Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,193)

Search Parameters:
Keywords = cycling routes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1174 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 (registering DOI) - 10 Jan 2026
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
19 pages, 2890 KB  
Article
Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes
by Xin Luo, Wenxia Zhao, Lin Fu, Yun Deng, Weijie Xue, Changbo Zhang, Ian Beadham, Zhongyan Lu, Yuyao Liu, Fanshu Bi and Qingshuai Wang
Toxics 2026, 14(1), 64; https://doi.org/10.3390/toxics14010064 - 9 Jan 2026
Abstract
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional [...] Read more.
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional hydrochloric acid (HCl) and sodium hydroxide (NaOH, as traditional modification reagents), were compared in modifying non-carbonized BR for Congo Red (CR) adsorption. Comprehensive characterizations and adsorption tests revealed that each modifier exerted unique effects: NaOH only caused mild surface etching with limited performance improvement; AAILs achieved moderate adsorption capacity via a green, mild route; while HCl modification (BR-HCl) stood out with the most superior performance through a “selective dissolution-pore reconstruction” mechanism. Notably, despite a modest specific surface area increase to 12.05 m2/g, BR-HCl’s high CR adsorption capacity (120.21 mg/g at 45 °C) originated from the synergy of chemical bonding and enhanced electrostatic attraction—its isoelectric point (pHPZC ≈ 9.02) was significantly higher than that of AAIL- and NaOH-modified samples, enabling strong affinity for anionic CR across a wide pH range. BR-HCl attained over 99% CR removal at a dosage of 0.4 g/L, fitted well with Langmuir isotherm and pseudo-second-order kinetic models (confirming monolayer chemisorption), and retained 82% of its initial capacity after five regeneration cycles. These results demonstrate that while AAILs show promise as green modifiers and NaOH serves as a baseline, the facile, low-cost HCl modification offers the most pragmatic pathway to unlock BR’s potential for sustainable wastewater treatment. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

33 pages, 415 KB  
Review
Cheese Whey Valorization via Microbial Fermentation (Lactic Acid Bacteria, Yeasts/Fungi, and Microalgae), Postbiotic Production, and Whey-Based Encapsulation Strategies
by Tlalli Uribe-Velázquez, Cesar E. Najar-Almanzor, Francisco R. Osuna-Orozco, Félix Arto-Paz, Cristian Valdés, Luis Eduardo Garcia-Amezquita, Danay Carrillo-Nieves and Tomás García-Cayuela
Fermentation 2026, 12(1), 42; https://doi.org/10.3390/fermentation12010042 - 9 Jan 2026
Abstract
Cheese whey, the major by-product of the dairy industry, poses an environmental challenge due to its high organic load but simultaneously represents a nutrient-dense matrix suitable for biotechnological valorization. This review synthesizes recent advances positioning whey as (i) a fermentation substrate for lactic [...] Read more.
Cheese whey, the major by-product of the dairy industry, poses an environmental challenge due to its high organic load but simultaneously represents a nutrient-dense matrix suitable for biotechnological valorization. This review synthesizes recent advances positioning whey as (i) a fermentation substrate for lactic acid bacteria, yeasts/fungi, and microalgae, enabling the production of functional biomass, organic acids, bioethanol, exopolysaccharides, enzymes, and wastewater bioremediation; (ii) a platform for postbiotic generation, supporting cell-free preparations with functional activities; and (iii) a food-grade encapsulating material, particularly through whey proteins (β-lactoglobulin, α-lactalbumin), which can form emulsions, gels, and films that protect biotics and bioactive compounds during processing, storage, and gastrointestinal transit. We analyze key operational variables (whey type and pretreatment, supplementation strategies, batch and continuous cultivation modes), encapsulation routes (spray drying, freeze-drying, and hybrid protein–polysaccharide systems), and performance trade-offs relevant to industrial scale-up. Finally, we outline future directions, including precision fermentation, mixed-culture processes with in situ lactase activity, microfluidics-enabled encapsulation, and life-cycle assessment, to integrate product yields with environmental performance. Collectively, these strategies reframe whey from a high-impact waste into a circular bioeconomy resource for the food, nutraceutical, and environmental sectors. Full article
21 pages, 8156 KB  
Article
Cationic and Non-Ionic Surfactant–Assisted Morphological Engineering of CoMoO4 for High-Performance Asymmetric Supercapacitors
by Pritam J. Morankar, Aviraj M. Teli and Chan-Wook Jeon
Micromachines 2026, 17(1), 89; https://doi.org/10.3390/mi17010089 - 9 Jan 2026
Abstract
Precise morphology engineering is essential for enhancing the charge-storage capabilities of cobalt molybdate (CoMoO4). In this study, cobalt molybdate (CoMoO4, abbreviated as CoMo), cobalt molybdate–cetyltrimethylammonium bromide (CoMo-CTAB), and cobalt molybdate–cetyltrimethylammonium bromide/polyethylene glycol (CoMo-CTAB/PEG) electrodes were synthesized through a cationic–nonionic [...] Read more.
Precise morphology engineering is essential for enhancing the charge-storage capabilities of cobalt molybdate (CoMoO4). In this study, cobalt molybdate (CoMoO4, abbreviated as CoMo), cobalt molybdate–cetyltrimethylammonium bromide (CoMo-CTAB), and cobalt molybdate–cetyltrimethylammonium bromide/polyethylene glycol (CoMo-CTAB/PEG) electrodes were synthesized through a cationic–nonionic surfactant-assisted hydrothermal route. he introduction of CTAB promoted the formation of well-defined nanoflake structures, whereas the synergistic CTAB/PEG system produced a highly porous and interconnected nanosheet architecture, enabling enhanced electrolyte diffusion and redox accessibility. As a result, the CoMo-CTAB/PEG electrode delivered a high areal capacitance of 10.321 F cm−2 at 10 mA cm−2, markedly outperforming CoMo-CTAB and pristine CoMo electrodes. It also exhibited good rate capability, maintaining 63.64% of its capacitance at 50 mA cm−2. Long-term cycling tests revealed excellent durability, with over 83% capacitance retention after 12,000 cycles and high coulombic efficiency, indicating highly reversible Faradaic behavior. Moreover, an asymmetric pouch-type supercapacitor device (APSD) assembled using the optimized electrode demonstrated robust cycling stability. These findings underscore surfactant-directed morphology modulation as an effective and scalable strategy for developing high-performance CoMoO4-based supercapacitor electrodes. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

18 pages, 3560 KB  
Article
Eco-Friendly Fabrication of Magnetically Separable Cerium–Manganese Ferrite Nanocatalysts for Sustainable Dye Degradation Under Visible Light
by Reda M. El-Shishtawy, Assem Basurrah and Yaaser Q. Almulaiky
Catalysts 2026, 16(1), 78; https://doi.org/10.3390/catal16010078 - 9 Jan 2026
Abstract
The increasing discharge of recalcitrant organic dyes from the textile industry necessitates the development of efficient and sustainable wastewater treatment technologies. This study reports the successful eco-friendly fabrication of magnetically separable cerium–manganese ferrite (Ce-MnFe2O4) nanocatalysts via a one-pot green [...] Read more.
The increasing discharge of recalcitrant organic dyes from the textile industry necessitates the development of efficient and sustainable wastewater treatment technologies. This study reports the successful eco-friendly fabrication of magnetically separable cerium–manganese ferrite (Ce-MnFe2O4) nanocatalysts via a one-pot green synthesis route, utilizing an aqueous extract of Brachychiton populneus leaves. The structural, morphological, magnetic, and optical properties of the synthesized nanocatalysts were systematically investigated. X-ray diffraction (XRD) analysis confirmed the formation of a phase-pure cubic spinel structure, with evidence of Ce3+ ion incorporation leading to lattice expansion and the formation of beneficial oxygen vacancies. The composite material exhibited superparamagnetic behavior with a high saturation magnetization of 38.7 emu/g, which facilitates efficient magnetic separation and recovery. Optical studies revealed a direct bandgap of 2.33 eV, enabling significant photocatalytic activity under visible light irradiation. The Ce-MnFe2O4 nanocatalyst demonstrated superior performance, achieving degradation efficiencies of 96% for methylene blue and 98% for Congo Red within 90 min. Furthermore, the catalyst demonstrated good operational stability, maintaining 62% of its initial degradation efficiency for CR and 51% for MB after five consecutive reuse cycles. These results underscore the potential of this green-synthesized, magnetically recoverable nanocatalyst as a highly effective and sustainable solution for the remediation of dye-contaminated industrial effluents. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

22 pages, 62404 KB  
Article
Enhancement of Microstructure, Tensile and Fatigue Performance of EN AW-1050 by Wire-Based Friction Stir Additive Manufacturing
by Stefan Donaubauer, Raphael Schmid, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2026, 10(1), 25; https://doi.org/10.3390/jmmp10010025 - 8 Jan 2026
Viewed by 39
Abstract
Additive manufacturing (AM) of aluminium by solid-state routes offers a promising pathway to overcome the limitations of fusion-based processes, such as porosity and hot cracking. This study investigates the potential of wire-based friction stir additive manufacturing (W-FSAM) as an innovative solid-state process. A [...] Read more.
Additive manufacturing (AM) of aluminium by solid-state routes offers a promising pathway to overcome the limitations of fusion-based processes, such as porosity and hot cracking. This study investigates the potential of wire-based friction stir additive manufacturing (W-FSAM) as an innovative solid-state process. A test specimen made of EN AW-1050 was fabricated and characterised using mechanical testing as well as optical and electron microscopy. Microstructural characterisation revealed a fully consolidated, pore-free build with fine equiaxed grains and partial dynamic recrystallisation (DRX). The average grain size decreased from 13.4 µm near the substrate to 9.7 µm at the top, reflecting the variation in cumulative thermal exposure along the build height. A homogeneous hardness distribution (21.2 HV) and smooth interlayer interfaces were observed. Tensile tests in the travel direction yielded an ultimate tensile strength of approximately 85 MPa and an elongation exceeding 60%, while high-cycle fatigue tests demonstrated a fatigue strength of about 30 MPa at 2×106 cycles (R=0.1) with ductile fracture features. The results confirm that W-FSAM enables the production of fine-grained, defect-free CP-Al structures whose mechanical properties, in terms of strength and ductility, exceed those of the reference material. Thus, W-FSAM represents a promising solid-state additive manufacturing route for the production of high-performance CP-Al components. Full article
Show Figures

Figure 1

21 pages, 974 KB  
Review
Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing
by Antonio Zuorro, Roberto Lavecchia, Jefferson E. Contreras-Ropero, Janet B. García-Martínez and Andrés F. Barajas-Solano
Polymers 2026, 18(2), 169; https://doi.org/10.3390/polym18020169 - 8 Jan 2026
Viewed by 46
Abstract
The growing concern over plastic pollution and the widespread presence of micro- and nanoplastics has renewed interest in polyhydroxybutyrate (PHB) as a biodegradable alternative; however, its industrial deployment remains constrained by costly recovery operations with a high environmental burden. This study examines how [...] Read more.
The growing concern over plastic pollution and the widespread presence of micro- and nanoplastics has renewed interest in polyhydroxybutyrate (PHB) as a biodegradable alternative; however, its industrial deployment remains constrained by costly recovery operations with a high environmental burden. This study examines how PHB biosynthesis and intracellular organization, physicochemical properties, and the characteristics of the producing microorganism influence the performance of conventional recovery routes, including extraction with organic solvents, alkaline/oxidative chemical digestion, and enzymatic–physical schemes coupled with mechanical disruption. Based on this foundation, quantitative data are analyzed for PHB content in bacteria, mixed microbial cultures, cyanobacteria, and microalgae, along with extraction yields, polymer purity, and solvent recyclability in processes employing chlorine-free solvents, green solvents, and hydrophobic natural deep eutectic solvents (NaDESs) formulated with terpenes and organic acids. The analysis integrates mechanistic perspectives on NaDES–cell and NaDES–PHB interactions with solvent design criteria, biorefinery configurations, and preliminary evidence from technoeconomic and life cycle assessments. The findings identify NaDES as an up-and-coming platform capable of reconciling biopolymer quality with the principles of green chemistry while delineating critical gaps in recovery efficiency, viscosity management, solvent recycling, and pilot-scale validation. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

29 pages, 14221 KB  
Article
Integrated Control of Hybrid Thermochemical–PCM Storage for Renewable Heating and Cooling Systems in a Smart House
by Georgios Martinopoulos, Paschalis A. Gkaidatzis, Luis Jimeno, Alberto Belda González, Panteleimon Bakalis, George Meramveliotakis, Apostolos Gkountas, Nikolaos Tarsounas, Dimosthenis Ioannidis, Dimitrios Tzovaras and Nikolaos Nikolopoulos
Electronics 2026, 15(2), 279; https://doi.org/10.3390/electronics15020279 - 7 Jan 2026
Viewed by 194
Abstract
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped [...] Read more.
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped with a heat pump, advanced electronics-enabled control, photovoltaic–thermal panels, and flat-plate solar collectors. To optimize energy flows, regulate charging and discharging cycles, and maintain operational stability under fluctuating solar irradiance and building loads, the system utilizes state-of-the-art power electronics, variable-frequency drives and modular multi-level converters. The hybrid storage is safely, reliably, and efficiently integrated with building HVAC requirements owing to a multi-layer control architecture that is implemented via Internet of Things and SCADA platforms that allow for real-time monitoring, predictive operation, and fault detection. Data from the MiniStor prototype demonstrate effective thermal–electrical coordination, controlled energy consumption, and high responsiveness to dynamic environmental and demand conditions. The findings highlight the vital role that digital control, modern electronics, and Internet of Things-enabled supervision play in connecting small, high-density thermal storage and renewable energy generation. This strategy demonstrates the promise of electronics-driven integration for next-generation renewable energy solutions and provides a scalable route toward intelligent, robust, and effective building energy systems. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

24 pages, 1568 KB  
Article
Understanding User Behaviour in Active and Light Mobility: A Structured Analysis of Key Factors and Methods
by Beatrice Bianchini, Marco Ponti and Luca Studer
Sustainability 2026, 18(1), 532; https://doi.org/10.3390/su18010532 - 5 Jan 2026
Viewed by 135
Abstract
The increasing demand for active and light mobility (including bicycles, e-bikes and e-scooters) has become a key driver of sustainable urban transport, calling for a renewed approach to urban planning. A central challenge is redesigning infrastructure around users’ needs, inspired by the “15-min [...] Read more.
The increasing demand for active and light mobility (including bicycles, e-bikes and e-scooters) has become a key driver of sustainable urban transport, calling for a renewed approach to urban planning. A central challenge is redesigning infrastructure around users’ needs, inspired by the “15-min city” concept developed by Carlos Moreno. However, the existing literature on user preferences in this domain remains fragmented, both methodologically and thematically, and often lacks integration of user behaviour analysis. This paper presents a structured review of recent international studies on factors influencing route and infrastructure choices in active and light mobility. The findings are organized into an analytical framework based on five macro-criteria: external and infrastructural factors, transport mode, user typology, experimental methodology and infrastructure attributes. The synthesis tables aim to summarize the findings to guide planners, researchers and decision-makers towards more inclusive, adaptable and effective mobility systems, through the development of user-oriented planning tools, attractiveness indexes and strategies for cycling and micromobility networks. Moreover, the review contributes to an ongoing national research initiative and lays the groundwork for developing decision-making tools, attractiveness indexes and route recommendation systems. Full article
(This article belongs to the Special Issue Sustainable Transportation Engineering and Mobility Safety Management)
Show Figures

Figure 1

18 pages, 3611 KB  
Article
Comparative Analysis of Two CO2 Sequestration Pathways for Magnesium Slag Based on Kinetics and Life Cycle Assessment
by Zhen Lu, Yan Wu, Hongshuo Ding, Chengyuan Zhao, Yunlong Bai and Li Zhang
Materials 2026, 19(1), 193; https://doi.org/10.3390/ma19010193 - 5 Jan 2026
Viewed by 113
Abstract
As a metallurgical solid waste rich in active calcium oxide, magnesium slag (MS) is endowed with significant carbon dioxide sequestration potential due to its inherent properties, providing a feasible path for the simultaneous solution of waste residue disposal and carbon dioxide emission reduction. [...] Read more.
As a metallurgical solid waste rich in active calcium oxide, magnesium slag (MS) is endowed with significant carbon dioxide sequestration potential due to its inherent properties, providing a feasible path for the simultaneous solution of waste residue disposal and carbon dioxide emission reduction. However, current research has neither clarified the kinetic mechanism (core theoretical support for carbon dioxide sequestration industrialization) nor systematically evaluated the life cycle environmental impacts of MS’s two carbonation routes (direct or indirect leaching carbonation). To address this, this study explores kinetic laws via the single-factor control variable method, and combines life cycle assessment (LCA) to fill the gap, providing key theoretical support for process optimization and engineering promotion. Kinetic results show indirect carbon dioxide sequestration (ICDS) forms an inert silicon-rich layer (core-shrinkage model, mixed control, 28.4 kJ/mol activation energy), while direct carbon dioxide sequestration (DCDS) involves dual-layer formation and pore blockage (mixed control, 14.0 kJ/mol). The ICDS achieves a higher reaction rate of 89%, compared to 63% for the DCDS. In life cycle assessments, DCDS demonstrates outstanding overall environmental sustainability, particularly excelling in carbon dioxide sequestration and acidification control, while ICDS exhibits significant environmental drawbacks (such as high carbon dioxide emissions and ecological toxicity). However, ICDS possesses advantages such as high feedstock utilization and strong synthesis capabilities for high-value-added products. Through targeted optimization, its environmental indicators can be reduced in the future, making it suitable for specific scenarios like high-end calcium carbonate production and resource utilization of low-grade magnesium slag. Full article
Show Figures

Figure 1

34 pages, 1919 KB  
Review
Life Cycle Optimization of Circular Industrial Processes: Advances in By-Product Recovery for Renewable Energy Applications
by Kyriaki Kiskira, Sofia Plakantonaki, Nikitas Gerolimos, Konstantinos Kalkanis, Emmanouela Sfyroera, Fernando Coelho and Georgios Priniotakis
Clean Technol. 2026, 8(1), 5; https://doi.org/10.3390/cleantechnol8010005 - 5 Jan 2026
Viewed by 310
Abstract
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and [...] Read more.
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and biotechnological routes are analyzed across battery and e-waste recycling, bioenergy, wastewater, and agri-food sectors, with emphasis on integration through Life Cycle Assessment (LCA), techno-economic analysis (TEA), and multi-criteria decision analysis (MCDA) coupled to process simulation, digital twins, and artificial intelligence tools. Policy and economic frameworks, including the European Green Deal and the Critical Raw Materials Act, are examined in relation to technology readiness and environmental performance. Hybrid recovery systems, such as pyro-hydro-bio configurations, enable higher resource efficiency and reduced environmental impact compared with stand-alone routes. Across all technologies, major hotspots include electricity demand, reagent use, gas handling, and concentrate management, while process integration, heat recovery, and realistic substitution credits significantly improve life cycle outcomes. Harmonized LCA-TEA-MCDA frameworks and digitalized optimization emerge as essential tools for scaling sustainable, resource-efficient, and low-impact industrial ecosystems consistent with circular economy and renewable energy objectives. Full article
Show Figures

Figure 1

39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 116
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

24 pages, 17632 KB  
Article
Renovation Design of an Urban Historic District Based on Space Syntax: A Case Study of the Qianmen Area in Beijing
by Wen Zhang, Pan Wang, Yuhan Chen, Qiang Sheng, Wei Zhang, Jie Zheng and Shisheng Chen
Buildings 2026, 16(1), 226; https://doi.org/10.3390/buildings16010226 - 4 Jan 2026
Viewed by 153
Abstract
Against the background of rapid global urbanization, the renewal and renovation of historic districts have become an increasingly important concern. As a city with a long and rich history, Beijing contains numerous historic districts that are in urgent need of systematic renewal and [...] Read more.
Against the background of rapid global urbanization, the renewal and renovation of historic districts have become an increasingly important concern. As a city with a long and rich history, Beijing contains numerous historic districts that are in urgent need of systematic renewal and renovation. This study proposes a functional enhancement and renovation design methodology for urban historic districts based on space syntax theory and analytical methods, applying it to the Qianmen Historic District in Beijing. Through traffic flow and business format analysis, the research examines traffic patterns and business format distribution characteristics in the Qianmen area and ultimately guides the design based on these findings. Research indicates that restrooms and attractions in Beijing’s Qianmen historic district exhibit dispersed space distribution, broad service coverage, high metric step depth (447 m and 436 m, respectively), and low topological connectivity. In contrast, hotels and restaurants feature smaller service areas, lower metric step depth (395 m and 297 m, respectively), and higher topological connectivity. Based on these findings, this study proposes targeted design recommendations for Qianmen’s street renovations based on traffic flow analysis results. Considering the need for vehicle parking and pedestrian rest demands in urban functional renewal, rest seats and shared charging piles are set up on the streets with big pedestrian flow to meet the needs of pedestrians. Moreover, cycling routes are designed to connect big-traffic-flow streets with small-traffic-flow ones. These renewal measures aim to enhance the overall vitality of the Qianmen district. The renovation approach and methodology proposed in this study can serve as a reference for future updates and renovations of historic districts. Full article
(This article belongs to the Special Issue Future Cities and Their Downtowns: Urban Studies and Planning)
Show Figures

Figure 1

32 pages, 3408 KB  
Review
Weaving the Future: The Role of Novel Fibres and Molecular Traceability in Circular Textiles
by Sofia Pereira de Sousa, Marta Nunes da Silva, Carlos Braga and Marta W. Vasconcelos
Appl. Sci. 2026, 16(1), 497; https://doi.org/10.3390/app16010497 - 4 Jan 2026
Viewed by 278
Abstract
The textile sector provides essential goods, yet it remains environmentally and socially intensive, driven by high water use, pesticide dependent monocropping, chemical pollution during processing, and growing waste streams. This review examines credible pathways to sustainability by integrating emerging plant-based fibres from hemp, [...] Read more.
The textile sector provides essential goods, yet it remains environmentally and socially intensive, driven by high water use, pesticide dependent monocropping, chemical pollution during processing, and growing waste streams. This review examines credible pathways to sustainability by integrating emerging plant-based fibres from hemp, abaca, stinging nettle, and pineapple leaf fibre. These underutilised crops combine favourable agronomic profiles with competitive mechanical performance and are gaining momentum as the demand for demonstrably sustainable textiles increases. However, conventional fibre identification methods, including microscopy and spectroscopy, often lose reliability after wet processing and in blended fabrics, creating opportunities for mislabelling, greenwashing, and weak certification. We synthesise how advanced molecular approaches, including DNA fingerprinting, species-specific assays, and metagenomic tools, can support the authentication of fibre identity and provenance and enable linkage to Digital Product Passports. We also critically assess environmental Life Cycle Assessment (LCA) and social assessment frameworks, including S-LCA and SO-LCA, as complementary methodologies to quantify climate burden, water use, labour conditions, and supply chain risks. We argue that aligning fibre innovation with molecular traceability and harmonised life cycle evidence is essential to replace generic sustainability claims with verifiable metrics, strengthen policy and certification, and accelerate transparent, circular, and socially responsible textile value chains. Key research priorities include validated marker panels and reference libraries for non-cotton fibres, expanded region-specific LCA inventories and end-of-life scenarios, scalable fibre-to-fibre recycling routes, and practical operationalisation of SO-LCA across diverse enterprises. Full article
Show Figures

Figure 1

12 pages, 1834 KB  
Article
Design and Optimization of Failure Diagnosis Processes for Capacity Degradation of Lithium Iron Phosphate
by Jinqiao Du, Jie Tian, Bo Rao, Zhaojie Liang, Tengteng Li, Xiner Luo and Jiuchun Jiang
Coatings 2026, 16(1), 44; https://doi.org/10.3390/coatings16010044 - 1 Jan 2026
Viewed by 171
Abstract
Lithium iron phosphate (LiFePO4, LFP) batteries dominate grid-scale energy storage, yet their cycle life is capped by its capacity fade issues. Conventional failure workflows suffer from redundant tests, high cost, and long turnaround time because the underlying mechanisms remain unclear. Herein, [...] Read more.
Lithium iron phosphate (LiFePO4, LFP) batteries dominate grid-scale energy storage, yet their cycle life is capped by its capacity fade issues. Conventional failure workflows suffer from redundant tests, high cost, and long turnaround time because the underlying mechanisms remain unclear. Herein, multi-scale characterization coupled with electrochemical tests have been quantitatively established to reveal four synergistic fade modes of LFP: active-Li loss, FePO4 secondary-phase formation, SEI rupture, and particle fracture. A two-tier “screen–validate” protocol is proposed to accurately and efficiently disclose its mechanism. In the screening tier, capacity, cyclic voltammetry, electrochemical impedance spectroscopy, low-magnification scanning electron microscopy, and snapshot X-ray diffraction (XRD) rapidly flag the most probable failure cause. The validation tier then deploys mechanism-matched in situ/ex situ tools (operando XRD, TEM, XPS, ToF-SIMS, etc.) to build a comprehensive evidence chain of dynamic structural evolution, materials loss tracking, and quantitative proof. The streamlined workflow preserves scientific rigor and reproducibility while cutting analysis time and cost, offering a closed-loop route for fast failure diagnosis and targeted optimization of next-generation LFP batteries. Full article
(This article belongs to the Special Issue Coatings for Batteries and Energy Storage)
Show Figures

Figure 1

Back to TopTop