] | RF, k-medoids algorithm | Analysis of cattle behavior (grazing, ruminating, laying and steady standing) | 30 | 32 |
11 | [196] | BLSTM, LSTM, RUSBoosted tree | Predicting calving date and the eight-hour period before calving | 29 | 33 |
12 | [197] | RF | Modelling the milk yield of cows under heat stress conditions | 28 | 30 |
13 | [198] * | ML in general | Targeted reproductive management based on genomic predictions; analysis of behavioral, physiological, and performance parameters, based on individual cow and herd performance records | 27 | 31 |
14 | [199] * | ML in general | The future of phenomics in the rearing and breeding of cattle | 27 | 31 |
15 | [200] | LR, partial least squares regression, ANN, and stacked ensembles | Predicting feed intake and residual feed intake based on behavioral and metabolic data in addition to classical performance variables | 25 | 29 |
16 | [201] | Decision trees, SVM, PCA | Identification of candidate genes and functional modules associated with mastitis | 24 | 24 |
17 | [202] | RF, gradient boosting machine (GBM), penalized regression, partial least squares (PLS) regression | Prediction of difficult-to-measure traits in Holstein cattle based on milk infrared spectral data | 24 | 26 |
18 | [203] * | Linear regression, LogR, SVM, Fuzzy C-mean (FCM), ANN, CART, CNN, RF, threshold discrimination, YOLO, histogram oriented gradient (HOG), fuzzy logic | Use of infrared thermography to assess the health of cows (mastitis, lameness, respiratory diseases, physiological characteristics, stress, temperament, oestrus) | 23 | 23 |
19 | [204] * | JRip, J48, RF, ANN, penalized linear regression, gradient boosted machines, Mask R-CNN, generalized additive model | Analysis of heat stress in cows | 20 | 20 |
20 | [205] * | ML in general | Analysis of the heat stress response in cattle | 19 | 19 |
21 | [206] | Stacking ensemble learning including elastic net (EN), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), and ANN | Predicting cheese quality related traits in dairy cows | 19 | 22 |
22 | [207] | YOLOv2 COMV | Digital dermatitis detection based on camera images | 19 | 20 |
23 | [208] | Mask R-CNN | Determination of pixel-level segmentation masks for the cows in the video material | 19 | 19 |
24 | [209] | XGBoost | Predicting lameness in cattle | 18 | 20 |
25 | [21] | Generalized Linear Models (GLM), ANN, RF | Predicting oestrus in heifers based on feeding behavior | 18 | 20 |
26 | [210] | Catboost, AdaBoost, RF, linear regression, decision trees, adaptive boosting, SVM | Predicting body weight of dairy cattle from 3D images | 18 | 18 |
27 | [122] | YOLO, support vector regression (SVR), k-NN, RF, linear regression, polynomial regression | Monitoring and predicting the body temperature of cattle | 18 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzesiak, W.; Zaborski, D.; Pluciński, M.; Jędrzejczak-Silicka, M.; Pilarczyk, R.; Sablik, P. The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review. Animals 2025, 15, 2033. https://doi.org/10.3390/ani15142033
Grzesiak W, Zaborski D, Pluciński M, Jędrzejczak-Silicka M, Pilarczyk R, Sablik P. The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review. Animals. 2025; 15(14):2033. https://doi.org/10.3390/ani15142033
Chicago/Turabian StyleGrzesiak, Wilhelm, Daniel Zaborski, Marcin Pluciński, Magdalena Jędrzejczak-Silicka, Renata Pilarczyk, and Piotr Sablik. 2025. "The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review" Animals 15, no. 14: 2033. https://doi.org/10.3390/ani15142033
APA StyleGrzesiak, W., Zaborski, D., Pluciński, M., Jędrzejczak-Silicka, M., Pilarczyk, R., & Sablik, P. (2025). The Use of Selected Machine Learning Methods in Dairy Cattle Farming: A Review. Animals, 15(14), 2033. https://doi.org/10.3390/ani15142033