Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (92)

Search Parameters:
Keywords = dam hydraulic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 25599 KiB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 421
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Interdisciplinary Approach as Basis for Enhancing Construction and Operation Safety of Industrial Hydraulic Structures
by Regina E. Dashko and Darya L. Kolosova
Sustainability 2025, 17(12), 5244; https://doi.org/10.3390/su17125244 - 6 Jun 2025
Viewed by 457
Abstract
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary [...] Read more.
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary approach involves treating the foundation soils of structures and anthropogenic tailings deposits as a multicomponent system. In this system, soil acts as a medium hosting groundwater of varying compositions and contamination levels, containing biotic components and their metabolic products, including the gaseous phase. It has been demonstrated that the justified application of this approach increases the operational safety of existing structures and the long-term stability of starter and tailings dikes built on weak clay foundation soils. Particular emphasis is placed on the biotic component and the dual role of subsurface microorganisms. These bacteria negatively impact the strength and load-bearing capacity of water- and water–gas-saturated clay soils in the foundation of the structures under consideration. The diverse biocenosis in groundwater simultaneously facilitates self-purification from petroleum hydrocarbons to undetectable levels. This aspect holds fundamental importance, as groundwater discharges into river systems. Full article
Show Figures

Figure 1

22 pages, 4353 KiB  
Article
Soil Particle Size Estimation via Optical Flow and Potential Function Analysis for Dam Seepage and Building Monitoring
by Shuangping Li, Lin Gao, Bin Zhang, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Buildings 2025, 15(11), 1800; https://doi.org/10.3390/buildings15111800 - 24 May 2025
Viewed by 404
Abstract
Soil particle size distribution is a critical parameter in geotechnical and hydraulic engineering, particularly in applications such as dam seepage monitoring, building foundation assessments, and sediment transport. This study presents a novel algorithm for estimating soil particle sizes by analyzing their falling velocities [...] Read more.
Soil particle size distribution is a critical parameter in geotechnical and hydraulic engineering, particularly in applications such as dam seepage monitoring, building foundation assessments, and sediment transport. This study presents a novel algorithm for estimating soil particle sizes by analyzing their falling velocities in water, combining optical flow computation with chaotic motion analysis. To address the limitations of the classical Horn and Schunck method, particularly its sensitivity to large displacements and brightness variations, we introduced a coarse-to-fine warping strategy, an image decomposition step to separate dominant structures from fine textures, and the Charbonnier penalty function. The improved model achieved competitive accuracy compared to advanced optical flow algorithms. To manage turbulence and motion noise during particle settling, we incorporated a global flow analysis framework using streaklines, streak flow, and potential functions. This enabled the segmentation of laminar, turbulent, and rebound flow regions without requiring individual particle tracking. Soil particle sizes were then back-calculated from laminar flow velocities using Stokes’ Law. Experimental results confirmed the method’s accuracy for particle sizes ranging from 20 mm to 0.7 mm, significantly extending the measurable range of Sedimaging systems. The proposed approach shows strong potential for integration into dam-related particle monitoring applications and building-related monitoring systems requiring fine-resolution analysis. Full article
Show Figures

Figure 1

31 pages, 5534 KiB  
Article
Safety Assessment of Concrete Gravity Dams: Hydromechanical Coupling and Fracture Propagation
by Maria Luísa Braga Farinha, Nuno Monteiro Azevedo and Sérgio Oliveira
Geosciences 2025, 15(4), 149; https://doi.org/10.3390/geosciences15040149 - 15 Apr 2025
Viewed by 434
Abstract
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors [...] Read more.
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors and the identification of more realistic failure modes by integrating (i) softening-based constitutive laws that are closer to the real behavior identified experimentally in concrete–concrete and concrete–rock interfaces; (ii) a water height increase that can be considered in both hydraulic and mechanical models; and (iii) fracture propagation along the dam–foundation interface. Parametric studies were conducted to assess the impact of the mechanical properties on the global safety factors of three gravity dams with different heights. The results obtained using a coupled/fracture propagation model were compared with those from the strength reduction method and the overtopping scenario not considering the hydraulic pressure increase. The results show that the safety assessment should be conducted using the proposed methodology. It is shown that the concrete–rock interface should preferably have a high value of fracture energy or, ideally, higher tensile and cohesion strengths and high associated fracture energy. The results also indicate that with a brittle concrete–rock model, the predicted safety factors are always conservative when compared with those that consider the fracture energy. Full article
(This article belongs to the Special Issue Fracture Geomechanics—Obstacles and New Perspectives)
Show Figures

Figure 1

23 pages, 5824 KiB  
Review
Alteration of Catchments and Rivers, and the Effect on Floods: An Overview of Processes and Restoration Actions
by Eduardo Juan-Diego, Alejandro Mendoza, Maritza Liliana Arganis-Juárez and Moisés Berezowsky-Verduzco
Water 2025, 17(8), 1177; https://doi.org/10.3390/w17081177 - 15 Apr 2025
Viewed by 1289
Abstract
Flooding is a prevalent and growing problem involving significant economic losses worldwide. Traditional flood mitigation measures are based on the use of levees, dams, dredging, and river channelization, which can distort the perception of risk, leading to a false sense of security that [...] Read more.
Flooding is a prevalent and growing problem involving significant economic losses worldwide. Traditional flood mitigation measures are based on the use of levees, dams, dredging, and river channelization, which can distort the perception of risk, leading to a false sense of security that can induce an increase in the occupation of flood-prone areas. An undisturbed watershed and its fluvial system provide regulating services that contribute to flood mitigation. However, anthropogenic activities can degrade and diminish such services, impacting the magnitude of floods by changing the runoff patterns, erosion, sedimentation, channel conveyance capacity, and floodplain connectivity. Restoration and natural flood management (NFM) seek to recover and improve their watershed regulation services. The bibliographic review performed here aimed to assess the degradation of the natural regulation services of watersheds, which allowed us to identify significant alterations to runoff and streamflow. Also, the review studies of NMF allowed us to identify the restoration actions oriented to recover or enhance the flow regulation capacity of catchments and their fluvial systems. A current challenge is to accumulate more empirical evidence for the effectiveness of such flood mitigation solutions. Currently, the results for large catchments have been obtained mainly by the application of hydrologic and hydraulic models. Also, the adequacy of the different NFM actions to catchments with different physiographic and climatological settings needs to be addressed. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Failure Modes and Effect Analysis of Turbine Units of Pumped Hydro-Energy Storage Systems
by Georgi Todorov, Ivan Kralov, Konstantin Kamberov, Yavor Sofronov, Blagovest Zlatev and Evtim Zahariev
Energies 2025, 18(8), 1885; https://doi.org/10.3390/en18081885 - 8 Apr 2025
Viewed by 658
Abstract
In the present paper, the subject of investigation is the reliability assessment of the single-stage reversible Hydropower Unit No. 3 (HU3) in the Bulgarian Pumped Hydro-Electric Storage (PHES) plant “Chaira”, which processes the waters of the “Belmeken” dam and “Chaira” dam. Preceding the [...] Read more.
In the present paper, the subject of investigation is the reliability assessment of the single-stage reversible Hydropower Unit No. 3 (HU3) in the Bulgarian Pumped Hydro-Electric Storage (PHES) plant “Chaira”, which processes the waters of the “Belmeken” dam and “Chaira” dam. Preceding the destruction of HU4 and its virtual simulation, an analysis and its conclusions for rehabilitation and safety provided the information required for the reliability assessment of HU3. Detailed analysis of the consequences of the prolonged use of HU3 was carried out. The Supervisory Control and Data Acquisition (SCADA) system records were studied. Fault Tree Analysis (FTA) was applied to determine the component relationships and subsystem failures that can lead to an undesired primary event. A Failure Modes and Effect Analysis methodology was proposed for the large-scale hydraulic units and PHES. Based on the data of the virtual simulation and the investigations of the HU4 and its damages, as well as on the failures in the stay vanes of HU3, it is recommended to organize the monitoring of crucial elements of the structure and of water ingress into the drainage holes, which will allow for detecting failures in a timely manner. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

16 pages, 2380 KiB  
Article
The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510
by Ryszard Oleszczuk, Sławomir Bajkowski, Janusz Urbański, Bogumiła Pawluśkiewicz, Marcin J. Małuszyński, Ilona Małuszyńska, Jan Jadczyszyn and Edyta Hewelke
Land 2024, 13(11), 1902; https://doi.org/10.3390/land13111902 - 13 Nov 2024
Cited by 1 | Viewed by 1386
Abstract
Changes in land usage, increasing climatic uncertainty, and dynamic development of the rate of natural population growth of the Eurasian beaver will lead to increasing benefits and disadvantages from beaver activity. During three growing seasons from 2020 to 2022, four cross-sections were marked [...] Read more.
Changes in land usage, increasing climatic uncertainty, and dynamic development of the rate of natural population growth of the Eurasian beaver will lead to increasing benefits and disadvantages from beaver activity. During three growing seasons from 2020 to 2022, four cross-sections were marked on unused sub-irrigation systems with the periodic occurrence of beaver dams, located on organic soils in parts of the facility protected by the Habitats Directive (natural habitat 6510) in Central Poland. Periodic water table measurements in wells, the beds of adjacent ditches, and the riverbed were carried out. Identification of the states and structures of plant communities was done using the botanical-weight analysis of several samples with an area of 1 m2. Beaver dams increased water levels in the river, ditches, and groundwater depth in over 78% of events in 2020–2022 years. A large impact of precipitation on the hydraulic conditions in the meadow was observed. In the studied area, since a moderately moist habitat (6510) is protected within the Natura 2000 network, phenomena increasing soil moisture, in the absence of mowing of meadows and the occurrence of expansive herbaceous vegetation that tolerates increased moisture, may lead to the disappearance of these habitats, especially in the zone near the riverbed. Full article
Show Figures

Figure 1

16 pages, 10358 KiB  
Article
Simulation of Flood-Control Reservoirs: Comparing Fully 2D and 0D–1D Models
by Susanna Dazzi, Riccardo Verbeni, Paolo Mignosa and Renato Vacondio
Hydrology 2024, 11(11), 180; https://doi.org/10.3390/hydrology11110180 - 26 Oct 2024
Viewed by 1972
Abstract
Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal [...] Read more.
Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal boundary conditions to describe hydraulic structures (i.e., dams) and by using a parallelized code to reduce the computational burden. The 2D results are also compared with the more established approach of coupling a 1D model for the river and a 0D model for the reservoir. Two test cases, including an in-stream reservoir and an off-stream basin, both located in Italy, are considered. Results show that the fully 2D model can effectively handle the simulation of a complex flood-control system. Moreover, compared with the 0D–1D model, it captures the velocity field and the filling/emptying process of the reservoir more realistically, especially for off-stream reservoirs. Conversely, when the basin is characterized by very limited flood dynamics, the two approaches provide similar results (maximum levels in the reservoir differ by less than 10 cm, and peak discharges by about 5%). Thanks to parallelization and the inclusion of internal boundary conditions, fully 2D models can be applied not only for local hydrodynamic analyses but also for river-scale studies, including flood-control reservoirs, with reasonable computational effort (i.e., ratios of physical to computational times on the order of 30–100). Full article
Show Figures

Figure 1

18 pages, 1699 KiB  
Article
Comprehensive Evaluation of Crack Safety of Hydraulic Concrete Based on Improved Combination Weighted-Extension Cloud Theory
by Yu Cheng, Lizhen Liu, Maohai Zheng, Hai Wan, Yanpeng Dong, Guangxu Lu and Cundong Xu
Water 2024, 16(14), 2031; https://doi.org/10.3390/w16142031 - 17 Jul 2024
Viewed by 1118
Abstract
When multiple elements come together, hydraulic concrete develops cracks of varying widths, which huts the dependability of buildings. Therefore, with pertinent tools or procedures, swiftly ascertaining the safety status of hydraulic concrete cracks under diverse service conditions is required by conducting a quantitative [...] Read more.
When multiple elements come together, hydraulic concrete develops cracks of varying widths, which huts the dependability of buildings. Therefore, with pertinent tools or procedures, swiftly ascertaining the safety status of hydraulic concrete cracks under diverse service conditions is required by conducting a quantitative and qualitative analysis of the elements influencing the onset of cracks. This paper took the safety status of hydraulic concrete cracks as the main body of research; every step of hydraulic conservation infrastructure from the ground up—design stage, construction process, operation environment, and impoundment operation—was thoroughly examined. After establishing a multi-dimensional and multi-level system for the safety status evaluation of hydraulic concrete cracks, the subjective exponential AHP and objective CRITIC method were employed to determine the weight of each factor. Then, the two weights were processed using an enhanced combination assignment method to produce a more scientifically developed combination weight. Furthermore, fuzziness and randomness were considered in the quantitative analysis thanks to integrating cloud theory and extension matter elements. In order to determine the safety evaluation findings for hydraulic concrete fractures, the maximum membership principle and the cloud picture were employed. The conclusion reached after using this method to evaluate Dianzhan Dam was that the crack had a safety grade of III, meaning that it greatly impacted the reliability of the dam, and called for prompt acceptance or repair measures to improve building efficiency and safety. Full article
Show Figures

Figure 1

25 pages, 5907 KiB  
Article
Modelling of Granular Sediment Transport in Steady Flow over a Mobile Sloped Bed
by Jarosław Biegowski, Magdalena Pietrzak, Iwona Radosz and Leszek M. Kaczmarek
Water 2024, 16(14), 2022; https://doi.org/10.3390/w16142022 - 17 Jul 2024
Viewed by 1434
Abstract
This paper introduces a three-layer system, proposing a comprehensive model of granular mixture transport over a mobile sloped bed in a steady flow. This system, consisting of the bottom, contact, and upper zones, provides complete, continuous sediment velocity and concentration vertical profiles. The [...] Read more.
This paper introduces a three-layer system, proposing a comprehensive model of granular mixture transport over a mobile sloped bed in a steady flow. This system, consisting of the bottom, contact, and upper zones, provides complete, continuous sediment velocity and concentration vertical profiles. The aim of this study is to develop and experimentally verify this model for sediment transport over a bottom locally sloping in line with or opposite the direction of sediment flow. The model considers gravity’s effect on sediment transport in the bottom (dense) layer when the component of gravity parallel to the bottom acts together with shear stresses associated with water flow. This is a crucial factor often overlooked in previous studies. This effect causes an increase in velocity in the mobile sublayer of the dense layer and significantly affects the vertical distributions of velocity and concentration above this layer. The proposed shear variation due to the interaction between fractions and an intensive sediment mixing and sorting process over a mobile sloped bed adds to the novelty of our approach. The data sets used for the model’s validation cover various conditions, including slopes, grain diameters, densities, and grain mobility conditions, from incipient motion to a fully mobilized bed. This extensive validation process instils confidence in the theoretical description and its applicability to real-world scenarios in the design of hydraulic infrastructure, such as dams, barrages, bridges, and irrigation, and flood control systems. Full article
Show Figures

Figure 1

19 pages, 21689 KiB  
Article
Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia
by Muhammad Rifaldi Mustamin, Farouk Maricar, Rita Tahir Lopa and Riswal Karamma
Earth 2024, 5(3), 274-292; https://doi.org/10.3390/earth5030015 - 8 Jul 2024
Cited by 2 | Viewed by 2591
Abstract
A flood forecasting and early warning system is critical for rivers that have a large flood potential, one of which is the Gilireng watershed, which floods every year and causes many losses in Wajo Regency, Indonesia. This research also introduces an integration model [...] Read more.
A flood forecasting and early warning system is critical for rivers that have a large flood potential, one of which is the Gilireng watershed, which floods every year and causes many losses in Wajo Regency, Indonesia. This research also introduces an integration model between UH SUH and HEC-RAS in flood impact analysis, as a reference for flood forecasting and early warning systems in anticipating the timing and occurrence of floods, as well as GIS in the spatial modeling of flood-prone areas. Broadly speaking, this research is divided into four stages, namely, a flood hydrological analysis using UH SUH, flood hydraulic tracing using a 2D HEC-RAS numerical model, the spatial modeling of flood-prone areas using GIS, and the preparation of flood forecasting and early warning systems. The results of the analysis of the flood forecasting and early warning systems obtained the flood travel time and critical time at the observation point, the total time required from the upstream observation point to level 3 at Gilireng Dam for 1 h 35 min, Mamminasae Bridge for 4 h 35 min, and Akkotengeng Bridge for 8 h 40 min. This is enough time for people living in flood-prone areas to evacuate to the 15 recommended evacuation centers. Full article
Show Figures

Figure 1

41 pages, 10492 KiB  
Review
Water Dams: From Ancient to Present Times and into the Future
by Andreas N. Angelakis, Alper Baba, Mohammad Valipour, Jörg Dietrich, Elahe Fallah-Mehdipour, Jens Krasilnikoff, Esra Bilgic, Cees Passchier, Vasileios A. Tzanakakis, Rohitashw Kumar, Zhang Min, Nicholas Dercas and Abdelkader T. Ahmed
Water 2024, 16(13), 1889; https://doi.org/10.3390/w16131889 - 1 Jul 2024
Cited by 8 | Viewed by 7066
Abstract
Since ancient times, dams have been built to store water, control rivers, and irrigate agricultural land to meet human needs. By the end of the 19th century, hydroelectric power stations arose and extended the purposes of dams. Today, dams can be seen as [...] Read more.
Since ancient times, dams have been built to store water, control rivers, and irrigate agricultural land to meet human needs. By the end of the 19th century, hydroelectric power stations arose and extended the purposes of dams. Today, dams can be seen as part of the renewable energy supply infrastructure. The word dam comes from French and is defined in dictionaries using words like strange, dike, and obstacle. In other words, a dam is a structure that stores water and directs it to the desired location, with a dam being built in front of river valleys. Dams built on rivers serve various purposes such as the supply of drinking water, agricultural irrigation, flood control, the supply of industrial water, power generation, recreation, the movement control of solids, and fisheries. Dams can also be built in a catchment area to capture and store the rainwater in arid and semi-arid areas. Dams can be built from concrete or natural materials such as earth and rock. There are various types of dams: embankment dams (earth-fill dams, rock-fill dams, and rock-fill dams with concrete faces) and rigid dams (gravity dams, rolled compacted concrete dams, arch dams, and buttress dams). A gravity dam is a straight wall of stone masonry or earthen material that can withstand the full force of the water pressure. In other words, the pressure of the water transfers the vertical compressive forces and horizontal shear forces to the foundations beneath the dam. The strength of a gravity dam ultimately depends on its weight and the strength of its foundations. Most dams built in ancient times were constructed as gravity dams. An arch dam, on the other hand, has a convex curved surface that faces the water. The forces generated by the water pressure are transferred to the sides of the structure by horizontal lines. The horizontal, normal, and shear forces resist the weight at the edges. When viewed in a horizontal section, an arch dam has a curved shape. This type of dam can also resist water pressure due to its particular shape that allows the transfer of the forces generated by the stored water to the rock foundations. This article takes a detailed look at hydraulic engineering in dams over the millennia. Lessons should be learned from the successful and unsuccessful applications and operations of dams. Water resource managers, policymakers, and stakeholders can use these lessons to achieve sustainable development goals in times of climate change and water crisis. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

20 pages, 10656 KiB  
Article
An Evaluation and Reduction Approach for the Ground Vibration Induced by High Dam Flood Discharge
by Jijian Lian, Yan Zheng, Chao Liang, Yutong Li, Bin Ma, Fang Liu and Ye Yao
Water 2024, 16(11), 1559; https://doi.org/10.3390/w16111559 - 29 May 2024
Viewed by 1130
Abstract
Ground vibration induced by high dam flood discharge has been reported to cause severe structure safety threats and environmental issues. In this paper, an evaluation and reduction approach for ground vibration using systematic and comprehensive studies is proposed. Based on the results of [...] Read more.
Ground vibration induced by high dam flood discharge has been reported to cause severe structure safety threats and environmental issues. In this paper, an evaluation and reduction approach for ground vibration using systematic and comprehensive studies is proposed. Based on the results of hydraulic physical model tests, the hydrodynamic excitation on the stilling basin plate (SBP) is analytically expressed as spatially variable harmonic loads by the three-dimensional least squares method. Afterwards, a theoretical model for the SBP–foundation coupled system is established and the vibration of SBP subjected to analytical hydrodynamic load input is calculated. The ground vibration is further evaluated through the numerical simulation regarding the SBP vibration as the input load. According to the prototype test result, it is found that the variation trend of evaluation results under different working conditions is consistent with the actual situation, which indicates the effectiveness of this evaluation approach. Furthermore, the sensitivity analysis of SBP physical dimensions to ground vibration is conducted, and an optimized design for SBP is presented as a result. The verification results indicate that ground vibration can be significantly reduced by applying SBP optimization. Full article
Show Figures

Figure 1

29 pages, 16471 KiB  
Article
Deep Learning Methods of Satellite Image Processing for Monitoring of Flood Dynamics in the Ganges Delta, Bangladesh
by Polina Lemenkova
Water 2024, 16(8), 1141; https://doi.org/10.3390/w16081141 - 17 Apr 2024
Cited by 11 | Viewed by 4434
Abstract
Mapping spatial data is essential for the monitoring of flooded areas, prognosis of hazards and prevention of flood risks. The Ganges River Delta, Bangladesh, is the world’s largest river delta and is prone to floods that impact social–natural systems through losses of lives [...] Read more.
Mapping spatial data is essential for the monitoring of flooded areas, prognosis of hazards and prevention of flood risks. The Ganges River Delta, Bangladesh, is the world’s largest river delta and is prone to floods that impact social–natural systems through losses of lives and damage to infrastructure and landscapes. Millions of people living in this region are vulnerable to repetitive floods due to exposure, high susceptibility and low resilience. Cumulative effects of the monsoon climate, repetitive rainfall, tropical cyclones and the hydrogeologic setting of the Ganges River Delta increase probability of floods. While engineering methods of flood mitigation include practical solutions (technical construction of dams, bridges and hydraulic drains), regulation of traffic and land planning support systems, geoinformation methods rely on the modelling of remote sensing (RS) data to evaluate the dynamics of flood hazards. Geoinformation is indispensable for mapping catchments of flooded areas and visualization of affected regions in real-time flood monitoring, in addition to implementing and developing emergency plans and vulnerability assessment through warning systems supported by RS data. In this regard, this study used RS data to monitor the southern segment of the Ganges River Delta. Multispectral Landsat 8-9 OLI/TIRS satellite images were evaluated in flood (March) and post-flood (November) periods for analysis of flood extent and landscape changes. Deep Learning (DL) algorithms of GRASS GIS and modules of qualitative and quantitative analysis were used as advanced methods of satellite image processing. The results constitute a series of maps based on the classified images for the monitoring of floods in the Ganges River Delta. Full article
Show Figures

Figure 1

16 pages, 3973 KiB  
Article
Rock Mass Structure Classification of Caves Based on the 3D Rock Block Index
by Jun Dong, Qingqing Chen, Guangxiang Yuan and Kaiyan Xie
Appl. Sci. 2024, 14(3), 1230; https://doi.org/10.3390/app14031230 - 1 Feb 2024
Cited by 3 | Viewed by 1505
Abstract
In large-scale water conservancy and hydropower projects, complex rock structures are considered to be the main factor controlling the stability of hydraulic structures. The classification of rock mass structure plays an important role in the safety of all kinds of large buildings, especially [...] Read more.
In large-scale water conservancy and hydropower projects, complex rock structures are considered to be the main factor controlling the stability of hydraulic structures. The classification of rock mass structure plays an important role in the safety of all kinds of large buildings, especially underground engineering buildings. As a quantitative classification index of rock mass, the rock block index is very common in the classification of borehole and dam foundation rock mass structures. However, there are few studies on the classification of underground engineering rock masses. Moreover, their classification criteria have disadvantages in spatial dimension. Therefore, this paper takes the long exploratory cave CPD1 in the water transmission and power generation system of the Qingtian pumped storage power station in Zhejiang Province as the research object and launches a study on the structural classification of the rock mass of a flat cave based on the 3D rock block index. According to the group distribution of joints, the sections are statistically homogeneous. Additionally, the Monte Carlo method is used to carry out random simulations to generate a three-dimensional joint network model. The virtual survey lines are arranged along the center of the shape of the three different orthogonal planes of the 3D joint network model to represent the boreholes, and the RBI values of the virtual survey lines on each orthogonal plane are counted to classify the rock mass structure of the flat cave in a refined manner using the rock block index of the rock mass in 3D. The above method realizes the application of the 3D rock block index in underground engineering and overcomes the limitations of traditional rock mass classification methods in terms of classification index and dimension. The results show that: (1) Three-dimensional joint network simulations built on statistical and probabilistic foundations can visualize the structure of the rock mass and more accurately reflect the structural characteristics of the actual rock mass. (2) Based on the 3D rock block index, the rock mass structure of the long-tunnel CPD1 is classified, from that of a continuous structure to a blocky structure, corresponding to the integrity of the rock mass from complete to relatively complete. The classification results are consistent with the evaluation results of horizontal tunnel seismic wave geophysical exploration. (3) Based on the 3D joint network model, it is reasonable and feasible to use the 3D rock block index as a quantitative evaluation index to determine the structure type of flat cave rock masses. The above method is helpful and significant in the classification of underground engineering rock mass structures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop