Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = cystathionine-synthase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2748 KiB  
Article
Relationships Between H2S and OT/OTR Systems in Preeclampsia
by Tamara Merz, Sarah Ecker, Nicole Denoix, Oscar McCook, Stefanie Kranz, Ulrich Wachter, Edit Rottler, Thomas Papadopoulos, Christoph Fusch, Cosima Brucker, Jakob Triebel, Thomas Bertsch, Peter Radermacher and Christiane Waller
Antioxidants 2025, 14(7), 880; https://doi.org/10.3390/antiox14070880 - 18 Jul 2025
Viewed by 257
Abstract
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive [...] Read more.
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive effects. Thus, the role of the interaction of the OT and H2S systems in the context of PE was further elucidated in the present clinical case–control study “NU-HOPE” (Nürnberg-Ulm: The role of H2S and Oxytocin Receptor in Pre-Eclampsia; ethical approval by the Landesärztekammer Bayern, file number 19033, 29 August 2019), comparing uncomplicated pregnancies, early onset PE (ePE, onset < 34 weeks gestational age) and late onset PE (lPE, onset > 34 weeks gestational age). Routine clinical data, serum H2S and homocysteine levels, and tissue protein expression, as well as nitrotyrosine formation, were determined. The main findings were (i) unchanged plasma sulfide levels, (ii) significantly elevated homocysteine levels in ePE, but not lPE, (iii) significantly elevated expression of H2S enzymes and OT receptor in the placenta in lPE, and (iv) significantly elevated nitrotyrosine formation in the lPE myometrium. Taken together, these findings suggest a role for the interaction of the endogenous H2S- and OT/OTR systems in the pathophysiology of pre-eclampsia, possibly linked to impaired antioxidant protection. Full article
Show Figures

Figure 1

27 pages, 7200 KiB  
Article
The Biological Consequences of the Knockout of Genes Involved in the Synthesis and Metabolism of H2S in Drosophila melanogaster
by Victoria Y. Shilova, David G. Garbuz, Lyubov N. Chuvakova, Alexander P. Rezvykh, Sergei Y. Funikov, Artem I. Davletshin, Svetlana Y. Sorokina, Ekaterina A. Nikitina, Olga Gorenskaya, Michael B. Evgen’ev and Olga G. Zatsepina
Antioxidants 2025, 14(6), 693; https://doi.org/10.3390/antiox14060693 - 6 Jun 2025
Viewed by 657
Abstract
Here, we describe the effects of double knockout (KO) of the cbs and cse genes, which are responsible for H2S synthesis through the transsulfuration pathway, and KO of the sulfurtransferase gene (dtst1) in Drosophila melanogaster females. The analysis of [...] Read more.
Here, we describe the effects of double knockout (KO) of the cbs and cse genes, which are responsible for H2S synthesis through the transsulfuration pathway, and KO of the sulfurtransferase gene (dtst1) in Drosophila melanogaster females. The analysis of H2S production in flies showed minimal levels in the double- and triple-knockout strains. The double- (cbs-/-; cse-/-) and triple- (cbs-/-; cse-/-; dtst-/-) KO flies exhibited a shortened lifespan and reduced fecundity, and showed dramatic changes in Malpighian tubule morphology. The transcriptomic analysis revealed a profound increase in the expression levels of several genes involved in excretory system function in the double-KO and especially the triple-KO flies. Importantly, major groups of differentially expressed genes (DEGs) in the whole bodies of females and ovaries of KO strains included genes responsible for detoxification, reproduction, mitochondrial activity, excretion, cell migration, and muscle system function. The reduced fecundity observed in the double- and triple-KO flies correlated with pronounced changes in the ovarian transcriptome. At the same time, the single knockout of dtst1 increased the flies’ fecundity and lifespan. Our experiments exploring unique Drosophila strains with KO of major H2S-related genes revealed several new pathways controlled by this ancient adaptogenic system that is involved in various human diseases and aging. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

13 pages, 3593 KiB  
Article
Identification and Functional Analysis of Cystathionine Beta-Synthase Gene Mutations in Chinese Families with Classical Homocystinuria
by Xin Liu, Xinhua Liu, Jinfeng Liu, Junhong Guo, Danyao Nie and Jiantao Wang
Biomedicines 2025, 13(4), 919; https://doi.org/10.3390/biomedicines13040919 - 9 Apr 2025
Viewed by 669
Abstract
Background: Homocystinuria caused by cystathionine β-synthase (CBS) deficiency is the most common congenital disorder related to sulfur amino acid metabolism, manifested by neurological, vascular, and connective tissue involvement. Methods: This study analyzed the pathogenic gene and molecular mechanism of two classic homocystinuria families [...] Read more.
Background: Homocystinuria caused by cystathionine β-synthase (CBS) deficiency is the most common congenital disorder related to sulfur amino acid metabolism, manifested by neurological, vascular, and connective tissue involvement. Methods: This study analyzed the pathogenic gene and molecular mechanism of two classic homocystinuria families through whole exome sequencing and in vitro experiments including minigene assay and expression analysis. Results: Both probands presented with ectopia lentis, high myopia, and abnormally elevated homocysteine level, but one of them had more severe clinical manifestations, including general growth retardation, mild intellectual disability, and severe pectus excavatum. Their family members were phenotypically normal but presented slightly higher levels of homocysteine in plasma. Whole exome sequencing revealed that the two probands carried c.833T>C (p.Ile278Thr) and c.1359-1G>C, and c.919G>A (p.Gly307Ser) and c.131delT (p.Tle44Thrfs*38) compound heterozygous mutations in the CBS gene, respectively. Bioinformatics and in vitro functional analysis showed that the c.1359-1G>C mutation affects the normal splicing of CBS gene, resulting in the production of two abnormal transcripts and the production of two truncated proteins. One of the c.1359-1G>C splicing events (c.1359_1467del) and c.131delT (p.Tle44Thrfs*38) both lead to a significant decrease in CBS mRNA and protein levels. Conclusions: Accurate diagnosis of patients with homocystinuria is of great importance for timely and effective treatment, as well as for the provision of appropriate genetic counseling and prenatal diagnosis guidance to the affected families. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 1271 KiB  
Article
Altered Production and Cellular Levels of Hydrogen Sulfide (H2S) in Placental Trophoblasts from Pregnancies Affected by Pre-Eclampsia
by Xiaodan Chu, Jie Xu, Xinggui Shen, Wenji Sheng, Jingxia Sun, Yang Gu, David F. Lewis, Danielle Cooper, Dani Zoorob and Yuping Wang
Pathophysiology 2025, 32(1), 10; https://doi.org/10.3390/pathophysiology32010010 - 4 Mar 2025
Viewed by 762
Abstract
Background/Objectives: Hydrogen sulfide (H2S) is a vasorelaxant gas and exerts anti-oxidative, anti-inflammatory, and cytoprotective effects. H2S has been implicated in regulating placental vaso-activity and angiogenesis. It is believed that abnormal trophoblast production of vasodilators and angiogenic factors contributes to [...] Read more.
Background/Objectives: Hydrogen sulfide (H2S) is a vasorelaxant gas and exerts anti-oxidative, anti-inflammatory, and cytoprotective effects. H2S has been implicated in regulating placental vaso-activity and angiogenesis. It is believed that abnormal trophoblast production of vasodilators and angiogenic factors contributes to pre-eclampsia development. However, little is known about whether aberrant H2S production is present in placental trophoblasts from pre-eclamptic pregnancies. Methods: Trophoblasts were isolated from normal and pre-eclamptic placentas. After incubation, cell production of H2S in the culture medium and the cellular levels of H2S were analyzed by reversed phase high-performance liquid chromatography (RP-HPLC). Expression levels of the three key H2S converting enzymes, cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), were determined by immunohistochemistry. The protein expression of CBS and CSE was assessed by Western blot analysis. Results: (1) Trophoblast production and cellular levels of H2S were significantly reduced in cells from pre-eclamptic vs. normal placentas; (2) free H2S production was increased in a time-dependent manner in cultured trophoblasts from normal, but not from pre-eclamptic, placentas; and (3) strong CBS and CSE expression was seen in trophoblasts from normal, as opposed to pre-eclamptic, placentas. Reduced CBS and CSE expression in trophoblasts from pre-eclamptic vs. normal placentas were confirmed by Western blot analysis; and (4) 3-MST expression was undetachable in both normal and pre-eclamptic placentas, but 3-MST expression was strongly expressed in the first and second trimester placentas. Conclusions: These data provide plausible evidence that downregulation of CBS and CSE, but not 3-MST, expression may be responsible for reduced free H2S production and decreased cellular H2S levels in pre-eclamptic placentas. Our data provide further evidence that expression of 3-MST in placental trophoblasts is likely gestational age (developmental)-dependent. Full article
Show Figures

Figure 1

14 pages, 3861 KiB  
Article
The Reliable Detection of Homocysteine Using a Biosensor Based on Recombinant Cystathionine β-Synthase and Nanoporous Gold
by Zihan Huang, Yan Gao, Lei Zhang, Ting Cai, Ruijun Liu and Xia Wang
Microorganisms 2025, 13(3), 559; https://doi.org/10.3390/microorganisms13030559 - 1 Mar 2025
Viewed by 760
Abstract
Given the essential roles of homocysteine (Hcy) and the interference of cysteine in effectively monitoring human health, this study proposed a synergistic effect strategy that combines the unique structural and functional properties of nanoporous gold (NPG) with the selective recognition capability of a [...] Read more.
Given the essential roles of homocysteine (Hcy) and the interference of cysteine in effectively monitoring human health, this study proposed a synergistic effect strategy that combines the unique structural and functional properties of nanoporous gold (NPG) with the selective recognition capability of a recombinant cystathionine β-synthase (CBS) for the sensitive and specific detection of Hcy. The CBS protein with specific catalytic activity for Hcy was successfully produced in recombinant Escherichia coli BL21 (pET-30a-cbs) using the cbs gene from Pseudomonas aeruginosa PAO1. The electrochemical mechanism demonstrated that the electrooxidation of H2S, a catalytic product of the CBS, was an irreversibly surface-controlled process on the CBS/NPG/GCE electrode surface. The electrochemical detection of Hcy exhibited excellent linearity, with a high sensitivity reaching 10.43 µA mM1 cm2 and a low detection limit of 1.31 µM. Furthermore, the CBS/NPG/GCE biosensor was successfully used to detect Hcy in urine samples with strong anti-interference capability and high selectivity (relative standard deviation less than 2.81%), while effectively reducing the interference from cysteine. These results confirmed that the proposed CBS/NPG/GCE electrochemical sensor achieved specific, sensitive, and reliable rapid detection of homocysteine, making it highly promising for practical applications in clinical treatment and health assessment. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

35 pages, 5608 KiB  
Review
The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease
by Jeffery T. Jolly and Jessica S. Blackburn
Int. J. Mol. Sci. 2025, 26(4), 1528; https://doi.org/10.3390/ijms26041528 - 12 Feb 2025
Cited by 1 | Viewed by 2203
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological [...] Read more.
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins’ structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders. Full article
Show Figures

Graphical abstract

19 pages, 2715 KiB  
Article
Enhancing Postharvest Quality of Fresh-Cut Changgen Mushrooms by Exogenous L-Cysteine Treatment: Aspects of Accumulating Amino Acids, Triggering Energy Metabolism and Enhancing Endogenous H2S Regulation
by Xingchi Ma, Tianhao Li, Weijian Mao, Yu Zhang, Haoran Liu, Wenwen Jiang, Yanan Sun, Hao Yu, Fansheng Cheng and Dan Zhu
Foods 2025, 14(3), 496; https://doi.org/10.3390/foods14030496 - 4 Feb 2025
Viewed by 1044
Abstract
As a rare and functional edible mushroom, the market potential of ready-to-eat fresh-cut Changgen mushrooms (Oudemansiella raphanipes) is booming in developing countries. However, fresh-cut mushrooms preservation is challenging in distribution and consumption. The present study discovered that exogenous L-cysteine ( [...] Read more.
As a rare and functional edible mushroom, the market potential of ready-to-eat fresh-cut Changgen mushrooms (Oudemansiella raphanipes) is booming in developing countries. However, fresh-cut mushrooms preservation is challenging in distribution and consumption. The present study discovered that exogenous L-cysteine (L-Cys) treatment delayed the weight loss, browning degree, nutrition depletion and microbial contamination of fresh-cut Changgen mushrooms at 4 °C. Based on transcriptomic data, exogenous L-Cys significantly activated the metabolism of 17 amino acids, including L-Cys and methionine, a prerequisite for hydrogen sulfide (H2S) synthesis. Exogenous L-Cys also stimulated the activities and gene expressions of cystathionine beta-synthase and cystathionine gamma-lyase, thereby increasing H2S levels. Furthermore, exogenous L-Cys enhanced the energy metabolism by improving cytochrome c oxidase, H+-ATPase and Ca2+-ATPase enzymes activity. Exogenous L-Cys treatment reduced the reactive oxygen species by regulating enzyme activities such as polyphenol oxidase, catalase and superoxide dismutase. This study contributes valuable insights into the physiological function of L-Cys and the role of H2S on the fresh-cut Changgen mushroom. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

11 pages, 1230 KiB  
Article
Neuroprotective Actions of Cannabinoids in the Bovine Isolated Retina: Role of Hydrogen Sulfide
by Leah Bush, Anthonia Okolie, Jenaye Robinson, Fatima Muili, Catherine A. Opere, Sunny E. Ohia and Ya Fatou Njie Mbye
Pharmaceuticals 2025, 18(1), 117; https://doi.org/10.3390/ph18010117 - 17 Jan 2025
Viewed by 999
Abstract
Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. Purpose: The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against [...] Read more.
Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. Purpose: The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (H2O2)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (H2S) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Methods: Isolated neural retinas from cows were exposed to oxidative damage using H2O2 (100 µM) for 10 min. When used, tissues were pretreated with methanandamide (1 nM–100 nM) and 2-AG (1–10 µM) for 30 min before a 10 min treatment with H2O2 (100 µM). In some experiments, retinas were pretreated with inhibitors of the biosynthesis of H2S [cystathionine β-synthase/cystathionine γ-lyase (CBS/CSE), aminooxyacetic acid, AOAA 30 µM, or 3-mercaptopyruvate sulfurtransferase (3MST), α-keto-butyric acid, KBA 1 mM] and the CB1-receptor antagonist, AM251 (100 nM) for 30 min before treatment with methanandamide (1 nM–100 µM). Enzyme immunoassay measurement of 8-epi PGF2α (8-isoprostane) levels was performed to assess lipid peroxidation in retinal tissues. Results: In the presence of H2O2 (100 µM), methanandamide (1 nM–100 µM) and 2-AG (1–10 µM) significantly (p < 0.001) blocked the H2O2-induced elevation in 8-isoprostane levels in the isolated bovine retina. In the presence of the CB1 antagonist AM251 (100 nM), the effect of methanandamide (1 nM) on the H2O2-induced 8-isoprostane production was significantly (p < 0.001) attenuated. While AOAA (30 µM) had no significant (p > 0.05) effect on the inhibition of H2O2-induced oxidative stress elicited by methanandamide, KBA (1 mM) reversed the neuroprotective action of methanandamide. Conclusions: The cannabinoids, methanandamide and 2-AG can prevent H2O2-induced oxidative stress in the isolated bovine retina. The neuroprotective actions of cannabinoids are partially dependent upon the activation of the CB1 receptors and endogenous production of H2S via the 3-MST/CAT pathway. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

34 pages, 6616 KiB  
Review
Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease
by Hieronim Jakubowski and Łukasz Witucki
Int. J. Mol. Sci. 2025, 26(2), 746; https://doi.org/10.3390/ijms26020746 - 16 Jan 2025
Cited by 10 | Viewed by 3537
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins [...] Read more.
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Cardiovascular Diseases)
Show Figures

Figure 1

16 pages, 1141 KiB  
Review
Hyperhomocysteinemia and Disease—Is 10 μmol/L a Suitable New Threshold Limit?
by Giada Marroncini, Serena Martinelli, Sara Menchetti, Francesco Bombardiere and Francesco Saverio Martelli
Int. J. Mol. Sci. 2024, 25(22), 12295; https://doi.org/10.3390/ijms252212295 - 15 Nov 2024
Cited by 4 | Viewed by 2333
Abstract
Hyperhomocysteinemia (HHcy) is a medical condition characterized by an abnormally high level of homocysteine (Hcy) in the blood. Homocysteine is a toxic sulfur-containing amino acid that is produced during the metabolism of methionine. Under normal circumstances, Hcy is recycled back to methionine via [...] Read more.
Hyperhomocysteinemia (HHcy) is a medical condition characterized by an abnormally high level of homocysteine (Hcy) in the blood. Homocysteine is a toxic sulfur-containing amino acid that is produced during the metabolism of methionine. Under normal circumstances, Hcy is recycled back to methionine via the remethylation pathway, through the action of various enzymes and vitamins, particularly folic acid (vitamin B9) and B12 used when intracellular methionine levels are low, thus restoring the necessary levels to correctly maintain active protein synthesis. A second pathway, used in cases of intracellular methionine excess, (the trans-sulfuration pathway) is the one that recycles Hcy into cysteine (a precursor of glutathione), first passing through cystathionine (via the enzyme cystathionine beta-synthase), a reaction that requires vitamin B6 in its active form. HHcy has been identified as a risk factor for a variety of disorders, including cardiovascular diseases, multiple sclerosis, diabetes, Alzheimer’s and Parkinson’s diseases, osteoporosis and cancer. However, it remains unclear whether the slightly elevated concentration of Hcy (Hcy 7–10 μmol/L) is a causative factor or simply a marker of these pathologies. In human plasma, the concentration of Hcy ([Hcy]) is classified as mild (15 to 30 μmol/L), moderate (30 to 100 μmol/L), and severe (greater than 100 μmol/L). Interestingly, many laboratories continue to consider 25 μmol/L as normal. This review seeks to examine the controversial literature regarding the normal range of HHcy and emphasizes that even a [Hcy] level of 10 μmol/L may contribute to the development of several diseases, aiming to discuss whether it would be appropriate to lower the threshold of HHcy normal values. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 4428 KiB  
Article
SOD1 Is an Integral Yet Insufficient Oxidizer of Hydrogen Sulfide in Trisomy 21 B Lymphocytes and Can Be Augmented by a Pleiotropic Carbon Nanozyme
by Karthik Mouli, Anton V. Liopo, Larry J. Suva, Kenneth R. Olson, Emily A. McHugh, James M. Tour, Paul J. Derry and Thomas A. Kent
Antioxidants 2024, 13(11), 1361; https://doi.org/10.3390/antiox13111361 - 7 Nov 2024
Cited by 3 | Viewed by 2626
Abstract
Down syndrome (DS) is a multisystemic disorder that includes accelerated aging caused by trisomy 21. In particular, overexpression of cystathionine-β-synthase (CBS) is linked to excess intracellular hydrogen sulfide (H2S), a mitochondrial toxin at higher concentrations, which impairs cellular viability. Concurrent overexpression [...] Read more.
Down syndrome (DS) is a multisystemic disorder that includes accelerated aging caused by trisomy 21. In particular, overexpression of cystathionine-β-synthase (CBS) is linked to excess intracellular hydrogen sulfide (H2S), a mitochondrial toxin at higher concentrations, which impairs cellular viability. Concurrent overexpression of superoxide dismutase 1 (SOD1) may increase oxidative stress by generating excess hydrogen peroxide (H2O2) while also mitigating the toxic H2S burden via a non-canonical sulfide-oxidizing mechanism. We investigated the phenotypic variability in basal H2S levels in relation to DS B lymphocyte cell health and SOD1 in H2S detoxification. The H2S levels were negatively correlated with the DS B lymphocyte growth rates but not with CBS protein. Pharmacological inhibition of SOD1 using LCS-1 significantly increased the H2S levels to a greater extent in DS cells while also decreasing the polysulfide products of H2S oxidation. However, DS cells exhibited elevated H2O2 and lipid peroxidation, representing potential toxic consequences of SOD1 overexpression. Treatment of DS cells with a pleiotropic carbon nanozyme (pleozymes) decreased the total oxidative stress and reduced the levels of the H2S-generating enzymes CBS and 3-mercaptopyruvate sulfurtransferase (MPST). Our results indicate that pleozymes may bridge the protective and deleterious effects of DS SOD1 overexpression on H2S metabolism and oxidative stress, respectively, with cytoprotective benefits. Full article
Show Figures

Figure 1

35 pages, 16365 KiB  
Article
The Role of Hydrogen Sulfide in iNOS and APP Localization and Expression in Neurons and Glial Cells Under Traumatic Effects: An Experimental Study with Bioinformatics Analysis and Biomodeling
by Stanislav Rodkin, Chizaram Nwosu and Evgeniya Kirichenko
Int. J. Mol. Sci. 2024, 25(22), 11892; https://doi.org/10.3390/ijms252211892 - 5 Nov 2024
Cited by 2 | Viewed by 1353
Abstract
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of [...] Read more.
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of inducible NO synthase (iNOS) and amyloid-beta precursor protein (APP) in damaged neural tissue at 24 h and 7 days following traumatic brain injury (TBI). The application of aminooxyacetic acid (AOAA), an inhibitor of cystathionine β-synthase (CBS), produced the opposite effect. Seven days after TBI, iNOS expression was observed not only in the cytoplasm but also in some neuronal nuclei, while APP was exclusively localized in the cytoplasm and axons of damaged neurons. It was also shown that iNOS and APP were present in the cytoplasm of mechanoreceptor neurons (MRNs) in the crayfish, in axons, as well as in certain glial cells 8 h after axotomy. Na2S and AOAA had opposing effects on axotomized MRNs and ganglia in the ventral nerve cord (VNC). Multiple sequence alignments revealed a high degree of identity among iNOS and APP amino acid residues in various vertebrate and invertebrate species. In the final stage of this study, biomodeling identified unique binding sites for H2S, hydrosulfide anion (HS), and thiosulfate (S2O32−) with iNOS and APP. Full article
Show Figures

Figure 1

16 pages, 5047 KiB  
Article
Role of Sex and Early Life Stress Experience on Porcine Cardiac and Brain Tissue Expression of the Oxytocin and H2S Systems
by Franziska Münz, Nadja Abele, Fabian Zink, Eva-Maria Wolfschmitt, Melanie Hogg, Claus Barck, Josef Anetzberger, Andrea Hoffmann, Michael Gröger, Enrico Calzia, Christiane Waller, Peter Radermacher and Tamara Merz
Biomolecules 2024, 14(11), 1385; https://doi.org/10.3390/biom14111385 - 30 Oct 2024
Viewed by 1079
Abstract
Early life stress (ELS) significantly increases the risk of chronic cardiovascular diseases and may cause neuroinflammation. This post hoc study, based on the material available from a previous study showing elevated “serum brain injury markers” in male control animals, examines the effect of [...] Read more.
Early life stress (ELS) significantly increases the risk of chronic cardiovascular diseases and may cause neuroinflammation. This post hoc study, based on the material available from a previous study showing elevated “serum brain injury markers” in male control animals, examines the effect of sex and/or ELS on the cerebral and cardiac expression of the H2S and oxytocin systems. Following approval by the Regional Council of Tübingen, a randomized controlled study was conducted on 12 sexually mature, uncastrated German Large White swine of both sexes. The control animals were separated from their mothers at 28–35 days, while the ELS group was separated at day 21. At 20–24 weeks, animals underwent anesthesia, ventilation, and surgical instrumentation. An immunohistochemical analysis of oxytocin, its receptor, and the H2S-producing enzymes cystathionine-β-synthase and cystathionine-γ-lyase was performed on hypothalamic, prefrontal cortex, and myocardial tissue samples. Data are expressed as the % of positive tissue staining, and differences between groups were tested using a two-way ANOVA. The results showed no significant differences in the oxytocin and H2S systems between groups; however, sex influenced the oxytocin system, and ELS affected the oxytocin and H2S systems in a sex-specific manner. No immunohistochemical correlate to the elevated “serum brain injury markers” in male controls was identified. Full article
Show Figures

Figure 1

13 pages, 2322 KiB  
Article
Neuroprotective Actions of Hydrogen Sulfide-Releasing Compounds in Isolated Bovine Retinae
by Leah Bush, Jenaye Robinson, Anthonia Okolie, Fatima Muili, Catherine A. Opere, Matthew Whiteman, Sunny E. Ohia and Ya Fatou Njie Mbye
Pharmaceuticals 2024, 17(10), 1311; https://doi.org/10.3390/ph17101311 - 1 Oct 2024
Cited by 2 | Viewed by 1147
Abstract
Background: We have evidence that hydrogen sulfide (H2S)-releasing compounds can reduce intraocular pressure in normotensive and glaucomatous rabbits by increasing the aqueous humor (AH) outflow through the trabecular meshwork. Since H2S has been reported to possess neuroprotective actions, the [...] Read more.
Background: We have evidence that hydrogen sulfide (H2S)-releasing compounds can reduce intraocular pressure in normotensive and glaucomatous rabbits by increasing the aqueous humor (AH) outflow through the trabecular meshwork. Since H2S has been reported to possess neuroprotective actions, the prevention of retinal ganglion cell loss is an important strategy in the pharmacotherapy of glaucoma. Consequently, the present study aimed to investigate the neuroprotective actions of H2S-releasing compounds against hydrogen peroxide (H2O2)-induced oxidative stress in an isolated bovine retina. Materials and Methods: The isolated neural retinae were pretreated with a substrate for H2S biosynthesis called L-cysteine, with the fast H2S-releasing compound sodium hydrosulfide, and with a mitochondrial-targeting H2S-releasing compound, AP123, for thirty minutes before a 30-min oxidative insult with H2O2 (100 µM). Lipid peroxidation was assessed via an enzyme immunoassay by measuring the stable oxidative stress marker, 8-epi PGF2α (8-isoprostane), levels in the retinal tissues. To determine the role of endogenous H2S, studies were performed using the following biosynthesis enzyme inhibitors: aminooxyacetic acid (AOAA, 30 µM); a cystathione-β-synthase/cystathionine-γ-lyase (CBS/CSE) inhibitor, α–ketobutyric acid (KBA, 1 mM); and a 3-mercaptopyruvate-s-sulfurtransferase (3-MST) inhibitor, in the absence and presence of H2S-releasing compounds. Results: Exposure of the isolated retinas to H2O2 produced a time-dependent (10–40 min) and concentration-dependent (30–300 µM) increase in the 8-isoprostane levels when compared to the untreated tissues. L-cysteine (10 nM–1 µM) and NaHS (30 –100 µM) significantly (p < 0.001; n = 12) prevented H2O2-induced oxidative damage in a concentration-dependent manner. Furthermore, AP123 (100 nM–1 µM) attenuated oxidative H2O2 damage resulted in an approximated 60% reduction in 8-isoprostane levels compared to the tissues treated with H2O2 alone. While AOAA (30 µM) and KBA (1 mM) did not affect the L-cysteine evoked attenuation of H2O2-induced oxidative stress, KBA reversed the antioxidant responses caused by AP123. Conclusions: In conclusion, various forms of H2S-releasing compounds and the substrate, L-cysteine, can prevent H2O2-induced lipid peroxidation in an isolated bovine retina. Full article
Show Figures

Figure 1

20 pages, 5597 KiB  
Article
Isorhamnetin Alleviates Renal Fibrosis by Inducing Endogenous Hydrogen Sulfide and Regulating Thiol-Based Redox State in Obstructed Kidneys
by Zhen Zhang, Haiyan Zhang, Jianyu Shi, Zheng Wang, Yanni Liang, Jingao Yu, Hongbo Wang, Zhongxing Song, Zhishu Tang, Dongbo Zhang and Jian Yao
Biomolecules 2024, 14(10), 1233; https://doi.org/10.3390/biom14101233 - 29 Sep 2024
Cited by 5 | Viewed by 1738
Abstract
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against [...] Read more.
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against renal fibrosis and the underlying mechanisms are still poorly understood. Given that many actions of ISO could be similarly attained by hydrogen sulfide (H2S), we speculated that ISO may work through the induction of endogenous H2S. To test the hypothesis, we established the unilateral ureteral obstruction (UUO) renal fibrosis rat model and transforming growth factor-β1(TGF-β1)-induced fibrosis in cultured renal tubular cells. ISO treatment inhibited epithelial–mesenchymal transition (EMT) formation, decreased extracellular matrix (ECM) deposition, and relieved renal fibrosis. Further analysis revealed that ISO stimulated the expression of the H2S-synthesizing enzyme cystathionine lyase (CSE) and cystathionine beta-synthase (CBS), and promoted H2S production in vivo and in vitro. The elevated H2S attenuated oxidative stress and elevated the thiol level. It induced Keap1 sulfhydration, disrupted Keap1-Nrf2 interaction, and promoted the entry of Nrf2 into the nucleus. Finally, we found that circulating H2S mainly derived from the liver, and not the kidney. Collectively, our study revealed that ISO alleviated renal fibrosis by inducing endogenous H2S and regulating Keap1-Nrf2 interaction through sulfhydration of Keap1. Endogenous H2S could be an important mediator underlying the pharmacological actions of ISO. Due to the multifunctional properties of H2S, the H2S-inducing nature of ISO could be exploited to treat various diseases. Full article
Show Figures

Graphical abstract

Back to TopTop