Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,257)

Search Parameters:
Keywords = dataset management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3031 KiB  
Article
Integrated Capuchin Search Algorithm-Optimized Multilayer Perceptron for Robust and Precise Prediction of Blast-Induced Airblast in a Blasting Mining Operation
by Kesalopa Gaopale, Takashi Sasaoka, Akihiro Hamanaka and Hideki Shimada
Geosciences 2025, 15(8), 306; https://doi.org/10.3390/geosciences15080306 - 6 Aug 2025
Abstract
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which [...] Read more.
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which is vital for energy transmission and pressure-wave attenuation. This paper presents a capuchin search algorithm-optimized multilayer perceptron (CapSA-MLP) that incorporates RMS, hole depth (HD), maximum charge per delay (MCPD), monitoring distance (D), total explosive mass (TEM), and number of holes (NH). Blast datasets from a granite quarry were utilized to train and test the model in comparison to benchmark approaches, such as particle swarm optimized artificial neural network (PSO-ANN), multivariate regression analysis (MVRA), and the United States Bureau of Mines (USBM) equation. CapSA-MLP outperformed PSO-ANN (RMSE = 1.120, R2 = 0.904 compared to RMSE = 1.284, R2 = 0.846), whereas MVRA and USBM exhibited lower accuracy. Sensitivity analysis indicated RMS as the main input factor. This study is the first to use CapSA-MLP with RMS for airblast prediction. The findings illustrate the significance of metaheuristic optimization in developing adaptable, generalizable models for various rock types, thereby improving blast design and environmental management in mining activities. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

14 pages, 719 KiB  
Article
Recursive Interplay of Family and Biological Dynamics: Adults with Type 1 Diabetes Mellitus Under the Spotlight
by Helena Jorge, Bárbara Regadas Correia, Miguel Castelo-Branco and Ana Paula Relvas
Diabetology 2025, 6(8), 81; https://doi.org/10.3390/diabetology6080081 - 6 Aug 2025
Abstract
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was [...] Read more.
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was collected through a cross-sectional design comparing patients, aged 22–55, with and without metabolic control. Methods: Participants filled out a set of self-report measures of sociodemographic, clinical and family systems assessment. Patients (91) were also invited to describe their perception about disease management interference regarding family functioning. We first examined the extent to which family variables grouped dataset to determine if there were similarities and dissimilarities that fit with our initial diabetic groups’ classification. Results: Cluster analysis results identify a two-cluster solution validating initial classification of two groups of patients: 49 with metabolic control (MC) and 42 without metabolic control (NoMC). Independent sample tests suggested statistically significant differences between groups in family subscales- family difficulties and family communication (p < 0.05). Binary logistic regression shed light on predictors of explained variance to no metabolic control, in four models: Sociodemographic, Clinical data, SCORE-15/Congruence Scale and Eating Behavior. Furthermore, groups differ on family support, level and sources of family conflict caused by diabetes management issues. Considering only patients who co-habit with a partner for more than one year (N = 44), NoMC patients score lower on marital functioning in all categories (p < 0.05). Discussion: Family-Chronic illness interaction plays a significant role in a patient’s adherence to treatment. This study highlights the Standards of Medical Care for Diabetes, considering caregivers and family members on diabetes care. Full article
Show Figures

Figure 1

24 pages, 5022 KiB  
Article
Aging-Invariant Sheep Face Recognition Through Feature Decoupling
by Suhui Liu, Chuanzhong Xuan, Zhaohui Tang, Guangpu Wang, Xinyu Gao and Zhipan Wang
Animals 2025, 15(15), 2299; https://doi.org/10.3390/ani15152299 - 6 Aug 2025
Abstract
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the [...] Read more.
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the growth of sheep, their facial features keep changing, which poses challenges for existing sheep face recognition models to maintain accuracy across the dynamic changes in facial features over time, making it difficult to meet practical needs. To address this limitation, we propose the lifelong biometric learning of the sheep face network (LBL-SheepNet), a feature decoupling network designed for continuous adaptation to ovine facial changes, and constructed a dataset of 31,200 images from 55 sheep tracked monthly from 1 to 12 months of age. The LBL-SheepNet model addresses dynamic variations in facial features during sheep growth through a multi-module architectural framework. Firstly, a Squeeze-and-Excitation (SE) module enhances discriminative feature representation through adaptive channel-wise recalibration. Then, a nonlinear feature decoupling module employs a hybrid channel-batch attention mechanism to separate age-related features from identity-specific characteristics. Finally, a correlation analysis module utilizes adversarial learning to suppress age-biased feature interference, ensuring focus on age-invariant identifiers. Experimental results demonstrate that LBL-SheepNet achieves 95.5% identification accuracy and 95.3% average precision on the sheep face dataset. This study introduces a lifelong biometric learning (LBL) mechanism to mitigate recognition accuracy degradation caused by dynamic facial feature variations in growing sheep. By designing a feature decoupling network integrated with adversarial age-invariant learning, the proposed method addresses the performance limitations of existing models in long-term individual identification. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

23 pages, 3410 KiB  
Article
LinU-Mamba: Visual Mamba U-Net with Linear Attention to Predict Wildfire Spread
by Henintsoa S. Andrianarivony and Moulay A. Akhloufi
Remote Sens. 2025, 17(15), 2715; https://doi.org/10.3390/rs17152715 - 6 Aug 2025
Abstract
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this [...] Read more.
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this study, we develop a deep learning model to predict wildfire spread using remote sensing data. We propose LinU-Mamba, a model with a U-Net-based vision Mamba architecture, with light spatial attention in skip connections, and an efficient linear attention mechanism in the encoder and decoder to better capture salient fire information in the dataset. The model is trained and evaluated on the two-dimensional remote sensing dataset Next Day Wildfire Spread (NDWS), which maps fire data across the United States with fire entries, topography, vegetation, weather, drought index, and population density variables. The results demonstrate that our approach achieves superior performance compared to existing deep learning methods applied to the same dataset, while showing an efficient training time. Furthermore, we highlight the impacts of pre-training and feature selection in remote sensing, as well as the impacts of linear attention use in our model. As far as we know, LinU-Mamba is the first model based on Mamba used for wildfire spread prediction, making it a strong foundation for future research. Full article
Show Figures

Figure 1

28 pages, 4243 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

18 pages, 1259 KiB  
Article
Artificial Neural Network-Based Prediction of Clogging Duration to Support Backwashing Requirement in a Horizontal Roughing Filter: Enhancing Maintenance Efficiency
by Sphesihle Mtsweni, Babatunde Femi Bakare and Sudesh Rathilal
Water 2025, 17(15), 2319; https://doi.org/10.3390/w17152319 - 4 Aug 2025
Abstract
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss [...] Read more.
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss coefficients against established water quality standards. This study utilizes artificial neural network (ANN) for the prediction of clogging duration and effluent turbidity in HRF equipment. The ANN was configured with two outputs, the clogging duration and effluent turbidity, which were predicted concurrently. Effluent turbidity was modeled to enhance the network’s learning process and improve the accuracy of clogging prediction. The network steps of the iterative training process of ANN used different types of input parameters, such as influent turbidity, filtration rate, pH, conductivity, and effluent turbidity. The training, in addition, optimized network parameters such as learning rate, momentum, and calibration of neurons in the hidden layer. The quantities of the dataset accounted for up to 70% for training and 30% for testing and validation. The optimized structure of ANN configured in a 4-8-2 topology and trained using the Levenberg–Marquardt (LM) algorithm achieved a mean square error (MSE) of less than 0.001 and R-coefficients exceeding 0.999 across training, validation, testing, and the entire dataset. This ANN surpassed models of scaled conjugate gradient (SCG) and obtained a percentage of average absolute deviation (%AAD) of 9.5. This optimal structure of ANN proved to be a robust tool for tracking the filter clogging duration in HRF equipment. This approach supports proactive maintenance and operational planning in HRFs, including data-driven scheduling of backwashing based on predicted clogging trends. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma
by Gei Ki Tang, Chee Chin Lim, Faezahtul Arbaeyah Hussain, Qi Wei Oung, Aidy Irman Yajid, Sumayyah Mohammad Azmi and Yen Fook Chong
Diagnostics 2025, 15(15), 1958; https://doi.org/10.3390/diagnostics15151958 - 4 Aug 2025
Abstract
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, [...] Read more.
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, for nuclei segmentation and classification in CMYC-stained whole slide images and to assess its integration into a user-friendly diagnostic tool. Methods: A dataset of 122 CMYC-stained whole slide images (WSIs) was used. Pre-processing steps, including stain normalization and patch extraction, were applied to improve input consistency. HoVerNet, a multi-branch neural network, was used for both nuclei segmentation and classification, particularly focusing on its ability to manage overlapping nuclei and complex morphological variations. Model performance was validated using metrics such as accuracy, precision, recall, and F1 score. Additionally, a graphic user interface (GUI) was developed to incorporate automated segmentation, cell counting, and severity assessment functionalities. Results: HoVerNet achieved a validation accuracy of 82.5%, with a precision of 85.3%, recall of 82.6%, and an F1 score of 83.9%. The model showed powerful performance in differentiating overlapping and morphologically complex nuclei. The developed GUI enabled real-time visualization and diagnostic support, enhancing the efficiency and usability of DLBCL histopathological analysis. Conclusions: HoVerNet, combined with an integrated GUI, presents a promising approach for streamlining DLBCL diagnostics through accurate segmentation and real-time visualization. Future work will focus on incorporating Vision Transformers and additional staining protocols to improve generalizability and clinical utility. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

20 pages, 1644 KiB  
Article
A Symmetric Multi-Scale Convolutional Transformer Network for Plant Disease Image Classification
by Chuncheng Xu and Tianjin Yang
Symmetry 2025, 17(8), 1232; https://doi.org/10.3390/sym17081232 - 4 Aug 2025
Viewed by 13
Abstract
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch [...] Read more.
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch merging as channels increase. To address these issues, we propose PLTransformer, a hybrid model designed to symmetrically capture both global and local features. We design a symmetric multi-scale convolutional module that combines two different-scale receptive fields to simultaneously extract global and local features so that the model can better perceive multi-scale disease morphologies. Additionally, we propose an overlap-attentive channel downsampler that utilizes inter-channel attention mechanisms during spatial downsampling, effectively preserving local structural information and mitigating semantic loss caused by feature compression. On the PlantVillage dataset, PLTransformer achieves 99.95% accuracy, outperforming DeiT (96.33%), Twins (98.92%), and DilateFormer (98.84%). These results demonstrate its superiority in handling multi-scale disease features. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 5188 KiB  
Article
LCDAN: Label Confusion Domain Adversarial Network for Information Detection in Public Health Events
by Qiaolin Ye, Guoxuan Sun, Yanwen Chen and Xukan Xu
Electronics 2025, 14(15), 3102; https://doi.org/10.3390/electronics14153102 - 4 Aug 2025
Viewed by 30
Abstract
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer [...] Read more.
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer performance degradation during cross-event transfer due to differences in data distribution, and research specifically targeting public health events remains limited. To address this, we propose the Label Confusion Domain Adversarial Network (LCDAN), which innovatively integrates label confusion with domain adaptation to enhance the detection of informative tweets across different public health events. First, LCDAN employs an adversarial domain adaptation model to learn cross-domain feature representation. Second, it dynamically evaluates the importance of different source domain samples to the target domain through label confusion to optimize the migration effect. Experiments were conducted on datasets related to COVID-19, Ebola disease, and Middle East Respiratory Syndrome public health events. The results demonstrate that LCDAN significantly outperforms existing methods across all tasks. This research provides an effective tool for information detection during public health emergencies, with substantial theoretical and practical implications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 108
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

23 pages, 22135 KiB  
Article
Road Marking Damage Degree Detection Based on Boundary Features Enhanced and Asymmetric Large Field-of-View Contextual Features
by Zheng Wang, Ryojun Ikeura, Soichiro Hayakawa and Zhiliang Zhang
J. Imaging 2025, 11(8), 259; https://doi.org/10.3390/jimaging11080259 - 4 Aug 2025
Viewed by 46
Abstract
Road markings, as critical components of transportation infrastructure, are crucial for ensuring traffic safety. Accurate quantification of their damage severity is vital for effective maintenance prioritization. However, existing methods are limited to detecting the presence of damage without assessing its extent. To address [...] Read more.
Road markings, as critical components of transportation infrastructure, are crucial for ensuring traffic safety. Accurate quantification of their damage severity is vital for effective maintenance prioritization. However, existing methods are limited to detecting the presence of damage without assessing its extent. To address this limitation, we propose a novel segmentation-based framework for estimating the degree of road marking damage. The method comprises two stages: segmentation of residual pixels from the damaged markings and segmentation of the intact markings region. This dual-segmentation strategy enables precise reconstruction and comparison for severity estimation. To enhance segmentation performance, we proposed two key modules: the Asymmetric Large Field-of-View Contextual (ALFVC) module, which captures rich multi-scale contextual features, and the supervised Boundary Feature Enhancement (BFE) module, which strengthens shape representation and boundary accuracy. The experimental results demonstrate that our method achieved an average segmentation accuracy of 89.44%, outperforming the baseline by 5.86 percentage points. Moreover, the damage quantification achieved a minimum error rate of just 0.22% on the proprietary dataset. The proposed approach was both effective and lightweight, providing valuable support for automated maintenance planning, and significantly improving the efficiency and precision of road marking management. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 - 3 Aug 2025
Viewed by 124
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
Show Figures

Figure 1

14 pages, 11645 KiB  
Article
Changes of Ecosystem Service Value in the Water Source Area of the West Route of the South–North Water Diversion Project
by Zhimin Du, Bo Li, Bingfei Yan, Fei Xing, Shuhu Xiao, Xiaohe Xu, Yakun Yuan and Yongzhi Liu
Water 2025, 17(15), 2305; https://doi.org/10.3390/w17152305 - 3 Aug 2025
Viewed by 184
Abstract
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals [...] Read more.
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals its changing trends and main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Quantitative assessment of the ESV of the region was carried out using the Equivalence Factor Method (EFM), aiming to provide scientific support for ecological protection and resource management decision-making. In the past 20 years, the ESV has shown an upward trend year by year, increasing by 96%. The regions with the highest ESV were Garzê Prefecture and Aba Prefecture, which increased by 130.3% and 60.6%, respectively. The ESV of Xinlong county, Danba county, Rangtang county, and Daofu county increased 4.8 times, 1.5 times, 12.5 times, and 8.9 times, respectively. In the last two decades, arable land has decreased by 91%, while the proportions of bare land and water have decreased by 84% and 91%, respectively. Grassland had the largest proportion. Forests and grasslands, vital for climate regulation, water cycle management, and biodiversity conservation, have expanded by 74% and 43%, respectively. It can be seen from Moran’s I index values that the dataset as a whole showed a slight positive spatial autocorrelation, which increased from −0.041396 to 0.046377. This study reveals the changing trends in ESV and the main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Full article
(This article belongs to the Special Issue Watershed Ecohydrology and Water Quality Modeling)
Show Figures

Figure 1

24 pages, 997 KiB  
Article
A Spatiotemporal Deep Learning Framework for Joint Load and Renewable Energy Forecasting in Stability-Constrained Power Systems
by Min Cheng, Jiawei Yu, Mingkang Wu, Yihua Zhu, Yayao Zhang and Yuanfu Zhu
Information 2025, 16(8), 662; https://doi.org/10.3390/info16080662 - 3 Aug 2025
Viewed by 187
Abstract
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep [...] Read more.
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep learning-based dispatching framework is proposed, which integrates spatiotemporal feature extraction with a stability-aware mechanism. A joint forecasting model is constructed using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to handle multi-source inputs, while a reinforcement learning-based stability-aware scheduler is developed to manage dynamic system responses. In addition, an uncertainty modeling mechanism combining Dropout and Bayesian networks is incorporated to enhance dispatch robustness. Experiments conducted on real-world power grid and renewable generation datasets demonstrate that the proposed forecasting module achieves approximately a 2.1% improvement in accuracy compared with Autoformer and reduces Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 18.1% and 14.1%, respectively, compared with traditional LSTM models. The achieved Mean Absolute Percentage Error (MAPE) of 5.82% outperforms all baseline models. In terms of scheduling performance, the proposed method reduces the total operating cost by 5.8% relative to Autoformer, decreases the frequency deviation from 0.158 Hz to 0.129 Hz, and increases the Critical Clearing Time (CCT) to 2.74 s, significantly enhancing dynamic system stability. Ablation studies reveal that removing the uncertainty modeling module increases the frequency deviation to 0.153 Hz and raises operational costs by approximately 6.9%, confirming the critical role of this module in maintaining robustness. Furthermore, under diverse load profiles and meteorological disturbances, the proposed method maintains stable forecasting accuracy and scheduling policy outputs, demonstrating strong generalization capabilities. Overall, the proposed approach achieves a well-balanced performance in terms of forecasting precision, system stability, and economic efficiency in power grids with high renewable energy penetration, indicating substantial potential for practical deployment and further research. Full article
(This article belongs to the Special Issue Real-World Applications of Machine Learning Techniques)
Show Figures

Figure 1

Back to TopTop