Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = debris dam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 511
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

23 pages, 25599 KiB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 429
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

23 pages, 1120 KiB  
Review
Leaky Dams as Nature-Based Solutions in Flood Management Part I: Introduction and Comparative Efficacy with Conventional Flood Control Infrastructure
by Umanda Hansamali, Randika K. Makumbura, Upaka Rathnayake, Hazi Md. Azamathulla and Nitin Muttil
Hydrology 2025, 12(4), 95; https://doi.org/10.3390/hydrology12040095 - 17 Apr 2025
Cited by 2 | Viewed by 2257
Abstract
Natural flood management strategies are increasingly recognized as sustainable alternatives to conventional engineered flood control measures. Among these, leaky dams, also known as woody debris dams or log dams, have emerged as effective nature-based solutions for mitigating flood risks while preserving essential ecosystem [...] Read more.
Natural flood management strategies are increasingly recognized as sustainable alternatives to conventional engineered flood control measures. Among these, leaky dams, also known as woody debris dams or log dams, have emerged as effective nature-based solutions for mitigating flood risks while preserving essential ecosystem services. This review traces the historical evolution of leaky dams from ancient water management practices to contemporary applications, highlighting their development and adaptation over time. It presents a comparative examination of leaky dams and conventional flood control structures, outlining their respective strengths and limitations across ecological, hydrological, and economic dimensions. The review also introduces a conceptual classification of leaky dams into naturally occurring, engineered, hybrid, and movable systems, showing how each form aligns with varying catchment characteristics and management objectives. By synthesizing foundational knowledge and strategic insights, this paper establishes a theoretical and contextual framework for understanding leaky dams as distinct yet complementary tools in integrated flood management, laying the groundwork for further technical evaluations. The findings offer valuable insights for end users by highlighting the potential of leaky dams as integral components of sustainable flood management systems, elucidating their roles in mitigating flood risks, enhancing water retention, and supporting ecosystem resilience. Full article
Show Figures

Figure 1

10 pages, 4383 KiB  
Proceeding Paper
Landscape Aesthetics of Check Dams Based on Scenic Beauty Estimation Method and Artificial Intelligence Technology
by Hong-Ming Weng, Szu-Hsien Peng, Chun-Yi Wu and Min-Chih Liang
Eng. Proc. 2025, 91(1), 3; https://doi.org/10.3390/engproc2025091003 - 9 Apr 2025
Viewed by 331
Abstract
Check dams play a pivotal role in soil and water conservation engineering as they mitigate debris flow and decelerate the slope of the river channel by intercepting sediments, thereby preventing disasters. However, as ecological conservation and landscape integration have become significant, functions, safety, [...] Read more.
Check dams play a pivotal role in soil and water conservation engineering as they mitigate debris flow and decelerate the slope of the river channel by intercepting sediments, thereby preventing disasters. However, as ecological conservation and landscape integration have become significant, functions, safety, harmony, and aesthetics with the surroundings must be considered in the design of check dams. In this study, a questionnaire survey was conducted based on scenic beauty estimation (SBE) and image segmentation using artificial intelligence to evaluate the landscape quality of soil and water conservation projects. Data were collected from the photos which were segmented into vegetation, structure, sky, land, and water. The proportion of each segment was calculated to explore the relationship with the scenic beauty of the landscapes. Regions with prevalent vegetation and water received favorable evaluations, whereas areas with a higher proportion of land were less preferred. Even when vegetation was present in high quantities, an unorganized arrangement was less desirable. Identified key factors influencing the scenic beauty of the landscape can be considered in the design of soil and water conservation engineering projects. Full article
Show Figures

Figure 1

18 pages, 7864 KiB  
Article
Impact Response Characteristics of Apron Structure to Bouldery Debris Flow
by Shihua Chen, Minghui Meng, Tingting Jiang, Jian Guo, Dong Sun, Liang Qin and Tiantao Li
Water 2025, 17(4), 544; https://doi.org/10.3390/w17040544 - 13 Feb 2025
Viewed by 1011
Abstract
Apron is a commonly used structure in the downstream of debris-flow-retaining dams. Its function is to resist the impact and erosion of debris flow on the dam foundation. In order to enhance the impact resistance of the apron to boulders, increasing the apron [...] Read more.
Apron is a commonly used structure in the downstream of debris-flow-retaining dams. Its function is to resist the impact and erosion of debris flow on the dam foundation. In order to enhance the impact resistance of the apron to boulders, increasing the apron thickness and filling the block stone are usually adopted. However, the apron is still often destroyed by bouldery debris flow. Therefore, we propose a kind of toughness apron. Physical test and numerical simulation are used to reveal the dynamic response of the toughness apron. The results show that both tire cushion and stone cushion can buffer the impact of boulders. The physical test showed that the cushion reduces impact force and vibration acceleration, and the numerical simulation results indicate that the cushion significantly reduces damage to the protection apron while dissipating most of the energy. It was also found that there is an energy threshold of impact damage resistance of the apron. When the impact kinetic energy is higher than this threshold, the apron will be damaged. These findings highlight its potential for debris flow protection. According to the corresponding impact characteristics of the dam, the design method of the toughness apron is proposed. Full article
Show Figures

Figure 1

23 pages, 3747 KiB  
Article
Anchor Ice Dams and Water–Ice Flows on the Rivers of the Mountains of Southeastern Kazakhstan
by Vitaliy Zhdanov, Viktor Blagovechshenskiy, Akhmetkal Medeu, Ulzhan Aldabergen, Aidana Kamalbekova and Sandugash Ranova
Water 2025, 17(1), 81; https://doi.org/10.3390/w17010081 - 1 Jan 2025
Viewed by 1349
Abstract
Anchor ice dams and water–ice flows are widespread on the mountain rivers of Southeastern Kazakhstan. Due to the mild winter climate, continuous ice cover is not formed on these rivers. During severe cold spells, anchor and shore ice accumulate in various river sections [...] Read more.
Anchor ice dams and water–ice flows are widespread on the mountain rivers of Southeastern Kazakhstan. Due to the mild winter climate, continuous ice cover is not formed on these rivers. During severe cold spells, anchor and shore ice accumulate in various river sections and causes water levels to rise by 1.5–2 m compared to winter low flows. In the event of a rapid warming, the ice breaks apart, forming water flows mixed with ice debris similar to mudflows. These flows move at high speeds and can cause significant destruction and loss of life. Our research aims to study the characteristics and formation conditions of these flows. Statistical methods were applied to analyze the data, revealing that thermal conditions greatly influence the formation of anchor ice. During these periods, minimum air temperatures drop below −20 °C, and the rate of cooling can reach 10 °C per day. An empirical formula for water level rise based on cumulative daily air temperatures was derived. The ice dam growth rate reaches 61 cm/day. Rapid ice breakage occurs during sharp warming periods. Sometimes this causes destructive water–ice flows similar to mudflows. The volume of the water–ice flow can exceed 10,000 m3, the path length can reach 8 km, the maximum speed exceeds 10 m/s, the flow depth can reach 5 m, and the discharge can be as high as 300 m3/s. The Random Forest algorithm identified characteristic meteorological conditions for water–ice flow formation. The most important meteorological parameters for the formation of water–ice flows are the 5-day sum of daily air temperature during the cooling period and the daily gradient of air temperature during the warming period. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

27 pages, 36188 KiB  
Article
Back Analysis of a Real Debris Flow, the Morino-Rendinara Test Case (Italy), Using RAMMS Software
by Antonio Pasculli, Claudia Zito, Nicola Sciarra and Massimo Mangifesta
Land 2024, 13(12), 2078; https://doi.org/10.3390/land13122078 - 3 Dec 2024
Viewed by 1365
Abstract
Debris flows are a dynamic and hazardous geological phenomenon, as by definition, debris flows are rapid, gravity-driven flows of saturated materials that often contain a mixture of water, rock, soil, and organic matter. They are highly destructive and occur in steep channels, posing [...] Read more.
Debris flows are a dynamic and hazardous geological phenomenon, as by definition, debris flows are rapid, gravity-driven flows of saturated materials that often contain a mixture of water, rock, soil, and organic matter. They are highly destructive and occur in steep channels, posing a significant threat to infrastructure and human life. The dynamics of debris flows are complex due to their non-Newtonian behaviour and varying sediment–water interactions, making accurate modelling essential for risk mitigation and emergency planning. This paper reports and discusses the results of numerical simulations of back analyses aimed at studying the reconstruction of a real rapid debris flow. The selected test case is the event that occurred on 12 and 16 March 2021 along the Rio Sonno channel, a tributary of the Liri River, following the landslide event of Rendinara (Municipality of Morino, Abruzzo Region, Italy). There are significant flow sources in the area, fed by a highly fractured carbonaceous aquifer that extends immediately upslope of the detachment zone. The continuous flow influences the saturation level in the fine-grained sediments and favours the triggering of the debris flow. This phenomenon was simulated using the commercial RAMMS code, and the rheological model selected was “Voellmy fluid friction”. The modelling approaches used in this research are valid tools to estimate the volumes of materials involved in the flow-feeding process and for the purpose of possible mitigation works (debris flow-type dams, weirs, flow diversion, etc.). Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

12 pages, 4475 KiB  
Article
Youth Engagement in Water Quality Monitoring: Uncovering Ecosystem Benefits and Challenges
by Sangyong Cho, Leah Hollstein, Luis Aguilar, Johnny Dwyer and Christopher Auffrey
Architecture 2024, 4(4), 1008-1019; https://doi.org/10.3390/architecture4040053 - 12 Nov 2024
Cited by 1 | Viewed by 1758
Abstract
A youth-centric participatory mapping approach was employed to monitor the lower Mill Creek, an urban waterway located in Cincinnati, Ohio, by collecting geospatial data points on surface water quality and ecological assets. Utilizing the ArcGIS Field Maps application, a digital survey-based tool was [...] Read more.
A youth-centric participatory mapping approach was employed to monitor the lower Mill Creek, an urban waterway located in Cincinnati, Ohio, by collecting geospatial data points on surface water quality and ecological assets. Utilizing the ArcGIS Field Maps application, a digital survey-based tool was developed to identify key areas related to ecological assets and urban water management challenges. The purpose of this citizen science approach was to allow researchers to capture and understand community perspectives and insights while engaging in scientific research that focuses on identifying geographic vulnerability areas and ecological assets. The primary objective was to empower local community groups and residents in an environmental justice neighborhood to understand the current opportunities and constraints of the adjacent waterbody, enabling informed decision-making for future planning initiatives that benefit both conservation and remediation efforts aligned with local values and needs. A youth-centric participatory mapping approach was employed to monitor the lower Mill Creek, an urban waterway in Cincinnati, Ohio, through the collection of geospatial data on surface water quality and ecological assets. The findings, based on hotspot analysis, revealed significant spatial clustering of heavy debris near the barrier dam and the lower portion of Mill Creek, where it converges with the Ohio River. This accumulation is attributed to the structural features of the barrier dam’s inner flood catchment area, which traps debris during rainfall events. Although no areas showed spatial significance for perceived ecological services, students identified specific areas with esthetic and biodiversity value, particularly at Mill Creek’s confluence with the Ohio River and along the northern stretch of the stream corridor. These findings provide valuable insights for guiding future conservation and remediation efforts that reflect both community values and environmental priorities. Full article
Show Figures

Figure 1

20 pages, 2618 KiB  
Article
Enhanced Tailings Dam Beach Line Indicator Observation and Stability Numerical Analysis: An Approach Integrating UAV Photogrammetry and CNNs
by Kun Wang, Zheng Zhang, Xiuzhi Yang, Di Wang, Liyi Zhu and Shuai Yuan
Remote Sens. 2024, 16(17), 3264; https://doi.org/10.3390/rs16173264 - 3 Sep 2024
Cited by 1 | Viewed by 1805
Abstract
Tailings ponds are recognized as significant sources of potential man-made debris flow and major environmental disasters. Recent frequent tailings dam failures and growing trends in fine tailings outputs underscore the critical need for innovative monitoring and safety management techniques. Here, we propose an [...] Read more.
Tailings ponds are recognized as significant sources of potential man-made debris flow and major environmental disasters. Recent frequent tailings dam failures and growing trends in fine tailings outputs underscore the critical need for innovative monitoring and safety management techniques. Here, we propose an approach that integrates UAV photogrammetry with convolutional neural networks (CNNs) to extract beach line indicators (BLIs) and conduct enhanced dam safety evaluations. The significance of real 3D geometry construction in numerical analysis is investigated. The results demonstrate that the optimized You Only Look At CoefficienTs (YOLACT) model outperforms in recognizing the beach boundary line, achieving a mean Intersection over Union (mIoU) of 72.63% and a mean Pixel Accuracy (mPA) of 76.2%. This approach shows promise for future integration with autonomously charging UAVs, enabling comprehensive coverage and automated monitoring of BLIs. Additionally, the anti-slide and seepage stability evaluations are impacted by the geometry shape and water condition configuration. The proposed approach provides more conservative seepage calculations, suggesting that simplified 2D modeling may underestimate tailings dam stability, potentially affecting dam designs and regulatory decisions. Multiple numerical methods are suggested for cross-validation. This approach is crucial for balancing safety regulations with economic feasibility, helping to prevent excessive and unsustainable burdens on enterprises and advancing towards the goal of zero harm to people and the environment in tailings management. Full article
Show Figures

Graphical abstract

22 pages, 5748 KiB  
Article
Status and Distribution of the Chesapeake Logperch Percina bimaculata Haldeman, 1844 in Pennsylvania
by Douglas P. Fischer, Robert W. Criswell, Aaron M. Henning, Jack T. Test and Jay R. Stauffer
Water 2024, 16(17), 2466; https://doi.org/10.3390/w16172466 - 30 Aug 2024
Cited by 1 | Viewed by 1827
Abstract
The Chesapeake Logperch, Percina bimaculata, is a small fish endemic to the upper Chesapeake Bay drainage with a range significantly reduced by water quality and habitat degradation. It was described by Haldeman in 1842 and 1844 from the Susquehanna River, Pennsylvania, synonymized [...] Read more.
The Chesapeake Logperch, Percina bimaculata, is a small fish endemic to the upper Chesapeake Bay drainage with a range significantly reduced by water quality and habitat degradation. It was described by Haldeman in 1842 and 1844 from the Susquehanna River, Pennsylvania, synonymized with the Logperch (Percina caprodes) by Jordan in 1877, and redescribed by Near in 2008. It is extirpated from the Potomac River drainage and extant in a portion of its historic range within the Susquehanna River drainage of Pennsylvania and Maryland in the United States of America. We reviewed available historic field survey information and defined the likely extent of the historic distribution of P. bimaculata and its change in response to historic environmental perturbations. We performed fisheries surveys during 2004–2023 to fill data gaps and to define the current distribution and abundance in the Susquehanna River drainage within Pennsylvania. Our surveys utilized electrofishing gears, electrified benthic trawls, and seines. Our surveys targeting P. bimaculata on the Susquehanna River and tributaries from York Haven to Holtwood, Pennsylvania, combined with available fisheries surveys conducted by others, confirm it was extirpated from that portion of the drainage. We documented the continued usage of Conowingo Pond, Susquehanna River, and tributaries below Holtwood by populations known to exist in historic field surveys. These populations appear to have been stable since at least the 1960s based on historic data and our current surveys. We documented previously unknown populations in the Octoraro Creek drainage, Octoraro Reservoir, and Muddy Run Pumped Storage Facility. Habitat utilization observations during our surveys indicate that clean sand, gravel, rubble, boulders, and large woody debris are preferred substrates. In the lower Susquehanna River and two tributaries, P. bimaculata has demonstrated a plasticity of habitat usage by continuing to occur in environments converted into impoundments by dams. In these impoundments, shorelines and connections with clean tributaries containing preferred substrates appear to be important given their utilization by P. bimaculata during our surveys. It is our opinion that the Susquehanna River and tributaries above Holtwood once again constitute suitable habitats. Conservation efforts focused on reintroductions, water quality, habitat, and connectivity have the potential to increase the extent of occurrence, abundance, and security of P. bimaculata. Full article
Show Figures

Graphical abstract

19 pages, 22743 KiB  
Article
The Application of Remote Sensing Technology in Post-Disaster Emergency Investigations of Debris Flows: A Case Study of the Shuimo Catchment in the Bailong River, China
by Feibiao Huo, Fuyun Guo, Pengqing Shi, Ziyan Gao, Yan Zhao, Yongbin Wang, Xingmin Meng and Dongxia Yue
Remote Sens. 2024, 16(15), 2817; https://doi.org/10.3390/rs16152817 - 31 Jul 2024
Cited by 4 | Viewed by 1739
Abstract
The Bailongjiang River Basin is a high-risk area for debris flow in China. On 17 August 2020, a debris flow occurred in the Shuimo catchment, Wen County, which blocked the Baishui River, forming a barrier lake and causing significant casualties and property damage. [...] Read more.
The Bailongjiang River Basin is a high-risk area for debris flow in China. On 17 August 2020, a debris flow occurred in the Shuimo catchment, Wen County, which blocked the Baishui River, forming a barrier lake and causing significant casualties and property damage. In this study, remote sensing, InSAR, field surveys, and unmanned aerial vehicle (UAV) techniques were used to analyze the causal characteristics, material source characteristics, dynamic processes, and disaster characteristics after the debris flow. The results showed that the Shuimo catchment belongs to low-frequency debris flows, with a recurrence cycle of more than 100 years and concealed features. High vegetation coverage (72%) and a long main channel (11.49 km) increase the rainfall-triggering conditions for debris flow occurrence, making it more hidden and less noticed. The Shuimo catchment has a large drainage area of 31.26 km2, 15 tributaries, significant elevation differences of 2017 m, and favorable hydraulic conditions for debris flow. The main sources of debris flow material supply are channel erosion and slope erosion, which account for 84.4% of the total material. The collapse of landslides blocking both sides of the main channel resulted in an amplification of the debris flow scale, leading to the blockage of the Baishui River. The scale of the accumulation fan is 28 × 104 m3, and the barrier lake area is 37.4 × 104 m2. The formation mechanism can be summarized as follows: rainfall triggering → shallow landslides → slope debris flow → channel erosion → landslide damming → dam failure and increased discharge → deposition and river blockage. The results of this study provide references for remote sensing emergency investigation and analysis of similar low-frequency and concealed debris flows, as well as a scientific basis for local disaster prevention and reduction. Full article
Show Figures

Figure 1

22 pages, 20025 KiB  
Article
Distribution and Stabilization Mechanisms of Stable Landslide Dams
by Liang Song, Yunsheng Wang, Yuchao Zhao, Zhuolin Xiao, Zhuo Feng, Shicheng Liu and Tao Tang
Sustainability 2024, 16(9), 3646; https://doi.org/10.3390/su16093646 - 26 Apr 2024
Viewed by 1638
Abstract
Landslide dams, especially stable landslide dams, have been recognised as important contributors to regional geomorphological evolution. The eastern edge of the Tibetan Plateau provides good conditions for the formation of stable landslide dams. To identify stable landslide dams on the eastern margin of [...] Read more.
Landslide dams, especially stable landslide dams, have been recognised as important contributors to regional geomorphological evolution. The eastern edge of the Tibetan Plateau provides good conditions for the formation of stable landslide dams. To identify stable landslide dams on the eastern margin of the Tibetan Plateau, the Google Earth Engine (GEE) was first used to map water surfaces in the study area. Then, stable landslide dams were identified using high-precision remote sensing images provided by Google Earth. A field investigation and a sampling of typical stable landslide dams were also adopted to characterise the landslide dams. The results show that 101 stable landslide dams are present in the study area, covering an area of 27.75 × 104 km2. There are four types of stable landslide dams, as follows: (1) landslides, (2) rock avalanches, (3) moraines, and (4) debris flows. The morphological parameters of a dam, which include dam height, dam width, dam volume, and catchment area, can be fitted with different relationship curves, with respect to the number of landslide dams. The source areas of landslide dams are generally located in the upper-middle and upper sections of adjacent mountains. The stability of a landslide dam is mainly controlled by the structure of the dam and the relationship between the dam volume and catchment area. Structurally, large rocks with large particle sizes are difficult to activate using river water and the large gaps between the rocks provide sufficient channels for the flow of river water. In regard to the relationship between the dam volume and catchment area, a river with a small catchment area in the study area is commonly blocked by a large dam volume. This study provides a unique opportunity to study the spatial distribution and clarify the factors influencing the stability of stable landslide dams. Full article
Show Figures

Figure 1

17 pages, 9692 KiB  
Article
The Impacts of River Channel Blockages Caused by Sliding Embankment Collapses during Earthquakes
by Norio Harada, Yoshifumi Satofuka and Takahisa Mizuyama
Water 2024, 16(6), 822; https://doi.org/10.3390/w16060822 - 12 Mar 2024
Cited by 2 | Viewed by 2280
Abstract
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially [...] Read more.
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially impacted by earthen embankment landslides during seismic events. This study evaluates the methods used to assess the potential damage caused by such landslides and previous research on the harm caused by embankment failures during earthquakes. We derived predictive equations based on statistical analyses of historical dam landslides that triggered river channel blockages when residential earth embankments failed in the Nigawa Yurino area. The equations describe the morphologies of landslide dams in river channels. The results indicated that the predictive equations were reasonably accurate. We built and validated a two-dimensional model of landslide dam overtopping and breaching using experimental data on a gently sloping dam. We derived the outflow volumes associated with residential earth embankment failures when full reservoirs breached in the Nigawa Yurino area. Our findings suggest that the peak outflow volumes after such embankments breach are generally lower than those associated with dam landslides or deep-seated dam failures, but higher than those of glacial lake outburst floods. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 10206 KiB  
Article
Study of a Tailings Dam Failure Pattern and Post-Failure Effects under Flooding Conditions
by Zhong Gao, Jinpeng Liu, Wen He, Bokai Lu, Manman Wang and Zikai Tang
Water 2024, 16(1), 68; https://doi.org/10.3390/w16010068 - 23 Dec 2023
Cited by 2 | Viewed by 3190
Abstract
Tailings dams are structures that store both tailings and water, so almost all tailings dam accidents are water related. This paper investigates a tailings dam’s failure pattern and damage development under flood conditions by conducting a 1:100 large-scale tailings dam failure model test. [...] Read more.
Tailings dams are structures that store both tailings and water, so almost all tailings dam accidents are water related. This paper investigates a tailings dam’s failure pattern and damage development under flood conditions by conducting a 1:100 large-scale tailings dam failure model test. It also simulates the tailings dam breach discharge process based on the breach mode using FLOW-3D software, and the extent of the impact of the dam failure debris flow downstream was derived. Dam failure tests show that the form of dam failure under flood conditions is seepage failure. The damage manifests itself in the form of flowing soil, which is broadly divided into two processes: the seepage stabilization phase and the flowing soil development damage phase. The dam failure test shows that the rate of rise in the height of the dam saturation line is faster and then slower. The order of the saturation line at the dam face is second-level sub-dam, third-level sub-dam, first-level sub-dam, and fourth-level sub-dam. The final failure of the tailings dam is the production of a breach at the top of the dam due to the development of the dam’s fluid damage zone to the dam top. The simulated dam breach release results show that by the time the dam breach fluid is released at 300 s, the area of over mud has reached 95,250 square meters. Local farmland and roads were submerged, and other facilities and buildings would be damaged to varying degrees. Based on the data from these studies, targeted measures for rectifying hidden dangers and preventing dam breaks from both technical and management aspects can be proposed for tailings dams. Full article
(This article belongs to the Special Issue Advanced Research on Hydraulic Engineering and Hydrological Modelling)
Show Figures

Figure 1

15 pages, 7242 KiB  
Article
Identification Method of River Blocking by Debris Flow in the Middle Reaches of the Dadu River, Southwest of China
by Zhi Song, Gang Fan, Yanni Chen and Darui Liu
Water 2023, 15(24), 4301; https://doi.org/10.3390/w15244301 - 18 Dec 2023
Cited by 2 | Viewed by 1585
Abstract
Debris flow is a typical natural disaster in the middle reaches of the Dadu River, which seriously threatens the safety of life and property of local residents. However, there is currently a lack of a comprehensive analysis methods applicable to the blockage of [...] Read more.
Debris flow is a typical natural disaster in the middle reaches of the Dadu River, which seriously threatens the safety of life and property of local residents. However, there is currently a lack of a comprehensive analysis methods applicable to the blockage of river channels by debris flow in the Dadu River basin, limiting disaster prevention and mitigation in this area. Based on previous large-scale model tests carried out in the middle reaches of the Dadu River, the debris flows are divided into dam-type debris flows and submerged debris flows. The calculation formulas for the maximum travel distance of the two kinds of debris flows entering the river are obtained via theoretical derivation. The formulas for calculating the length and volume of debris flow accumulation are derived, and the relationship between the debris flow loss coefficient and river blocking degree in the middle part of the Dadu River is analyzed. An identification method of river blocking by debris flow is put forward in this study. By calculating the maximum blocking degree, S (the ratio of the maximum driving distance of the debris flow to the width of the river), and the volume of the source materials needed to form a debris flow dam under the conditions that the debris flow does not reach the opposite bank (V1), reaches the opposite bank but does not block the river (V2), and reaches the opposite bank (V3), the form of debris flow blocking the river is distinguished. When S = 1, V > V3, complete blockage occurs; when S = 1, V > V2, the river is mostly blocked; when S < 1, V > V1, the river is half-blocked. This study established an identification method of river blocking by debris flow, providing a basis for early warning for river blocking and disaster prevention in the middle reaches of the Dadu River. Full article
(This article belongs to the Special Issue Risk Analysis in Landslides and Groundwater-Related Hazards)
Show Figures

Figure 1

Back to TopTop