Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing
Abstract
1. Introduction
2. PHB: Biosynthesis, Properties, and Conventional Recovery Routes
2.1. PHB Biosynthesis
2.2. Physicochemical Properties Relevant to Extraction
2.3. Conventional PHB Recovery Routes
- (a)
- Extraction with Organic Solvents
- (b)
- Lysis and chemical digestion in aqueous media
- (c)
- Enzymatic and physical methods
3. PHB/PHA Extraction Routes: Conventional Solvents, Green Solvents, and NaDES
4. Mechanistic Perspectives on NaDES–Cell and NaDES–PHB Interactions
5. Integration into Biorefinery Systems
6. Current Limitations and Research Gaps
7. Future Perspectives and Industrial Potential
8. Environmental and Economic Assessment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Gautam, S.; Gautam, A.; Pawaday, J.; Kanzariya, R.K.; Yao, Z. Current Status and Challenges in the Commercial Production of Polyhydroxyalkanoate-Based Bioplastic: A Review. Processes 2024, 12, 1720. [Google Scholar] [CrossRef]
- Getino, L.; Martín, J.L.; Chamizo-Ampudia, A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024, 12, 2028. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Liu, S. The Production, Recovery, and Valorization of Polyhydroxybutyrate (PHB) Based on Circular Bioeconomy. Biotechnol. Adv. 2024, 72, 108340. [Google Scholar] [CrossRef] [PubMed]
- Senila, L.; Kovacs, E.; Senila, M. A Review of Polylactic Acid (PLA) and Poly(3-Hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications. Membranes 2025, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Levett, I.; Birkett, G.; Davies, N.; Bell, A.; Langford, A.; Laycock, B.; Lant, P.; Pratt, S. Techno-Economic Assessment of Poly-3-Hydroxybutyrate (PHB) Production from Methane—The Case for Thermophilic Bioprocessing. J. Environ. Chem. Eng. 2016, 4, 3724–3733. [Google Scholar] [CrossRef]
- Thiele, I.; Riedel, S.L. How Does Downstream Processing Influence the Sustainability and Techno-Economics of Polyhydroxyalkanoates Production? J. Clean. Prod. 2025, 521, 146257. [Google Scholar] [CrossRef]
- Fiorese, M.L.; Freitas, F.; Pais, J.; Ramos, A.M.; de Aragão, G.M.F.; Reis, M.A.M. Recovery of Polyhydroxybutyrate (PHB) from Cupriavidus necator Biomass by Solvent Extraction with 1,2-propylene Carbonate. Eng. Life Sci. 2009, 9, 454–461. [Google Scholar] [CrossRef]
- Aramvash, A.; Moazzeni Zavareh, F.; Gholami Banadkuki, N. Comparison of Different Solvents for Extraction of Polyhydroxybutyrate from Cupriavidus necator. Eng. Life Sci. 2018, 18, 20–28. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Aguirre, C.; Pérez, A.; Bahamonde, S.S.; Urtuvia, V.; Díaz-Barrera, A.; Peña, C. Recent Trends in the Production and Recovery of Bioplastics Using Polyhydroxyalkanoates Copolymers. Microorganisms 2024, 12, 2135. [Google Scholar] [CrossRef]
- Murawski de Mello, A.F.; Vandenberghe, L.P.d.S.; Machado, C.M.B.; Borth, K.W.; Soccol, C.R. Microbial Polyhydroxyalkanoates: Recovery Methods, Biopolymer Processing, Characterization, and Potential Applications. Sep. Purif. Rev. 2025. [Google Scholar] [CrossRef]
- Alsaidi, R.; Thiemann, T. Use of Natural Deep Eutectic Solvents (NADES) in Food Science and Food Processing. Sustainability 2025, 17, 2293. [Google Scholar] [CrossRef]
- Sekharan, T.R.; Chandira, R.M.; Rajesh, S.; Tamilvanan, S.; Vijayakumar, C.; Venkateswarlu, B. PH, Viscosity of Hydrophobic Based Natural Deep Eutectic Solvents and the Effect of Curcumin Solubility in It. Biointerface Res. Appl. Chem. 2021, 11, 14620–14633. [Google Scholar] [CrossRef]
- Maduka, T.O.; Wang, Q.; Suzuki, M.; Enyoh, C.E.; Wang, W.; Rana, M.d.S. Hydrophobic Natural Deep Eutectic Solvents for Extraction of Bioactive Compounds: Multiscale Characterization, Quantum Simulations, and Molecular Interaction Studies with Cry j 1 and Amb a 1 Allergens. Separations 2025, 12, 214. [Google Scholar] [CrossRef]
- Elgharbawy, A.; Syed Putra, S.; Khan, H.; Azmi, N.; Sani, M.; Ab Llah, N.; Hayyan, A.; Jewaratnam, J.; Basirun, W. Menthol and Fatty Acid-Based Hydrophobic Deep Eutectic Solvents as Media for Enzyme Activation. Processes 2023, 11, 547. [Google Scholar] [CrossRef]
- Didion, Y.P.; Tjalsma, T.; Malankowska, M.; Su, Z.; Matos, M.; Pinelo, M.; Crespo, J.; Brazinha, C. Zero-Waste Extraction of Polyhydroxy(Butyrate-Co-Valerate) (PHBV) from Mixed Cultures Using Natural Deep Eutectic Solvents (NADES): Unlocking the Roles of Molecular Interactions, Polarity, and Viscosity. Chem. Eng. J. 2025, 511, 161741. [Google Scholar] [CrossRef]
- Pagliano, G.; Galletti, P.; Samorì, C.; Zaghini, A.; Torri, C. Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 624021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, Z.; Tsui, T.-H.; Loh, K.-C.; Dai, Y.; Tong, Y.W. A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-Hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Front. Bioeng. Biotechnol. 2022, 10, 946085. [Google Scholar] [CrossRef]
- Koch, M.; Berendzen, K.W.; Forchhammer, K. On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis sp. PCC 6803. Life 2020, 10, 47. [Google Scholar] [CrossRef]
- Bellini, S.; Tommasi, T.; Fino, D. Poly(3-Hydroxybutyrate) Biosynthesis by Cupriavidus necator: A Review on Waste Substrates Utilization for a Circular Economy Approach. Bioresour. Technol. Rep. 2022, 17, 100985. [Google Scholar] [CrossRef]
- Santolin, L.; Waldburger, S.; Neubauer, P.; Riedel, S.L. Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB-co-HHx) with Cupriavidus necator Re2058/PCB113. Front. Bioeng. Biotechnol. 2021, 9, 623890. [Google Scholar] [CrossRef]
- Sriyapai, T.; Chuarung, T.; Kimbara, K.; Samosorn, S.; Sriyapai, P. Production and Optimization of Polyhydroxyalkanoates (PHAs) from Paraburkholderia sp. PFN 29 under Submerged Fermentation. Electron. J. Biotechnol. 2022, 56, 1–11. [Google Scholar] [CrossRef]
- Abdelmalek, F.; Steinbüchel, A.; Rofeal, M. The Hyperproduction of Polyhydroxybutyrate Using Bacillus mycoides ICRI89 through Enzymatic Hydrolysis of Affordable Cardboard. Polymers 2022, 14, 2810. [Google Scholar] [CrossRef] [PubMed]
- Sruamsiri, D.; Thayanukul, P.; Suwannasilp, B.B. In Situ Identification of Polyhydroxyalkanoate (PHA)-Accumulating Microorganisms in Mixed Microbial Cultures under Feast/Famine Conditions. Sci. Rep. 2020, 10, 3752. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.M.; Marreiros, B.C.; Reis, M.A.M. Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity. Sustainability 2022, 14, 1346. [Google Scholar] [CrossRef]
- Koch, M.; Bruckmoser, J.; Scholl, J.; Hauf, W.; Rieger, B.; Forchhammer, K. Maximizing PHB Content in Synechocystis sp. PCC 6803: A New Metabolic Engineering Strategy Based on the Regulator PirC. Microb. Cell Factories 2020, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Fatma, T. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization. PLoS ONE 2016, 11, e0158168. [Google Scholar] [CrossRef]
- Cassuriaga, A.P.A.; Moraes, L.; Morais, M.G.; Costa, J.A.V. Polyhydroxybutyrate Production and Increased Macromolecule Content in Chlamydomonas reinhardtii Cultivated with Xylose and Reduced Nitrogen Levels. Int. J. Biol. Macromol. 2020, 158, 875–883. [Google Scholar] [CrossRef]
- Magonara, C.; Montagnese, E.; Bertasini, D.; Vona, C.; Salvatori, G.; Tayou, L.N.; Villano, M.; Battista, F.; Frison, N.; Bolzonella, D.; et al. Mixed-Culture Polyhydroxyalkanoate Production with Variable Hydroxyvalerate Content from Agri-Food Residues. Environ. Sci. Pollut. Res. 2025. [Google Scholar] [CrossRef]
- Morsy, G.M.T.; Abdo, S.M.; Mohamed, E.A.; Salah El Din, R.A.; El Gamal, A.D. Optimizing Growth Conditions and Polyhydroxybutyrate Production in Spirulina platensis and Haematococcus pluvialis for Sustainable Bioplastic Development. Egypt. J. Aquat. Biol. Fish. 2025, 29, 1607–1629. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Torres, M.J.; Llamas, A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024, 13, 1137. [Google Scholar] [CrossRef]
- Getino, L.; García, I.; Cornejo, A.; Mateos, R.; Ariza-Carmona, L.M.; Sánchez-Castro, N.; Moran, J.F.; Olivera, E.R.; Chamizo-Ampudia, A. The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative Pseudomonas putida U. Polymers 2025, 17, 150. [Google Scholar] [CrossRef]
- Wongmoon, C.; Napathorn, S.C. Optimization for the Efficient Recovery of Poly(3-Hydroxybutyrate) Using the Green Solvent 1,3-Dioxolane. Front. Bioeng. Biotechnol. 2022, 10, 1086636. [Google Scholar] [CrossRef]
- Mongili, B.; Abdel Azim, A.; Fraterrigo Garofalo, S.; Batuecas, E.; Re, A.; Bocchini, S.; Fino, D. Novel Insights in Dimethyl Carbonate-Based Extraction of Polyhydroxybutyrate (PHB). Biotechnol. Biofuels 2021, 14, 13. [Google Scholar] [CrossRef]
- Righi, S.; Baioli, F.; Samorì, C.; Galletti, P.; Tagliavini, E.; Stramigioli, C.; Tugnoli, A.; Fantke, P. A Life Cycle Assessment of Poly-Hydroxybutyrate Extraction from Microbial Biomass Using Dimethyl Carbonate. J. Clean. Prod. 2017, 168, 692–707. [Google Scholar] [CrossRef]
- Thiele, I.; Gläser, M.; Pérez, C.; Grimm, T.; Neubauer, P.; Riedel, S.L. Solvent-Free Extraction of Polyhydroxyalkanoates from Wet Biomass Using Mechanical Cell Disruption. Sep. Purif. Technol. 2025, 361, 131527. [Google Scholar] [CrossRef]
- Gu, D.; Xiao, Q.; Zhao, Y.; Yu, X. A Low-Cost Technique for Biodiesel Production in Ankistrodesmus sp. EHY by Using Harvested Microalgal Effluent. Sci. Total Environ. 2023, 857, 159461. [Google Scholar] [CrossRef]
- Dianursanti; Alifia, K.C.H.; Sari, P.R. Utilization of Sodium Hypochlorite and Sodium Hydroxide as Solvent in Polyhydroxybutyrate Isolation from Spirulina Platensis as Vegetable Capsule Shells Material; AIP Publishing LLC: Melville, NY, USA, 2020; p. 040024. [Google Scholar]
- Cho, E.; Eam, H.; Myung, J.; Baek, Y. Separation and Purification Technologies in Polyhydroxyalkanoate (PHA) Manufacturing: A Review. Environ. Eng. Res. 2025, 30, 240710. [Google Scholar] [CrossRef]
- Lad, A.A.; Gaikwad, V.D.; Gaikwad, S.V.; Kulkarni, A.D.; Kanekar, S.P. Extraction of Environment-Friendly Biodegradable Poly-Hydroxy Butyrate Using Novel Hydrodynamic Cavitation Method. Nat. Environ. Pollut. Technol. 2024, 23, 475–483. [Google Scholar] [CrossRef]
- Yilmaz Nayir, T.; Küçükağa, Y.; Kara, S. Hydrodynamic Cavitation Assisted Recovery of Intracellular Polyhydroxyalkanoates. Bioprocess. Biosyst. Eng. 2025, 48, 1575–1586. [Google Scholar] [CrossRef]
- Bhat, S.G.; Thivaharan, V.; Divyashree, M.S. Sustainable Opportunities in the Downstream Processing of the Intracellular Biopolymer Polyhydroxyalkanoate. ChemBioEng Rev. 2024, 11, 79–94. [Google Scholar] [CrossRef]
- Didion, Y.P.; Vargas, M.V.G.A.; Tjaslma, T.G.; Woodley, J.; Nikel, P.I.; Malankowska, M.; Su, Z.; Pinelo, M. A Novel Strategy for Extraction of Intracellular Poly(3-Hydroxybutyrate) from Engineered Pseudomonas Putida Using Deep Eutectic Solvents: Comparison with Traditional Biobased Organic Solvents. Sep. Purif. Technol. 2024, 338, 126465. [Google Scholar] [CrossRef]
- Alfano, S.; Lorini, L.; Majone, M.; Sciubba, F.; Valentino, F.; Martinelli, A. Ethylic Esters as Green Solvents for the Extraction of Intracellular Polyhydroxyalkanoates Produced by Mixed Microbial Culture. Polymers 2021, 13, 2789. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, G.; Alfano, S.; Martinelli, A.; Gottardo, M.; Villano, M.; Ferreira, B.S.; Valentino, F.; Lorini, L. Chlorine-Free Extractions of Mixed-Culture Polyhydroxyalkanoates Produced from Fermented Sewage Sludge at Pilot Scale. Ind. Eng. Chem. Res. 2023, 62, 17400–17407. [Google Scholar] [CrossRef]
- Elhami, V.; van de Beek, N.; Wang, L.; Picken, S.J.; Tamis, J.; Sousa, J.A.B.; Hempenius, M.A.; Schuur, B. Extraction of Low Molecular Weight Polyhydroxyalkanoates from Mixed Microbial Cultures Using Bio-Based Solvents. Sep. Purif. Technol. 2022, 299, 121773. [Google Scholar] [CrossRef]
- Yabueng, N.; Napathorn, S.C. Toward Non-Toxic and Simple Recovery Process of Poly(3-Hydroxybutyrate) Using the Green Solvent 1,3-Dioxolane. Process Biochem. 2018, 69, 197–207. [Google Scholar] [CrossRef]
- Mondal, S.; Syed, U.T.; Gil, C.; Hilliou, L.; Duque, A.F.; Reis, M.A.M.; Brazinha, C. A Novel Sustainable PHA Downstream Method. Green. Chem. 2023, 25, 1137–1149. [Google Scholar] [CrossRef]
- van Osch, D.J.G.P.; Dietz, C.H.J.T.; van Spronsen, J.; Kroon, M.C.; Gallucci, F.; van Sint Annaland, M.; Tuinier, R. A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustain. Chem. Eng. 2019, 7, 2933–2942. [Google Scholar] [CrossRef]
- Rajput, M.K.; Konwar, M.; Sarma, D. Hydrophobic Natural Deep Eutectic Solvent THY-DA as Sole Extracting Agent for Arsenic (III) Removal from Aqueous Solutions. Environ. Technol. Innov. 2021, 24, 102017. [Google Scholar] [CrossRef]
- Adeoye, D.O.; Gano, Z.S.; Ahmed, O.U.; Shuwa, S.M.; Atta, A.Y.; Jubril, B.Y. Synthesis and Characterisation of Thymol-Based Hydrophobic Deep Eutectic Solvents. Chem. Proc. 2023, 14, 96. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Ozkilinc, O.; Bol-Arreba, A.; Soler, M.A.; Fogolari, F.; Aparicio, S. Thymol-Based Natural Deep Eutectic Solvents under Pressure: A Novel Platform for Green Solvents. Ind. Eng. Chem. Res. 2025, 64, 17958–17974. [Google Scholar] [CrossRef]
- Devi, M.; Moral, R.; Thakuria, S.; Mitra, A.; Paul, S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS Omega 2023, 8, 9702–9728. [Google Scholar] [CrossRef]
- Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J. Phys. Chem. B 2022, 126, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Coats, E.R.; McDonald, A.G. Green Solvent Extraction and Properties Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biosynthesized by Mixed Microbial Consortia Fed Fermented Dairy Manure. Bioresour. Technol. Rep. 2022, 18, 101065. [Google Scholar] [CrossRef]
- Negro, M.F.; Bustos, P.S.; Bellezze, L.; Ortega, M.G.; Echeverría, J.; Silva, M.F.; Peralta, M.A. Menthol–Thymol NADES as a Fungicidal and Chemosensitizing Agent against Multidrug-Resistant Candida albicans: ROS Induction, Efflux Pump Inhibition, and Synergy with Fluconazole. Front Pharmacol 2025, 16, 1643472. [Google Scholar] [CrossRef]
- Oliveira, F.; Silva, E.; Matias, A.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C. Menthol-Based Deep Eutectic Systems as Antimicrobial and Anti-Inflammatory Agents for Wound Healing. Eur. J. Pharm. Sci. 2023, 182, 106368. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Muiruri, J.K.; Yeo, J.C.C.; Karen, T.Y.; Li, K.; Ye, E.; Loh, X.J.; Li, Z. Rapid Dissolution of High Concentration Poly(3-Hydroxybutyrate) Using Neoteric Biosolvents: Experiment and Molecular Dynamics Simulation. Green. Chem. 2023, 25, 5276–5289. [Google Scholar] [CrossRef]
- Santra, S.; Das, M.; Karmakar, S.; Banerjee, R. NADES Assisted Integrated Biorefinery Concept for Pectin Recovery from Kinnow (Citrus reticulate) Peel and Strategic Conversion of Residual Biomass to L(+) Lactic Acid. Int. J. Biol. Macromol. 2023, 250, 126169. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Patel, P.P. Implementing Vetiver Grass-Based Riverbank Protection Programmes in Rural West Bengal, India. Nat. Hazards 2020, 103, 1051–1076. [Google Scholar] [CrossRef]
- Mondal, S.; Syed, U.T.; Pinto, E.; Leonardo, I.C.; Romero, P.; Gaspar, F.B.; Crespo, M.T.B.; Sebastian, V.; Crespo, J.G.; Brazinha, C. Sustainable Production of Nanoemulsions by Membrane-Assisted Nanoemulsification Using Novel Aroma-Based Hydrophobic Deep Eutectic Solvents for Enhanced Antifungal Activities. J. Clean. Prod. 2024, 444, 141167. [Google Scholar] [CrossRef]
- Suthar, K.J. Natural Deep Eutectic Solvents in Extraction Science: Progress, Challenges, and Future Prospects. Sep. Sci. Plus 2025, 8, e70075. [Google Scholar] [CrossRef]
- Jauregi, P.; Esnal-Yeregi, L.; Labidi, J. Natural Deep Eutectic Solvents (NADES) for the Extraction of Bioactives: Emerging Opportunities in Biorefinery Applications. PeerJ Anal. Chem. 2024, 6, e32. [Google Scholar] [CrossRef]
- Riyamol; Jeevitha, G.C. Microwave and Ultrasound-Assisted Natural Deep Eutectic Solvents-Based Extraction of Pectin from Onion Peel Wastes. CyTA-J. Food 2024, 22, 2311215. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.; Wu, X.; Zhou, Y.; Zhang, Q.; Liu, Y.; Li, J.; Qin, W. Deep Eutectic Solvent-Assisted Aqueous Extraction of Pectin and Essential Oil from Citrus Reticulata Peel: Physicochemical Characteristics and Emulsifying Properties. Food Chem. 2025, 495, 146432. [Google Scholar] [CrossRef] [PubMed]


| Microorganism/Consortium | Type of Metabolism/ Main Carbon Source | Cultivation Configuration/Technology | Maximum PHB Content (% Dry Cell Weight) | References |
|---|---|---|---|---|
| Cupriavidus necator H16 | Heterotrophic. sugars and C1–C3 organic acids; also, residual streams | Fed-batch in a stirred bioreactor; two-stage strategies (growth/accumulation) | ≈80–90% | [20] |
| Paraburkholderia sacchari DSM 17165 | Heterotrophic. mixture of glucose, xylose, and arabinose (lignocellulosic origin) | Fed-batch with ternary sugar mixtures. processes targeted to corn or bagasse-derived streams | ≈70–77% | [22] |
| Bacillus megaterium/Priestia megaterium | Heterotrophic; glucose, glycerol, and lignocellulosic residues | Batch and fed-batch cultures in mineral medium. use of agricultural residues and industrial effluents | ≈40–60% | [23] |
| Pseudomonas sp. phDV1 (genetically modified) | Heterotrophic. Winery industry residues | Aerobic bioreactor cultures using grape byproducts as substrate | ≈50–70% | [28] |
| Mixed microbial culture (MMC) in “feast–famine” SBR | Consortium enriched on volatile fatty acids (acetate, propionate, etc.) | Sequencing batch reactor (SBR) with excess/absence of carbon cycles | ≈40–70% | [25] |
| MMC for PHBV from agri-food residues | Mixed consortium. VFAs generated by fermentation of agri-food residues | Pilot-scale reactors with selection strategies and the subsequent accumulation stage | ≈50–65% | [29] |
| Synechocystis sp. PCC 6803 (wild-type and engineered strains) | Photoautotrophic. CO2 as a carbon source, with possible acetate addition | Photoautotrophic batch and fed-batch cultures. engineering of regulators and PHB genes | ≈10–15% (wild-type) up to ≈80% (engineered strains) | [19,26] |
| Arthrospira platensis and Nostoc muscorum | Photoautotrophic. CO2, nitrogen limitation, sometimes acetate supplementation | Photobioreactors and raceways under nutrient stress (N, P) and/or acetate addition | ≈0.5–6% | [27,30] |
| Chlamydomonas reinhardtii (transgenic strains) | Photoautotrophic/mixotrophic. CO2 and acetate. expression of bacterial PHBgenes | Photobioreactor cultures. peroxisomal relocalization of the PHB pathway and optimization of acetyl-CoA fluxes | ≈1–10% (Depending on construct and conditions) | [28,31] |
| Extraction Method and Solvents Used | Typical Conditions (Temp/Time/Biomass Type) | PHB/PHA | Solvent Recyclability | Reference | |
|---|---|---|---|---|---|
| Recovery (%) | Purity (%) | ||||
| Conventional chloroform extraction | 60–80 °C, 1–3 h, dry biomass | 80–99 | 95–99 | Not recyclable | [17] |
| Extraction with ethyl acetate | 50–70 °C, 1–2 h, dry biomass | ~90–95 | ~95–98 | Partly recyclable | [43] |
| Extraction with NaDES L-menthol:acetic acid (1:3) + methanol as antisolvent | 30–40 °C, ~6 h, pretreated biomass (enzymatic/mechanical lysis) | ~60–70 | ~80–85 | Recyclable after precipitation | [43] |
| Chemical digestion Aqueous NaOH + H2O2 (“chlorine-free”) | 60–90 °C, mixed or pure cultures | ~70–88 | ~90–93 | Not recyclable | [45] |
| 1,3-dioxolane | 60–90 °C, 0.5–2 h, dry or wet biomass | ~90–97 | ~95–99 | Potentially recyclable | [33] |
| Nonhalogenated ethyl esters (e.g., ethyl acetate, butyl acetate) | 80–120 °C, 0.5–2 h, dry or wet biomass | ~50–90 | ≥90 | Recyclable in closed systems | [44] |
| Dimethyl carbonate (DMC) | 60–90 °C, 1–2 h, dry biomass | ≥60–70 | ~85–90 | Recyclable | [34] |
| Multistage processes with combinations of green solvents (cyclohexanone, DMC, alcohols, etc.) | 90–130 °C, 3–4 h, dry or wet biomass | ~50–98 | ≥90 | Recyclable | [56] |
| Extraction with hydrophobic NaDES (Thymol:vanillin NaDES (8:2) + 1-heptanol/antisolvent) | 40–60 °C, wet biomass | ~40–50 | Up to ~99 | Recyclable after precipitation | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zuorro, A.; Lavecchia, R.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F. Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing. Polymers 2026, 18, 169. https://doi.org/10.3390/polym18020169
Zuorro A, Lavecchia R, Contreras-Ropero JE, García-Martínez JB, Barajas-Solano AF. Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing. Polymers. 2026; 18(2):169. https://doi.org/10.3390/polym18020169
Chicago/Turabian StyleZuorro, Antonio, Roberto Lavecchia, Jefferson E. Contreras-Ropero, Janet B. García-Martínez, and Andrés F. Barajas-Solano. 2026. "Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing" Polymers 18, no. 2: 169. https://doi.org/10.3390/polym18020169
APA StyleZuorro, A., Lavecchia, R., Contreras-Ropero, J. E., García-Martínez, J. B., & Barajas-Solano, A. F. (2026). Natural Deep Eutectic Solvents for PHB Recovery: Mechanistic Insights and Implications for Sustainable Downstream Processing. Polymers, 18(2), 169. https://doi.org/10.3390/polym18020169

