Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,441)

Search Parameters:
Keywords = days to maturity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2582 KB  
Article
Personalized Dermato-Cosmetology: A Case Study on Biometric Skin Improvements After 28 Days of Bespoke Cosmetic
by Magdalena Bîrsan, Ana-Caterina Cristofor, Alin-Viorel Focșa, Cătălin-Dragoș Ghica, Șadiye-Ioana Scripcariu, Carmen-Valerica Ripa, Robert-Alexandru Vlad, Paula Antonoaea, Cezara Pintea, Andrada Pintea, Nicoleta Todoran, Emőke-Margit Rédai, Amalia-Adina Cojocariu and Adriana Ciurba
Cosmetics 2026, 13(1), 27; https://doi.org/10.3390/cosmetics13010027 - 26 Jan 2026
Abstract
Objective: This study aimed to design and clinically evaluate a bespoke cosmetic formulation tailored to individual skin characteristics and user preferences, focusing on hydration and barrier recovery in mature, therapy-affected skin. In addition, this study aimed to explore the feasibility and short-term outcomes [...] Read more.
Objective: This study aimed to design and clinically evaluate a bespoke cosmetic formulation tailored to individual skin characteristics and user preferences, focusing on hydration and barrier recovery in mature, therapy-affected skin. In addition, this study aimed to explore the feasibility and short-term outcomes of a structured, biometry-driven personalization approach applied within a single-subject case study design. Materials and Methods: A personalized dermato-cosmetic formulation incorporating melatonin, astaxanthin, low-molecular-weight hyaluronic acid, allantoin, yarrow oil (Achillea millefolium), lecithin, cholesterol, and arginine was developed based on objective biophysical assessment of the skin. A clinical case evaluation was conducted in a male subject over 55 years of age (Fitzpatrick phototype III) presenting persistent xerosis and dehydration following completed oncologic therapy. Quantitative skin biometry was performed at baseline and after 28 days of daily application, assessing hydration at six anatomical sites, sebum secretion, pigmentation and erythema indices, elasticity, and stratum corneum turnover and scaling. Results: After 28 days, sebum secretion increased by more than 100%, indicating partial restoration of the lipid barrier. Hyperpigmented areas decreased from 7.2% to 2.3%, while skin elasticity improved from 25% to 44%. A reduction of 8% in the erythema index suggested decreased vascular reactivity. Hydration levels improved consistently across all evaluated sites, and epidermal renewal was enhanced, as evidenced by reduced scaling and smoother skin surface. The melanin index remained stable throughout the study period. Conclusions: This pilot evaluation shows that bespoke cosmetic formulations, customized to individual skin biometry and preferences, can yield measurable improvements in hydration, barrier repair, elasticity, pigmentation uniformity, and epidermal renewal within 28 days, even in skin compromised by previous oncologic therapy. Given the single-subject nature of this pilot evaluation, these findings cannot be generalized to broader populations but rather highlight the importance of personalization and objective skin assessment in guiding individualized dermato-cosmetic formulation strategies. Personalized dermato-cosmetology using objective biophysical assessment may be a promising future strategy for effective, consumer-centered skincare. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

25 pages, 9799 KB  
Article
Design and Validation of a Multi-Modal Bioreactor System: Assessing the Effects of Perfusion and Cyclic Tensile Stimulation on Mechanical and Biological Properties of 3D-Printed Missing-Rib Auxetic Scaffolds
by Tavila Sharmin, Sakhawat Hossan and Rohan A. Shirwaiker
Bioengineering 2026, 13(2), 140; https://doi.org/10.3390/bioengineering13020140 - 26 Jan 2026
Abstract
Bioreactors used for the maturation of cell-seeded tissue-engineered scaffolds should essentially mimic the dynamic in vivo environments experienced by the native tissues they intend to substitute. In addition to perfusion of growth medium to facilitate continuous mass transfer, application of appropriate mechanical stimulation [...] Read more.
Bioreactors used for the maturation of cell-seeded tissue-engineered scaffolds should essentially mimic the dynamic in vivo environments experienced by the native tissues they intend to substitute. In addition to perfusion of growth medium to facilitate continuous mass transfer, application of appropriate mechanical stimulation is important to enhance cellular responses in scaffolds for tissues such as tendons, skin, and cardiac muscle that experience dynamic loading. This study focuses on the development of a multi-modal custom bioreactor capable of applying cyclic tensile stimulation and perfusion within physiologically relevant ranges while minimizing shear stress detrimental to cells seeded on scaffolds. To validate the bioreactor design and operation, we assessed the effects of tensile stimulation (0.1 Hz, 2000 cycles/day) and perfusion (media flow rate = 0.15 mL/min) over 21 days on the biofunctional performance of 3D-bioplotted polycaprolactone (PCL) auxetic scaffolds with a representative design (missing-rib pattern) characterized by negative Poisson’s ratio similar to the aforementioned soft tissues. The scaffold had a tensile yield strain of 9.14%, yield strength of 0.25 MPa, elastic modulus of 2.85 MPa, and ultimate tensile strength (UTS) of 1.32 MPa. The application of perfusion and tensile stimulation (0–5% cyclic strain) for 21 days did not adversely affect the yield strength and elastic modulus of the scaffold but affected its UTS (22.5% decrease) compared to the control cultured without perfusion or stimulation. Notably, it resulted in significantly improved fibroblast cellular responses (DNA = 29 µg/g sample and collagen = 371.78 µg/g sample) compared to the control (7.52 µg/g sample and 163.51 µg/g sample, respectively). These results validate the bioreactor system operation and the ability of multi-modal stimulation to control biofunctional responses of auxetic scaffolds, which will serve as the basis for future studies that will optimize auxetic scaffold design and dynamic culture parameters for NPR tissue-specific applications. Full article
Show Figures

Figure 1

22 pages, 3711 KB  
Article
Optimized Nitrogen Application Under Mulching Enhances Maize Yield and Water Productivity by Regulating Crop Growth and Water Use Dynamics
by Haoran Sun, Xufeng Wang, Shengdan Duan, Mengni Cui, Guangyao Xing, Shanchao Yue, Miaoping Xu and Yufang Shen
Agronomy 2026, 16(3), 290; https://doi.org/10.3390/agronomy16030290 - 23 Jan 2026
Viewed by 88
Abstract
Surface mulching and nitrogen (N) application are widely used to enhance crop yield and water productivity (WP). However, their combined effects remain unclear. Here, a three-year field experiment was conducted to comprehensively assess the effects of surface mulching (no mulching, B; straw mulching, [...] Read more.
Surface mulching and nitrogen (N) application are widely used to enhance crop yield and water productivity (WP). However, their combined effects remain unclear. Here, a three-year field experiment was conducted to comprehensively assess the effects of surface mulching (no mulching, B; straw mulching, S; and plastic film mulching, F) and N fertilization (no N application, N0; split application of urea, N1; 1:2 mixture of controlled-release urea and urea, N2) on maize growth, yield, and WP on the Loess Plateau. Application of nitrogen (N) significantly increased evapotranspiration (ET), grain yield, and WP by 4.58%, 176% (from 5215.43 kg ha−1 in N0 to 14,548.21 kg ha−1 in N2), and 166% (from 11.36 kg ha−1 mm−1 in N0 to 30.63 kg ha−1 mm−1 in N2), respectively. Compared with B and S, F increased ET during the pre-silking stage by 16.75% and 23.99%, respectively, and shortened the vegetative period of maize by 3–9 days but extended the duration from the milky stage (R3) to physiological maturity (R6) in the reproductive period by 5–13 days. F significantly increased yield and WP by 9.18% and 8.26% compared with S. Under F combined with N application, deep soil water (100–200 cm) consumption during R1–R3 increased by 15.75 mm and 13.15 mm compared with B and S, respectively. The combination of F and N2 achieved the highest yield (15,648.28 kg ha−1) and WP (32.44 kg ha−1 mm−1) without causing detectable depletion of soil water within the 0–200 cm profile during the study period, providing an effective strategy for enhancing crop yield and improving water–fertilizer use efficiency in semi-arid regions. Full article
Show Figures

Figure 1

20 pages, 1626 KB  
Article
Effect of Harvest Date on Fruit Quality and Post-Harvest Storability of Three Different Peach Cultivars
by Belén Velardo-Micharet, Marisol Duarte-Maya, Ana Cristina Agulheiro-Santos, María Concepción Ayuso-Yuste and María Josefa Bernalte-García
Foods 2026, 15(3), 421; https://doi.org/10.3390/foods15030421 - 23 Jan 2026
Viewed by 144
Abstract
Peach consumers demand good quality fruit, but premature harvests result in fruit that does not ripen properly and does not reach the required organoleptic quality, so consumers stop buying this product that does not meet their expectations. In our region, peaches are exported [...] Read more.
Peach consumers demand good quality fruit, but premature harvests result in fruit that does not ripen properly and does not reach the required organoleptic quality, so consumers stop buying this product that does not meet their expectations. In our region, peaches are exported long distances, and it is required that when they reach the destination market their quality is adequate. Therefore, the objective of this study was to determine the storage capacity of commercial and delayed harvest in three peach cultivars. ‘Rich Lady’, ‘Summer Lady’, and ‘Merryl O’Henry’ were harvested at commercial maturity (H1) and, a few days later (H2), packed in passive modified atmosphere (PMA), and stored under refrigeration for up to 40 days to simulate marketing to distant markets. During storage and after three days of shelf-life, the physico-chemical characteristics, damage, and sensory quality of the fruit were analyzed. In general, after cold storage, peaches improve their sensory characteristics after three days at room temperature. PMA with refrigeration was suitable for exporting ‘Rich Lady’ peaches overseas for H1. The late harvest, H2, is recommended for ‘Summer Lady’, as it improves sensory quality without losing storability. ‘Summer Lady’ was the best-rated cultivar by the tasters, and ‘Merryl O’Henry’ the worst, due to its lack of ripening and high incidence of chilling injury. Full article
Show Figures

Graphical abstract

16 pages, 2972 KB  
Article
Diversity of Phenological Characteristics and Fruit Quality of the Chinese Honeyberry (Lonicera caerulea L.) Collection
by Hao Yang, Xiaohui Zhang, Caihong Yu, Ziqing Wang, Ruijuan Hao, Chunfang Wang, Bingcui Zhang, Jiayi Shi, Jiacheng Li, Dong Qin, Huixin Gang, Junwei Huo, Chenqiao Zhu and Min Yu
Agriculture 2026, 16(3), 291; https://doi.org/10.3390/agriculture16030291 - 23 Jan 2026
Viewed by 189
Abstract
Honeyberry (Lonicera caerulea L.) is a recently domesticated fruit crop, and there has been rather limited research on its phenological characteristics. In this study, we comprehensively evaluated the phenological and fruit quality traits of a honeyberry germplasm collection comprising 45 accessions. The [...] Read more.
Honeyberry (Lonicera caerulea L.) is a recently domesticated fruit crop, and there has been rather limited research on its phenological characteristics. In this study, we comprehensively evaluated the phenological and fruit quality traits of a honeyberry germplasm collection comprising 45 accessions. The annual growth period of the 45 accessions ranged from 153 (part of Russian accessions) to 173 days (part of Japanese accessions) in Harbin, China. The accessions of Japanese origin (‘Ri–5’, ‘Ri–68’, ‘RiM–3’, ‘Riwan’, ‘Riwandianlan’, and ‘Riwan–13’) consistently exhibited delayed flowering and ripening, as well as higher single fruit weights and fruit firmness. In contrast, the accessions of Russian and Chinese origins displayed relatively early to mid-season phenology, along with higher levels of vitamin C, anthocyanins, and soluble solids. Furthermore, there were great coefficients of variation (CVs) in total anthocyanins (CV = 35%), flavonoids (CV = 30%), phenolics (CV = 21%), and titratable acidity (CV = 19%) among the 45 accessions. Principal component analysis and hierarchical clustering revealed distinct clustering patterns among Japanese accessions. Among these accessions, ‘RiM–3’ exhibited both a relatively large fruit size and high firmness, implying its potential to overcome the inevitable trade-off between fruit size and firmness typically observed in Chinese and Russian honeyberry accessions. Our investigation and findings provide valuable information for honeyberry breeding aimed at optimizing the maturity period and enhancing fruit quality, as well as a reference for the current cultivation and management methods. Full article
(This article belongs to the Special Issue Climate Change and Plant Phenology: Challenges for Fruit Production)
Show Figures

Figure 1

18 pages, 6398 KB  
Article
Exploration of Novel Markers in Tan Sheep Spermatogenesis
by Yuan Ma, Haoyan Jin, Nana Wang, Yaru Xie, Lingkai Zhang and Bei Cai
Animals 2026, 16(2), 350; https://doi.org/10.3390/ani16020350 - 22 Jan 2026
Viewed by 43
Abstract
In livestock farming, the reproductive function and breeding performance of Tan sheep are crucial for enhancing farming efficiency. Despite advances in research on sheep germ cells, studies on the identification of markers for spermatogonia, spermatocytes, and spermatozoa in Tan sheep remain limited and [...] Read more.
In livestock farming, the reproductive function and breeding performance of Tan sheep are crucial for enhancing farming efficiency. Despite advances in research on sheep germ cells, studies on the identification of markers for spermatogonia, spermatocytes, and spermatozoa in Tan sheep remain limited and inadequate. In this study, Tan sheep were used as research subjects to investigate the morphological characteristics of testicular tissues, the developmental status of germ cells, and potential novel markers for spermatogonia, spermatocytes, and spermatozoa across different ages (0 days, 60 days, 180 days, and 365 days). Homology of the SMC3, G3BP1, and AKAP4 genes was analyzed via NCBI alignment. The localization and expression characteristics of these genes in the testis tissues of Tan sheep were investigated using HE staining, qPCR, and immunofluorescence double staining. The results showed that from 0 to 365 days of age, with increasing age, spermatogonia, spermatocytes, and spermatids exhibited an orderly distribution, and mature spermatozoa appeared in the tubular lumen, marking the initial establishment of the spermatogenic process. The homology of SMC3, G3BP1, and AKAP4 was 90%, 85%, and 81%. The mRNA levels of SMC3 and G3BP1 in the testes of 60-day-old Tan sheep were significantly increased, while AKAP4 expression showed a gradual increase with advancing age. SMC3 was co-localized with PLZF in undifferentiated spermatogonia, G3BP1 was co-expressed with SYCP2 in spermatocytes, and AKAP4 was co-expressed with PNA in spermatozoa. The findings of this study provide further supportive evidence for novel markers of spermatogonia, spermatocytes, and spermatozoa in Tan sheep. Full article
Show Figures

Figure 1

8 pages, 2719 KB  
Proceeding Paper
Predictive Potential of Three Red-Edge Vegetation Index from Sentinel-2 Images and Machine Learning for Maize Yield Assessment
by Dorijan Radočaj, Ivan Plaščak, Željko Barač and Mladen Jurišić
Eng. Proc. 2026, 125(1), 1; https://doi.org/10.3390/engproc2026125001 - 20 Jan 2026
Viewed by 50
Abstract
This study aimed to evaluate the prediction potential of phenology metrics from two vegetation indices using Sentinel-2 images, the Normalized Difference Vegetation Index (NDVI) and Three Red-Edge Vegetation Index (NDVI3RE), for maize yield prediction. Ground truth maize yield samples were collected near Koška, [...] Read more.
This study aimed to evaluate the prediction potential of phenology metrics from two vegetation indices using Sentinel-2 images, the Normalized Difference Vegetation Index (NDVI) and Three Red-Edge Vegetation Index (NDVI3RE), for maize yield prediction. Ground truth maize yield samples were collected near Koška, Croatia, on 13 October 2023, using a Quantimeter yield mapping sensor on Claas Lexion 6900 combine harvester. The phenology analysis was performed based on a time-series of all available Sentinel-2 images during 2023, using the Beck logistic model for determining the start of season (SOS), peak of season (POS), end of season (EOS), greenup, maturity, senescence, and dormancy. A total of fourteen covariates, including vegetation indices at phenology metrics and their occurrence dates, were used for machine learning prediction of maize yield using Random Forest (RF) and Support Vector Machine (SVM) regression. The results suggested that the SVM method based on NDVI phenology metrics produced the highest accuracy for maize yield prediction (R2 = 0.935, RMSE = 0.558 t ha−1, MAE = 0.399 t ha−1). Vegetation index values at greenup, dormancy and POS were the most important covariates for the prediction, while day of year (DOY) in which they occurred had only a minor effect on the prediction accuracy. This suggests that, despite its limitations regarding the saturation effect, NDVI outperformed NDVI3RE for maize yield prediction when combined with phenology metrics. Full article
Show Figures

Figure 1

20 pages, 9095 KB  
Article
Radial Growth Patterns Across the Growing Season in Response to Microclimate in Silvopastoral Systems of Nothofagus antarctica Forests
by Julián Rodríguez-Souilla, Juan Manuel Cellini, María Vanessa Lencinas, Lucía Bottan, Jimena Elizabeth Chaves, Fidel Alejandro Roig and Guillermo Martínez Pastur
Forests 2026, 17(1), 129; https://doi.org/10.3390/f17010129 - 17 Jan 2026
Viewed by 203
Abstract
Silvopastoral systems in Patagonia (Argentina) aim to synergize forest and grassland productivity through thinning interventions in native forests of Antarctic beech (Nothofagus antarctica (G.Forst.) Oerst.), locally known as ñire, modifying ecosystem dynamics. This study aimed to determine how thinning strategies modify microclimatic [...] Read more.
Silvopastoral systems in Patagonia (Argentina) aim to synergize forest and grassland productivity through thinning interventions in native forests of Antarctic beech (Nothofagus antarctica (G.Forst.) Oerst.), locally known as ñire, modifying ecosystem dynamics. This study aimed to determine how thinning strategies modify microclimatic conditions (air and soil temperatures, precipitation, soil water content) and modulate the intra-annual radial growth patterns in N. antarctica trees within subpolar deciduous forests of Tierra del Fuego, Argentina. We established three treatments: unmanaged mature forest (UF), thinning under crown cover influence (UC), and thinning outside crown cover influence (OC). Microclimate and radial growth were continuously monitored using high-precision dendrometers and associated data loggers during the 2021–2022 and 2023–2024 growing seasons. Data were analyzed using Generalized Linear Mixed Models and Principal Component Analysis. OC treatment consistently exhibited the highest total annual radial growth, averaging 1.44 mm yr−1, which was substantially greater than the observed in both the UC (0.56 mm yr−1) and UF (0.83 mm yr−1) across the two seasons. An advanced growth dynamic, with cambial activity starting approximately five days earlier than in UF and UC, was detected. Air temperature was a primary positive driver of daily growth (GLMM Estimates > 0.029, p < 0.001 for all treatments), while soil water content (SWC) was significantly higher in OC (mean 25.4%) compared to UF (22.3%) and UC (15.9%). These findings showed that OC, characterized by higher soil moisture, likely facilitated the trees’ ability to capitalize on warm temperature days. This accelerates and extends the period of radial growth, offering a direct strategy to enhance productivity in these silvopastoral systems, essential for long-term forest sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 18817 KB  
Article
Integration of X-Ray CT, Sensor Fusion, and Machine Learning for Advanced Modeling of Preharvest Apple Growth Dynamics
by Weiqun Wang, Dario Mengoli, Shangpeng Sun and Luigi Manfrini
Sensors 2026, 26(2), 623; https://doi.org/10.3390/s26020623 - 16 Jan 2026
Viewed by 202
Abstract
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in [...] Read more.
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in relation to fruit growth, thereby advancing beyond traditional methods that are primarily focused on postharvest analysis. By extracting detailed three-dimensional structural parameters, we reveal tissue porosity and heterogeneity influenced by crop load, maturity timing and canopy position, offering insights into internal quality attributes. Employing correlation analysis, Principal Component Analysis, Canonical Correlation Analysis, and Structural Equation Modeling, we identify temperature as the primary environmental driver, particularly during early developmental stages (45 Days After Full Bloom, DAFB), and uncover nonlinear, hierarchical effects of preharvest environmental factors such as vapor pressure deficit, relative humidity, and light on quality traits. Machine learning models (Multiple Linear Regression, Random Forest, XGBoost) achieve high predictive accuracy (R2 > 0.99 for Multiple Linear Regression), with temperature as the key predictor. These baseline results represent findings from a single growing season and require validation across multiple seasons and cultivars before operational application. Temporal analysis highlights the importance of early-stage environmental conditions. Integrating structural and environmental data through innovative visualization tools, such as anatomy-based radar charts, facilitates comprehensive interpretation of complex interactions. This multidisciplinary framework enhances predictive precision and provides a baseline methodology to support precision orchard management under typical agricultural variability. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025&2026)
Show Figures

Figure 1

22 pages, 956 KB  
Article
Growth of Listeria monocytogenes in Goat’s Pasteurized Milk Cheese During Maturation: Its Prediction from a Milk Model Medium
by Yara Loforte, Mariem Zanzan, André Martinho de Almeida, Vasco Cadavez and Ursula Gonzales-Barron
Appl. Microbiol. 2026, 6(1), 16; https://doi.org/10.3390/applmicrobiol6010016 - 16 Jan 2026
Viewed by 234
Abstract
Previous research showed that a strain of Leuconostoc mesenteroides, isolated from goat’s raw milk cheese, was effective in slowing down the growth and reducing the maximum concentration of L. monocytogenes when evaluated in a milk model; furthermore, the extent of inhibition was [...] Read more.
Previous research showed that a strain of Leuconostoc mesenteroides, isolated from goat’s raw milk cheese, was effective in slowing down the growth and reducing the maximum concentration of L. monocytogenes when evaluated in a milk model; furthermore, the extent of inhibition was dependent on the milk’s initial pH. The objectives of this study were as follows: (1) to determine whether the growth of L. monocytogenes in goat’s pasteurized milk cheese during maturation could be approximated from growth data obtained in the milk model medium, either in monoculture or in coculture with L. mesenteroides, and if so, (2) to model a milk-to-cheese conversion factor (Cf) for L. monocytogenes growth rate. Challenge tests were conducted by inoculating L. monocytogenes in monoculture and in coculture with L. mesenteroides in goat’s pasteurized milk adjusted at initial pH levels of 5.5, 6.0, and 6.5. The process of cheesemaking continued, and cheeses were ripened at 12 °C for 12 days. Each experimental growth curve was adjusted to a pH-driven dynamic model where the microbial maximum growth rate is a function of pH. As observed in the milk model medium, in coculture with L. mesenteroides, the optimum growth rate (μopt) of L. monocytogenes in maturing cheese was affected by the initial pH of milk: the lowest rate of 0.863 ± 0.042 day−1 was obtained at the initial pH 5.5, in comparison to 1.239 ± 0.208 and 1.038 ± 0.308 day−1 at pH 6.0 and 6.5, respectively. Regardless of the milk’s initial pH, L. mesenteroides did not reduce the maximum load of L. monocytogenes in maturing cheeses, as it did in the milk medium. On the contrary, at the milk’s initial pH of 5.5, 6.0, and 6.5, L. mesenteroides was able to decrease, on average, 2.2-fold, 1.5-fold, and 1.9-fold the μopt of L. monocytogenes in both milk medium and cheese, without significant differences between matrices. Following such validation in goat’s cheese, the square root of milk-to-cheese Cf for L. monocytogenes was estimated as 0.751 (SE = 0.0108), and the type of culture (monoculture and coculture) was not found to affect Cf (p = 0.320). In conclusion, this work validated the pre-acidification of milk as an efficient strategy that, when combined with the use of a protective culture, can synergically enhance the control of L. monocytogenes in cheese. Full article
Show Figures

Figure 1

19 pages, 3316 KB  
Article
Integrated Profiling of DEHP-Induced Hippocampal Neurotoxicity in Adult Female Rats Based on Transcriptomic and Neurobiological Analyses
by Jing Bai, Jiayu Li, Lei Tang, Wuxiang Sun, Fujia Gao, Xin Zhang, Rui Bian and Ruimin Wang
Toxics 2026, 14(1), 79; https://doi.org/10.3390/toxics14010079 - 14 Jan 2026
Viewed by 252
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a widely used plasticizer with recognized sex-dependent neurotoxicity. However, research on adult neurotoxicity is scarce, especially in females. In this study, adult female rats were exposed to a high-dose experimental model of DEHP (500 mg/kg/day) for 28 days to [...] Read more.
Di-2-ethylhexyl phthalate (DEHP) is a widely used plasticizer with recognized sex-dependent neurotoxicity. However, research on adult neurotoxicity is scarce, especially in females. In this study, adult female rats were exposed to a high-dose experimental model of DEHP (500 mg/kg/day) for 28 days to systematically evaluate hippocampal neurotoxicity. We found that DEHP exposure significantly impaired spatial learning and memory. Transcriptomics revealed enrichment in oxidative stress, complement activation, and neurodegenerative pathways. Specifically, cellular and molecular analyses showed that DEHP induced mitochondrial structural defects and elevated markers of oxidative damage (8-OHdG and 3-NT). While the upregulation of mitochondrial and antioxidant proteins (COX4I1, SOD2, and NQO1) indicated an attempted compensatory response, it remained inadequate to restore redox homeostasis. Under this neurotoxic microenvironment, DEHP triggered early neurogenesis, marked by the upregulation of SOX2 and DCX; however, NeuN levels remained unchanged, suggesting that this compensatory effort failed to expand the mature neuronal population. Ultimately, these pathological processes culminated in neurodegeneration, as evidenced by reduced synaptic proteins, suppressed Olig1/2 expression, and increased tau phosphorylation. Collectively, this study provides a comprehensive neurotoxic profile of DEHP in adult female rats, filling a research gap in this field. Full article
(This article belongs to the Special Issue Neurotoxicity from Exposure to Environmental Pollutants)
Show Figures

Figure 1

16 pages, 3899 KB  
Article
The Role of Calcium-Permeable Kainate and AMPA Receptors in the Leading Reaction of GABAergic Neurons to Excitation
by Valery P. Zinchenko, Artem M. Kosenkov, Alex I. Sergeev, Fedor V. Tyurin, Egor A. Turovsky, Bakytzhan K. Kairat, Arailym E. Malibayeva, Gulmira A. Tussupbekova and Sultan T. Tuleukhanov
Curr. Issues Mol. Biol. 2026, 48(1), 82; https://doi.org/10.3390/cimb48010082 - 14 Jan 2026
Viewed by 139
Abstract
Excitable neurons are intrinsically capable of firing action potentials (AP), yet a state of hyperexcitability is prevented in the central nervous system by powerful GABAergic inhibition. For this inhibition to be effective, it must occur before excitatory signals can initiate runaway activity, implying [...] Read more.
Excitable neurons are intrinsically capable of firing action potentials (AP), yet a state of hyperexcitability is prevented in the central nervous system by powerful GABAergic inhibition. For this inhibition to be effective, it must occur before excitatory signals can initiate runaway activity, implying the existence of a proactive control system. To test for such proactive inhibition, we used Ca2+ imaging and patch-clamp recording to measure how hippocampal neurons respond to depolarization and glutamatergic agonists. In mature hippocampal cultures (14 days in vitro (DIV)) and acute brain slices from two-month-old rats, neurons exhibited non-simultaneous responses to various excitatory stimuli, including KCl, NH4Cl, forskolin, domoic acid, and glutamate. We observed that the Ca2+ rise occurred significantly earlier in GABAergic neurons than in glutamatergic neurons. This delay in glutamatergic neurons was abolished by GABA(A) receptor inhibitors, suggesting a mechanism of preliminary γ-aminobutyric acid (GABA) release. We further found that these early-responding GABAergic neurons express calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs). Application of domoic acid induced an immediate Ca2+ increase in neurons expressing these receptors, but a delayed response in others. Crucially, when domoic acid was applied in the presence of the AMPA receptor inhibitors NBQX or GYKI-52466, the response delay in glutamatergic neurons was significantly prolonged. This confirms that CP-KARs on GABAergic neurons are responsible for the delayed excitation of glutamatergic neurons. In hippocampal slices from two-month-old rats, depolarization with 50 mM KCl revealed two distinct neuronal populations based on their calcium dynamics: a majority group (presumably glutamatergic) exhibited fluctuating Ca2+ signals, while a minority (presumably GABAergic) showed a steady, advancing increase in [Ca2+]i. This distinction was reinforced by the application of domoic acid. The “advancing-response” neurons reacted to domoic acid with a similar prompt increase, whereas the “fluctuating-response” neurons displayed an even more delayed and fluctuating reaction (80 s delay). Therefore, we identify a subgroup of hippocampal neurons—in both slices and cultures—that respond to depolarization and domoic acid with an early [Ca2+]i signal. Consistent with our data from cultures, we conclude these early-responding neurons are GABAergic. Their early GABA release directly explains the delayed Ca2+ response observed in glutamatergic neurons. We propose that this proactive mechanism, mediated by CP-KARs on GABAergic neurons, is a primary means of protecting the network from hyperexcitation. Furthermore, the activity of these CP-KAR-expressing neurons is itself regulated by GABAergic neurons containing CP-AMPARs. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 1457 KB  
Article
Plyometric Performance in U13 Basketball: Influence of Modified Competitions and Maturational Status with GPS Tracking
by Ricardo André Birrento Aguiar, Francisco Javier García-Angulo, Riccardo Izzo and Enrique Ortega-Toro
Sensors 2026, 26(2), 552; https://doi.org/10.3390/s26020552 - 14 Jan 2026
Viewed by 141
Abstract
The aim of this study was to analyze the effects of different competition formats on the plyometric performance of under-13 basketball players, considering the influence of maturational age and monitored through GPS devices. Thirty-seven under-13 male basketball players (age = 12.91 ± 0.57 [...] Read more.
The aim of this study was to analyze the effects of different competition formats on the plyometric performance of under-13 basketball players, considering the influence of maturational age and monitored through GPS devices. Thirty-seven under-13 male basketball players (age = 12.91 ± 0.57 years) from four southeast Spanish teams participated in two different tournaments. On the first day, the tournament was played according to the official Spanish Basketball Federation (FEB) rules for under-14 players. On the second day, the competition was held with modified rules (Modified Tournament), in which the basket height was lowered to 2.90 m and the three-point line was replaced by a rectangle located 4 m from the basket. Plyometric variables, such as number of impacts (total and in zones), number of horizontal impacts (total and in zones), number of steps, number of jumps (total and in zones) and g-force of jumps during takeoff and landing, were assessed using GPS monitoring. In addition, the moderating effect of maturational age on the intervention in each of the variables under study will be evaluated. The results showed that the modified tournament (MT) showed significant differences compared to the standard format (FEB) in playing time, steps, landings 5–8 G, and takeoffs >8 G during positional attacks, as well as in horizontal impact variables during counterattacks and effective playing time. Bayesian analysis provided moderate-to-strong evidence for several of these variables, and extreme evidence for playing time and impacts during effective time. Moreover, maturational age (%PAH) consistently moderated the intervention effects, particularly in impact loads and locomotor demands. These findings can provide useful insights for coaches and practitioners in youth basketball. Adjusting competition rules and considering maturational status may optimize player development by creating contexts that enhance plyometric performance while adapting to the physical and biological characteristics of young athletes. Full article
(This article belongs to the Special Issue Movement Biomechanics Applications of Wearable Inertial Sensors)
Show Figures

Figure 1

20 pages, 2099 KB  
Article
Film Mulching Mitigates Yield Loss by Enhancing Growth and Nitrogen Uptake in Late-Sown Winter Wheat on the Guanzhong Plain
by Xiaohua Yang, Maoxue Zhang, Tiantian Huang, Pengfei Dang, Miaomiao Zhang, Xiaoqing Han, Ruiqi Sun, Matthew Reynolds, Fangqi Song, Charles O. Joseph, Kadambot H. M. Siddique, Tayyub Hussain and Xiaoliang Qin
Agriculture 2026, 16(2), 198; https://doi.org/10.3390/agriculture16020198 - 13 Jan 2026
Viewed by 174
Abstract
Delayed sowing has become a key constraint on winter wheat production in the Guanzhong Plain, Shaanxi Province, China, due to the widespread adoption of late-maturing maize and the delayed harvest of preceding crops. A two-year field experiment was conducted on the Guanzhong Plain [...] Read more.
Delayed sowing has become a key constraint on winter wheat production in the Guanzhong Plain, Shaanxi Province, China, due to the widespread adoption of late-maturing maize and the delayed harvest of preceding crops. A two-year field experiment was conducted on the Guanzhong Plain to elucidate the physiological mechanisms behind yield reduction under delayed sowing and to explore potential mitigation strategies. The study examined the effects of sowing time (normal, 10-day delay, and 20-day delay) and plastic film mulching on yield components, crop development, and water and nitrogen uptake and use in winter wheat. Compared to normal sowing, delayed sowing significantly reduced grain yield (7.64–17.19%), spike number (11.65–21.3%), 1000-grain weight (5.2–9.05%), growth duration (7–16 d), dry matter accumulation (21.79–58.07%), and partial factor productivity of nitrogen fertilizer (7.64–17.2%). Late sowing slowed overall growth and development, shortened the growth cycle, and suppressed root system expansion and plant height, particularly under the 20-day delay. However, plastic film mulching under delayed sowing improved seedling emergence, root growth, tiller number (8.42–51.23%), water use efficiency (10.15–18.15%), and nitrogen productivity, thereby mitigating the adverse effects of delayed sowing on resource capture. Mulching enabled wheat sown with a 10-day delay to achieve yields comparable to normal-sown crops and alleviated 9.1–10.3% of the yield loss under a 20-day delay, although it did not fully restore yields to the non-delayed level. These findings provide practical insights for managing winter wheat under delayed sowing conditions. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

20 pages, 1946 KB  
Review
A Review of the Therapeutic Efficacy and Safety of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Preclinical Models of Subacute and Chronic Myocardial Infarction
by Kristen Callender and Godfrey Smith
J. Cardiovasc. Dev. Dis. 2026, 13(1), 42; https://doi.org/10.3390/jcdd13010042 - 12 Jan 2026
Viewed by 132
Abstract
For the past decade, cell-based therapies have been the focus of research to investigate their potential to treat ischemic heart disease. The translation to human clinical studies depends on the demonstration of therapeutic efficacy and safety, particularly when transplanted in the subacute and [...] Read more.
For the past decade, cell-based therapies have been the focus of research to investigate their potential to treat ischemic heart disease. The translation to human clinical studies depends on the demonstration of therapeutic efficacy and safety, particularly when transplanted in the subacute and chronic post-MI phase. A number of studies were identified that reported the effect of hiPSC-CMs on cardiac outcomes when transplanted at least 7 days post-myocardial infarction. The mean sample size of the published studies was 30 (±17) animals with a mean follow-up duration of 51 (±37) days. hiPSC-CM transplantation enhanced systolic function through augmented myocardial contractility, decreased infarct size, attenuated ventricular remodeling, and enhanced angiogenesis in the infarct and border zones in both small and large animal models. This effect was enhanced by co-transplantation with cells of vascular or adipose origin and is associated with high expression of VEGF in most studies. Despite this effect, transplanted hiPSC-CMs were structurally immature with limited survival at the endpoint. Epicardial delivery was associated with better efficacy outcomes and lower rates of arrhythmia. No study reported teratoma formation or immune rejection. From the current literature, there appears to be no consensus on the extent to which hiPSC-CMs improved systolic function, nor the degree to which this arises directly from integration of the new myocardium or from a paracrine-mediated mechanism. The nature of this paracrine mechanism and ways to improve the maturity and survival of implanted cardiomyocytes are issues that have yet to be resolved. In summary, while therapeutic benefit from cell therapy is clear, further research is required to establish whether the key mechanisms require a cellular component. Full article
Show Figures

Graphical abstract

Back to TopTop