Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flood Hydrology Analysis UH SUH Method
2.2. Flood Hydraulic Tracing Using 2D HEC-RAS Numerical Modeling
2.3. Spatial Modeling of Flood-Prone Areas
2.4. Flood Forecasting and Early Warning System
3. Results
3.1. Flood Discharge Analysis
3.2. Flood Hydraulic Tracing
3.3. Spatial Model of Flood-Prone Areas
3.4. Flood Forecasting and Early Warning System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fulazzaky, M. Challenges of Integrated Water Resources Management in Indonesia. Water 2014, 6, 2000–2020. [Google Scholar] [CrossRef]
- Asdak, C.; Yulizar; Subiyanto. A National Policy On Indonesia’s Integrated Water Resource Conservation Management. Indones. J. For. Res. 2023, 10, 151–162. [Google Scholar] [CrossRef]
- Ward, P.J.; de Ruiter, M.C.; Mård, J.; Schröter, K.; Van Loon, A.; Veldkamp, T.; von Uexkull, N.; Wanders, N.; AghaKouchak, A.; Arnbjerg-Nielsen, K.; et al. The Need to Integrate Flood and Drought Disaster Risk Reduction Strategies. Water Secur. 2020, 11, 100070. [Google Scholar] [CrossRef]
- Islam, R.; Kamaruddin, R.; Ahmad, S.A.; Jan, S.J.; Anuar, A.R. A Review on Mechanism of Flood Disaster Management in Asia. Int. Rev. Manag. Mark. 2016, 6, 29–52. [Google Scholar]
- Chai, J.; Wu, H.-Z. Prevention/Mitigation of Natural Disasters in Urban Areas. Smart Constr. Sustain. Cities 2023, 1, 4. [Google Scholar] [CrossRef]
- Yang, T.-H.; Liu, W.-C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef]
- Ramadhan, C.; Dina, R.; Nurjani, E. Spatial and Temporal Based Deforestation Proclivity Analysis on Flood Events With Applying Watershed Scale (Case Study: Lasolo Watershed in Southeast Sulawesi, Central Sulawesi, and South Sulawesi, Indonesia). Int. J. Disaster Risk Reduct. 2023, 93, 103745. [Google Scholar] [CrossRef]
- Mahmud, M.; Kusumandari, A.; Sudarmadji, S.; Supriyatno, N. A Study of Flood Causal Priority in Arui Watershed, Manokwari Regency, Indonesia. J. Manaj. Hutan Trop. 2018, 24, 81–94. [Google Scholar] [CrossRef]
- Mazalena, R.D.; Ahmad; Yusup, Y. Analysis of Run-off Potential for Flash Flood Management in Rahakolowu Watershed. IOP Conf. Ser. Earth Environ. Sci. 2022, 986, 012046. [Google Scholar] [CrossRef]
- Siregar, R.I.; Nursyamsi, N.; Indrawan, I. An Approach of Travel Time of Flood Peaks and Runoff Model towards Low Impact Development. Simetrikal J. Eng. Technol. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Kuller, M.; Schoenholzer, K.; Lienert, J. Creating Effective Flood Warnings: A Framework From a Critical Review. J. Hydrol. 2021, 602, 126708. [Google Scholar] [CrossRef]
- Lee, J.H.; Yuk, G.M.; Moon, H.T.; Moon, Y.-I. Integrated Flood Forecasting and Warning System against Flash Rainfall in the Small-Scaled Urban Stream. Atmosphere 2020, 11, 971. [Google Scholar] [CrossRef]
- Cole, S.J.; Moore, R.J.; Wells, S.C.; Mattingley, P.S. Real-Time Forecasts of Flood Hazard and Impact: Some UK Experiences. E3S Web Conf. 2016, 7, 18015. [Google Scholar] [CrossRef]
- Silvestro, F.; Rossi, L.; Campo, L.; Parodi, A.; Fiori, E.; Rudari, R.; Ferraris, L. Impact-Based Flash-Flood Forecasting System: Sensitivity to High Resolution Numerical Weather Prediction Systems and Soil Moisture. J. Hydrol. 2019, 572, 388–402. [Google Scholar] [CrossRef]
- Schroeder, A.J.; Gourley, J.J.; Hardy, J.; Henderson, J.J.; Parhi, P.; Rahmani, V.; Reed, K.A.; Schumacher, R.S.; Smith, B.K.; Taraldsen, M.J. The Development of a Flash Flood Severity Index. J. Hydrol. 2016, 541, 523–532. [Google Scholar] [CrossRef]
- Rosmadi, H.S.; Ahmed, M.F.; Bin Mokhtar, M.; Lim, C.K. Reviewing Challenges of Flood Risk Management in Malaysia. Water 2023, 15, 2390. [Google Scholar] [CrossRef]
- Syed Musa, S.M.S.; Md Noorani, M.S.; Abdul Razak, F.; Ismail, M.; Alias, M.A.; Hussain, S.I. An Early Warning System for Flood Detection Using Critical Slowing Down. Int. J. Environ. Res. Public Health 2020, 17, 6131. [Google Scholar] [CrossRef] [PubMed]
- Costabile, P.; Costanzo, C.; Kalogiros, J.; Bellos, V. Toward Street-Level Nowcasting of Flash Floods Impacts Based on HPC Hydrodynamic Modeling at the Watershed Scale and High-Resolution Weather Radar Data. Water Resour. Res. 2023, 59, e2023WR034599. [Google Scholar] [CrossRef]
- Kauffeldt, A.; Wetterhall, F.; Pappenberger, F.; Salamon, P.; Thielen, J. Technical Review of Large-Scale Hydrological Models For Implementation in Operational Flood Forecasting Schemes on Continental Level. Environ. Model. Softw. 2016, 75, 68–76. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Wang, H.; Qin, J.; Li, J.; Chiao, S. Extending Flood Forecasting Lead Time in a Large Watershed by Coupling WRF QPF With a Distributed Hydrological Model. Hydrol. Earth Syst. Sci. 2017, 21, 1279–1294. [Google Scholar] [CrossRef]
- Alqreai, F.N.; Altuwaijri, H.A. Hydrological Modeling and Evaluation of the Efficiency of Culverts in Drainage Basins Affecting the North Railway in Wadi Malham. Sustainability 2023, 15, 14489. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Fenta, A.A.; Ebabu, K.; Berihun, M.L.; Setargie, T.A. Evaluation of Lag Time and Time of Concentration Estimation Methods in Small Tropical Watersheds in Ethiopia. J. Hydrol. Reg. Stud. 2022, 40, 101025. [Google Scholar] [CrossRef]
- Mustamin, M.R. Synthetic Unit Hydrograph Modeling Based on Watershed Morphometry in South Sulawesi. Ph.D. Thesis, Hasanuddin University, Gowa, Indonesia, 2024. [Google Scholar]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical Weather Predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Hou, J.; Han, H.; Li, Z.; Guo, K.; Qin, Y. Effects of Morphological Change On Fluvial Flood Patterns Evaluated By a Hydro-Geomorphological Model. J. Hydroinform. 2018, 20, 633–644. [Google Scholar] [CrossRef]
- Rak, G.; Kozelj, D.; Steinman, F. The Impact of Floodplain Land Use On Flood Wave Propagation. Nat. Hazards 2016, 83, 425–443. [Google Scholar] [CrossRef]
- Tsakiris, G. Flood Risk Assessment: Concepts, Modelling, Applications. Nat. Hazards Earth Syst. Sci. 2014, 14, 1361–1369. [Google Scholar] [CrossRef]
- Peker, İ.B.; Gülbaz, S.; Demir, V.; Orhan, O.; Beden, N. Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability 2024, 16, 1226. [Google Scholar] [CrossRef]
- Ezz, H. Integrating GIS and HEC-RAS to Model Assiut Plateau Runoff. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 219–227. [Google Scholar] [CrossRef]
- Yerramilli, S. A Hybrid Approach of Integrating HEC-RAS and GIS Towards the Identification and Assessment of Flood Risk Vulnerability in the City of Jackson, MS. Am. J. Geogr. Inf. Syst. 2012, 1, 7–16. [Google Scholar] [CrossRef]
- Azimah, M.N.; Adib, M.R.M.; Mustaffa, A.A. Integration of Hydraulic Model (HEC-RAS) With Geographical Information System (GIS) in Developing Flood Evacuation Center Along Sembrong River. IOP Conf. Ser. Earth Environ. Sci. 2019, 220, 012057. [Google Scholar] [CrossRef]
- Khaghan, A.; Mojaradi, B. The Integrate of HEC-HMS and HEC-RAS Models in GIS Integration Models to Simulate Flood (Case Study: The Area of Karaj). Curr. World Environ. 2016, 11, 1–5. [Google Scholar] [CrossRef]
- Azouagh, A.; El Bardai, R.; Hilal, I.; Stitou el Messari, J. Integration of GIS and HEC-RAS in Floods Modeling of Martil River (Northern Morocco). Eur. Sci. J. ESJ 2018, 14, 130–142. [Google Scholar] [CrossRef]
- Sarsito, D.A.; Bramanto, B. Digital Elevation Model Alternatives Assessment for Deformation Analysis Purposes Using GNSS and INSAR. J. Meteorol. Dan Geofis. 2022, 23, 29–37. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of Rainfall Intensity, Slope, Land Use and Antecedent Soil Moisture on Soil Erosion in an Arid Environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Mustamin, M.R.; Maricar, F.; Karamma, R. Hydrological Analysis In Selecting Flood Discharge Method In Watershed Of Kelara River. INTEK J. Penelit. 2021, 8, 141–150. [Google Scholar] [CrossRef]
- Ruhiat, Y. Forecasting Rainfall and Potential for Repeated Events to Predict Flood Areas in Banten Province, Indonesia. J. Meas. Eng. 2022, 10, 68–80. [Google Scholar] [CrossRef]
- Faradiba. Analysis of Intensity, Duration, and Frequency Rain Daily of Java Island Using Mononobe Method. J. Phys. Conf. Ser. 2021, 1783, 012107. [Google Scholar] [CrossRef]
- Kusumastuti, C.; Sudjarwo, P.; Christhie, M.; Krisna, T. Intensity-Duration-Frequency (IDF) Curve and the Most Suitable Method to Determine Flood Peak Discharge in Upper Werba Sub-Watershed. Civ. Eng. Dimens. 2019, 21, 70–75. [Google Scholar] [CrossRef]
- Singh, P.K.; Mishra, S.K.; Jain, M.K. A Review of The Synthetic Unit Hydrograph: From The Empirical UH to Advanced Geomorphological Methods. Hydrol. Sci. J. 2014, 59, 239–261. [Google Scholar] [CrossRef]
- Tunas, I.G.; Anwar, N.; Lasminto, U. A Synthetic Unit Hydrograph Model Based on Fractal Characteristics of Watersheds. Int. J. River Basin Manag. 2019, 17, 465–477. [Google Scholar] [CrossRef]
- Zulfa, G.F.; Purnaditya, N.P.; Wigati, R.; Subekti, S.; Priyambodho, B.A. Prediction of Snyder Synthetic Unit Hydrograph Coefficient for Cidurian Watershed. Fondasi J. Tek. Sipil 2023, 12, 271–281. [Google Scholar] [CrossRef]
- Tunas, I.G.; Anwar, N.; Lasminto, U. Fractal Characteristic Analysis of Watershed as Variable of Synthetic Unit Hydrograph Model. Open Civ. Eng. J. 2016, 10, 706–718. [Google Scholar] [CrossRef]
- Tunas, I.G. The Application of ITS-2 Model for Flood Hydrograph Simulation in Large-Size Rainforest Watershed, Indonesia. J. Ecol. Eng. 2019, 20, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Ozbey, N.; Gül, U.S. Constructing Uncertainty Budget for A Two-Dimensional Hydraulic Model. IOP Conf. Ser. Mater. Sci. Eng. 2019, 615, 012059. [Google Scholar] [CrossRef]
- Amaliah, R.; Ginting, B.M. Investigating the Capability of HEC-RAS Model for Tsunami Simulation. J. Civ. Eng. Forum 2023, 9, 161–180. [Google Scholar] [CrossRef]
- Bagheri, K.; Requieron, W.; Tavakol, H. A Comparative Study of 2-Dimensional Hydraulic Modeling Software, Case Study: Sorrento Valley, San Diego, California. J. Water Manag. Model. 2020, 28, C471. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS, River Analysis System 2D Modeling User’s Manual Version 5.0; Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers: Davis, CA, USA, 2016.
- Khair, U.; Fahmi, H.; Al Hakim, S.; Rahim, R. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. J. Phys. Conf. Ser. 2017, 930, 012002. [Google Scholar] [CrossRef]
- Amri, M.R.; Yulianti, G.; Yunus, R.; Wiguna, S.; Adi, A.W.; Ichwana, A.N.; Randongkir, R.E.; Septian, R.T. Risiko Bencana Indonesia (Indonesian Disaster Risk), 1st ed.; Jati, R., Amri, M.R., Eds.; Badan Nasional Penanggulangan Bencana: Jakarta, Indonesia, 2016.
- Maricar, F.; Karamma, R.; Mustamin, M.R.; Maricar, M.F. Numerical Simulation of Flood Propagation in the Kelara River Flood Early Warning System. J. Water Manag. Model. 2023, 31, C501. [Google Scholar] [CrossRef]
Indicator Components | Depth (m) | Class |
---|---|---|
Map of Flood-prone areas | <0.76 | Low |
0.76–1.5 | Moderate | |
>1.5 | High |
Return Period (Year) | Rainfall Plan (mm) |
---|---|
1.01 | 65.601 |
2 | 115.518 |
5 | 161.539 |
10 | 198.687 |
25 | 254.064 |
50 | 302.111 |
100 | 356.444 |
No. | Morphometric Characteristics | Value |
---|---|---|
1. | Watershed Area (A) | 513.61 km2 |
2. | Length Of Main River (L) | 100.81 km |
3. | Circularity Ratio (Rc) | 0.22 |
4. | Source Frequency (SN) | 0.74 |
5. | Upstream Watershed Area Factor (RUA) | 0.52 |
No. | Coordinates | Historical Flood Depth (m) (A) | Simulated Flood Depth (m) (B) | Error (A–B) | MAPE | |
---|---|---|---|---|---|---|
Easting (m) | Northing (m) | |||||
1 | 202,775.58 | 9,558,338.80 | 0.50 | 0.47 | 0.03 | 0.07 |
2 | 202,531.48 | 9,558,186.71 | 0.20 | 0.19 | 0.01 | 0.04 |
3 | 201,294.37 | 9,557,760.99 | 0.50 | 0.39 | 0.11 | 0.21 |
4 | 200,236.83 | 9,557,936.65 | 0.90 | 0.78 | 0.12 | 0.13 |
5 | 199,971.44 | 9,558,711.29 | 1.10 | 1.33 | −0.23 | 0.21 |
6 | 200,247.89 | 9,559,961.76 | 0.20 | 0.17 | 0.03 | 0.16 |
7 | 197,255.02 | 9,560,678.27 | 0.80 | 0.91 | −0.11 | 0.13 |
8 | 189,129.15 | 9,560,737.03 | 0.90 | 1.08 | −0.18 | 0.20 |
9 | 189,038.14 | 9,560,630.61 | 0.90 | 0.76 | 0.14 | 0.15 |
10 | 188,783.83 | 9,560,622.25 | 0.90 | 0.83 | 0.07 | 0.08 |
11 | 188,760.47 | 9,562,625.03 | 1.00 | 0.86 | 0.14 | 0.14 |
12 | 186,829.48 | 9,564,484.95 | 0.90 | 0.93 | −0.03 | 0.03 |
13 | 201,952.43 | 9,558,101.19 | 0.70 | 0.65 | 0.05 | 0.07 |
14 | 201,631.27 | 9,557,888.82 | 0.30 | 0.31 | −0.01 | 0.02 |
15 | 201,362.29 | 9,557,828.37 | 1.30 | 1.34 | −0.04 | 0.03 |
16 | 201,252.51 | 9,557,846.68 | 0.80 | 0.82 | −0.02 | 0.02 |
17 | 200,762.64 | 9,557,950.15 | 2.00 | 1.79 | 0.21 | 0.11 |
18 | 200,253.24 | 9,558,117.62 | 0.20 | 0.22 | −0.02 | 0.08 |
19 | 200,019.64 | 9,558,379.36 | 0.60 | 0.55 | 0.05 | 0.09 |
20 | 199,914.14 | 9,558,449.88 | 2.20 | 2.16 | 0.04 | 0.02 |
21 | 200,065.77 | 9,559,040.17 | 1.00 | 0.97 | 0.03 | 0.03 |
22 | 199,171.16 | 9,560,409.07 | 0.30 | 0.29 | 0.01 | 0.05 |
23 | 197,387.93 | 9,560,689.23 | 0.90 | 0.87 | 0.03 | 0.04 |
24 | 197,874.72 | 9,560,452.94 | 1.50 | 1.44 | 0.06 | 0.04 |
25 | 189,389.30 | 9,561,041.98 | 0.40 | 0.32 | 0.08 | 0.20 |
26 | 188,805.18 | 9,562,183.30 | 0.30 | 0.24 | 0.06 | 0.20 |
27 | 186,785.42 | 9,564,053.65 | 1.50 | 1.41 | 0.09 | 0.06 |
28 | 186,878.43 | 9,564,582.61 | 0.60 | 0.52 | 0.08 | 0.13 |
Amount | 2.74 | |||||
Overall Mean Absolute Percentage Error (MAPE) (%) | 9.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustamin, M.R.; Maricar, F.; Lopa, R.T.; Karamma, R. Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia. Earth 2024, 5, 274-292. https://doi.org/10.3390/earth5030015
Mustamin MR, Maricar F, Lopa RT, Karamma R. Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia. Earth. 2024; 5(3):274-292. https://doi.org/10.3390/earth5030015
Chicago/Turabian StyleMustamin, Muhammad Rifaldi, Farouk Maricar, Rita Tahir Lopa, and Riswal Karamma. 2024. "Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia" Earth 5, no. 3: 274-292. https://doi.org/10.3390/earth5030015
APA StyleMustamin, M. R., Maricar, F., Lopa, R. T., & Karamma, R. (2024). Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia. Earth, 5(3), 274-292. https://doi.org/10.3390/earth5030015