Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = cyclin D1-CDK4/6 pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10235 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Anti-Mitogenic Actions on Human Coronary Artery Smooth Muscle Cell Growth
by Lisa Rigassi, Marinella Rosselli, Brigitte Leeners, Mirel Adrian Popa and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1132; https://doi.org/10.3390/cells14151132 - 23 Jul 2025
Viewed by 226
Abstract
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs [...] Read more.
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs through various mechanism. Since microRNAs (miRNAs) play a major role in regulating cell growth and vascular remodeling, we hypothesize that miRNAs may mediate the protective actions of E2. Following preliminary leads from E2-regulated miRNAs, we found that platelet-derived growth factor (PDGF)-BB-induced miR-193a in SMCs is downregulated by E2 via estrogen receptor (ER)α, but not the ERβ or G-protein-coupled estrogen receptor (GPER). Importantly, miR-193a is actively involved in regulating SMC functions. The ectopic expression of miR-193a induced vascular SMC proliferation and migration, while its suppression with antimir abrogated PDGF-BB-induced growth, effects that were similar to E2. Importantly, the restoration of miR-193a abrogated the anti-mitogenic actions of E2 on PDGF-BB-induced growth, suggesting a key role of miR-193a in mediating the growth inhibitory actions of E2 in vascular SMCs. E2-abrogated PDGF-BB, but not miR-193a, induced SMC growth, suggesting that E2 blocks the PDGF-BB-induced miR-193a formation to mediate its anti-mitogenic actions. Interestingly, the PDGF-BB-induced miR-193a formation in SMCs was also abrogated by 2-methoxyestradiol (2ME), an endogenous E2 metabolite that inhibits SMC growth via an ER-independent mechanism. Furthermore, we found that miR-193a induces SMC growth by activating the phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway and promoting the G1 to S phase progression of the cell cycle, by inducing Cyclin D1, Cyclin Dependent Kinase 4 (CDK4), Cyclin E, and proliferating-cell-nuclear-antigen (PCNA) expression and Retinoblastoma-protein (RB) phosphorylation. Importantly, in mice, treatment with miR-193a antimir, but not its control, prevented cuff-induced vascular remodeling and significantly reducing the vessel-wall-to-lumen ratio in animal models. Taken together, our findings provide the first evidence that miR-193a promotes SMC proliferation and migration and may play a key role in PDGF-BB-induced vascular remodeling/occlusion. Importantly, E2 prevents PDGF-BB-induced SMC growth by downregulating miR-193a formation in SMCs. Since, miR-193a antimir prevents SMC growth as well as cuff-induced vascular remodeling, it may represent a promising therapeutic molecule against cardiovascular disease. Full article
Show Figures

Graphical abstract

16 pages, 3619 KiB  
Article
Crebanine Induces Cell Death and Alters the Mitotic Process in Renal Cell Carcinoma In Vitro
by Hung-Jen Shih, Hsuan-Chih Hsu, Chien-Te Liu, Ya-Chuan Chang, Chia-Ying Yu and Wen-Wei Sung
Int. J. Mol. Sci. 2025, 26(14), 6896; https://doi.org/10.3390/ijms26146896 - 18 Jul 2025
Viewed by 297
Abstract
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, [...] Read more.
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, a thorough investigation of the role of crebanine in RCC has not been conducted thus far. For this study, we evaluated tumor cell viability, clonogenicity, cell-cycle distributions, morphological changes, and cell mortality with the aim of exploring the antitumor effects of crebanine in RCC. Furthermore, we compared gene and protein expressions using RNA sequencing analysis and Western blotting. The findings indicated that crebanine significantly inhibited RCC colonies and caused G1-phase cell-cycle arrest with sub-G1-phase accumulation, thus leading to suppressed cell proliferation and cell death. In addition, Hoechst 33342 staining was used to observe apoptotic cells, which revealed chromatin condensation and a reduction in the nuclear volume associated with apoptosis. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that differentially expressed genes are involved in the initiation of DNA replication, centrosome duplication, chromosome congression, and mitotic processes in the cell cycle along with signaling pathways, such as I-kappaB kinase/NF-kappaB signaling, Hippo signaling, and intrinsic apoptotic pathways. Consistent with GO and KEGG analyses, increased levels of cleaved caspase-3, cleaved caspase-7, and cleaved PARP, and decreased levels of cIAP1, BCL2, survivin, and claspin were observed. Finally, the expressions of G1/S phase transition cyclin D1, cyclin E/CDK2, and cyclin A2/CDK2 complexes were downregulated. Overall, these findings supported the potential of crebanine as an adjuvant therapy in RCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 6653 KiB  
Article
Targeting Triple-Negative Breast Cancer with Momordicine-I for Therapeutic Gain in Preclinical Models
by Kousik Kesh, Ellen T. Tran, Ruchi A. Patel, Cynthia X. Ma and Ratna B. Ray
Cancers 2025, 17(14), 2342; https://doi.org/10.3390/cancers17142342 - 15 Jul 2025
Viewed by 314
Abstract
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect [...] Read more.
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect of M-I on TNBC cells (human MDA-MB-231 and mouse 4T1). We used orthotopic mouse models to examine the anti-tumor efficacy of M-I. Tumor volume and the status of tumor-associated macrophages (TAMs) were assessed by qRT-PCR or FACS analysis. Results: We found a significant dose- and time-dependent inhibition of TNBC cell proliferation following treatment with M-I. Cell cycle analysis revealed a shortened S phase in M-I-treated cells and downregulation of AURKA, PLK1, CDC25c, CDK1, and cyclinB1. Furthermore, M-I treatment reduced the expression of pSTAT3, cyclinD1, and c-Myc in TNBC cells. To evaluate the anti-tumor efficacy of M-I, we employed orthotopic TNBC mouse models and observed a significant reduction in tumor growth without measurable toxicity. Next, we analyzed RNA from control and M-I-treated tumors to further assess the status of TAMs and observed a significant decrease in M2-like macrophages in the M-I-treated group. Immortalized bone marrow-derived mouse macrophages (iMacs) exposed to conditioned media (CM) of TNBC cells with or without M-I treatment indicated that the M-I treated CM of TNBC cells significantly reduce the M2phenotype in iMacs. Mechanistically, we found that M-I specifically targets the IL-4/MAPK signaling axis to reduce immunosuppressive M2 macrophage polarization. Conclusions: Our study reveals a novel mechanism by which M-I inhibits TNBC cell proliferation by regulating intracellular signaling and altering TAMs in the tumor microenvironment and highlights its potential as a promising candidate for TNBC therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

19 pages, 414 KiB  
Review
Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward
by Ioannis A. Voutsadakis
Curr. Issues Mol. Biol. 2025, 47(6), 454; https://doi.org/10.3390/cimb47060454 - 12 Jun 2025
Viewed by 771
Abstract
Targeting the cell cycle has become a focus of cancer research bearing impressive results with the introduction of CDK4/6 inhibitors in the treatment of ER-positive/HER2-negative breast cancers. However, no definitive benefit in other cancers has been observed. In gastrointestinal cancers, despite preclinical studies [...] Read more.
Targeting the cell cycle has become a focus of cancer research bearing impressive results with the introduction of CDK4/6 inhibitors in the treatment of ER-positive/HER2-negative breast cancers. However, no definitive benefit in other cancers has been observed. In gastrointestinal cancers, despite preclinical studies pinpointing positive effects on cancer inhibition in pre-clinical models, no positive clinical trials have been published with CDK4/6 inhibitors. Several biomarkers have been proposed in breast cancers, where the field is more advanced, and include up-regulations of the inhibited kinases CDK4 and CDK6 and their partner cyclin D as well as the main target of phosphorylation, RB. Up-regulation of Cyclin E, an E2F1/RB regulated gene, also arises as a marker of CDK4/6 inhibition resistance. Signaling from receptor tyrosine kinase pathways through KRAS/BRAF/MEK and PI3K/AKT/mTOR are also implicated in feedback CDK4/6 activation and inhibitors resistance. In gastrointestinal cancers, some of these biomarkers have also proven valuable in predicting sensitivity to CDK4/6 inhibitors and would lead markers to guide clinical development. Modulation of the tumor microenvironment, where immune cells are prominent components, arises as a feature of CDK4/6 inhibition and could be harnessed in therapeutic combinations. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

17 pages, 10504 KiB  
Article
Construction and Influence of Induced Pluripotent Stem Cells on Early Embryo Development in Black Bone Sheep
by Daqing Wang, Yiyi Liu, Lu Li, Xin Li, Xin Cheng, Zhihui Guo, Guifang Cao and Yong Zhang
Biology 2025, 14(5), 484; https://doi.org/10.3390/biology14050484 - 28 Apr 2025
Viewed by 603
Abstract
The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear [...] Read more.
The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear transfer experiments, it can precisely and effectively reveal the intrinsic mechanisms of early biological development. This study successfully reprogrammed black-boned sheep fibroblasts (SFs) into induced pluripotent stem cells (iPSCs) using the piggyBac+TET-on transposon system and investigated their impact on early embryonic development. Seven exogenous reprogramming factors (bovine OCT4, SOX2, KLF4, cMyc, porcine NANOG, Lin-28, and SV40 Large T) were delivered into SFs, successfully inducing iPSCs. A growth performance analysis revealed that iPSC clones exhibited a raised or flat morphology with clear edges, positive alkaline phosphatase staining, and normal karyotypes. The transcriptome analysis indicated a significant enrichment of iPSCs in oxidative phosphorylation and cell proliferation pathways, with an up-regulated expression of the ATP5B, SDHB, Bcl-2, CDK1, and Cyclin D1 genes and a down-regulated expression of BAX (p < 0.05). Somatic cell nuclear transfer experiments demonstrated that the cleavage rate (85% ± 2.12) and blastocyst rate (52% ± 2.11) of the iPSCs were significantly higher than those of the SFs (p < 0.05). The detection of trilineage marker genes confirmed that the expression levels of endoderm (DCN, NANOS3, FOXA2, FOXD3, SOX17), mesoderm (KDR, CD34, NFH), and ectoderm (NEUROD) markers in iPSCs were significantly higher than in SFs (p < 0.01). The findings demonstrate that black-boned sheep iPSCs possess pluripotency and the potential to differentiate into all three germ layers, revealing the mechanisms by which reprogrammed iPSCs influence early embryonic development and providing a critical foundation for research on sheep pluripotent stem cells. Full article
Show Figures

Figure 1

18 pages, 13961 KiB  
Article
Dibromo-Edaravone Induces Anti-Erythroleukemia Effects via the JAK2-STAT3 Signaling Pathway
by Qiqing Chen, Sheng Liu, Xuenai Wei, Peng Zhao, Fen Tian, Kang Yang, Jingrui Song, Yubing Huang, Min Wen, Jialei Song, Yong Jian and Yanmei Li
Int. J. Mol. Sci. 2025, 26(9), 4000; https://doi.org/10.3390/ijms26094000 - 23 Apr 2025
Viewed by 660
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive hematological malignancy managed with chemotherapy, targeted therapies, and stem cell transplantation. However, these treatments often suffer from limitations such as refractoriness, high toxicity, recurrence, and drug resistance, underscoring the urgent need for novel therapeutic [...] Read more.
Acute erythroid leukemia (AEL) is a rare and aggressive hematological malignancy managed with chemotherapy, targeted therapies, and stem cell transplantation. However, these treatments often suffer from limitations such as refractoriness, high toxicity, recurrence, and drug resistance, underscoring the urgent need for novel therapeutic approaches. Dibromo-edaravone (D-EDA) is a synthetic derivative of edaravone (EDA) with unreported anti-leukemic properties. In this study, D-EDA demonstrated potent cytotoxicity against HEL cells with an IC50 value of 8.17 ± 0.43 μM using an MTT assay. Morphological analysis via inverted microscopy revealed reductions in cell number and signs of cellular crumpling and fragmentation. Flow cytometry analysis, Hoechst 33258 staining, Giemsa staining, a JC-1 assay, and a reactive oxygen species (ROS) assay showed that D-EDA induced apoptosis in HEL cells. Furthermore, D-EDA induced S-phase cell cycle arrest. Western blot analysis showed significant upregulation of key apoptosis-related proteins, including cleaved caspase-9, cleaved caspase-3, and cleaved poly ADP-ribose polymerase (PARP), alongside a reduction in Bcl-2 expression. Additionally, oncogenic markers such as c-Myc, CyclinA2, and CDK2 were downregulated, while the cell cycle inhibitor p21 was upregulated. Mechanistic studies involving molecular docking, a cellular thermal shift assay (CETSA), the caspase inhibitor Z-VAD-FMK, JAK2 inhibitor Ruxolitinib, and STAT3 inhibitor Stattic revealed that D-EDA activates the caspase cascade and inhibits the JAK2-STAT3 signaling pathway in HEL cells. In vivo, D-EDA improved spleen structure, increased the hemolysis ratio, and extended survival in a mouse model of acute erythroleukemia. In conclusion, D-EDA induces apoptosis via the caspase cascade and JAK2-STAT3 signaling pathway, demonstrating significant anti-leukemia effects in vitro and in vivo. Thus, D-EDA may be developed as a potential therapeutic agent for acute erythroleukemia. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 1137 KiB  
Review
Recent Developments in Targeting the Cell Cycle in Melanoma
by Christie Hung, Trang T. T. Nguyen, Poulikos I. Poulikakos and David Polsky
Cancers 2025, 17(8), 1291; https://doi.org/10.3390/cancers17081291 - 11 Apr 2025
Viewed by 1293
Abstract
Melanoma is an aggressive cancer with rising incidence, particularly among older individuals. Despite advancements in targeted therapies for BRAF and MEK proteins and immunotherapies, many patients either fail to respond or develop resistance. For those progressing on immunotherapy, limited treatment options remain. The [...] Read more.
Melanoma is an aggressive cancer with rising incidence, particularly among older individuals. Despite advancements in targeted therapies for BRAF and MEK proteins and immunotherapies, many patients either fail to respond or develop resistance. For those progressing on immunotherapy, limited treatment options remain. The Cyclin D–CDK4/6–RB pathway is commonly dysregulated in melanoma, with up to 90% of cases showing alterations that activate it. Although targeting Cyclin–CDK complexes has shown promise in preclinical models, clinical responses have been suboptimal. This review explores the molecular mechanisms behind Cyclin–CDK dysregulation in melanoma and the challenges of targeting this pathway. It also discusses strategies to improve the efficacy of CDK4/6 inhibitors, including combination therapies to overcome resistance and enhance patient outcomes. Understanding these mechanisms can guide the development of more effective treatments for melanoma. Full article
(This article belongs to the Special Issue Prognosis and Treatment of Cutaneous Melanoma (2nd Edition))
Show Figures

Figure 1

20 pages, 4190 KiB  
Article
Arthrocolin B Impairs Adipogenesis via Delaying Cell Cycle Progression During the Mitotic Clonal Expansion Period
by Guang Cao, Xuemei Liao, Shuang Zhao, Mengwen Li, Zhengyuan Xie, Jinglan Yang, Yanze Li, Zihao Zhu, Xiaoru Jin, Rui Huang, Ziyin Guo, Xuemei Niu and Xu Ji
Int. J. Mol. Sci. 2025, 26(4), 1474; https://doi.org/10.3390/ijms26041474 - 10 Feb 2025
Viewed by 1013
Abstract
Obesity and its related diseases severely threaten people’s health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the [...] Read more.
Obesity and its related diseases severely threaten people’s health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the mitotic clonal expansion (MCE) period of adipogenesis may be a promising strategy for preventing and treating obesity. Arthrocolins are a series of fluorescent dye-like complex xanthenes from engineered Escherichia coli, with potential anti-tumor and antifungal activities. However, the role and underlying mechanisms of these compounds in adipocyte differentiation remain unclear. In this study, we discovered that arthrocolin B, a member of the arthrocolin family, significantly impeded adipogenesis by preventing the accumulation of lipid droplets and triglycerides, as well as by downregulating the expression of key factors involved in adipogenesis, such as SREBP1, C/EBPβ, C/EBPδ, C/EBPα, PPARγ, and FABP4. Moreover, we revealed that this inhibition might be a consequence of cell cycle arrest during the MCE of adipocyte differentiation, most likely by modulating the p53, AKT, and ERK pathways, upregulating the expression of p21 and p27, and repressing the expression of CDK1, CDK4, Cyclin A2, Cyclin D1, and p-Rb. Additionally, arthrocolin B could promote the expression of CPT1A during adipocyte differentiation, implying its potential role in fatty acid oxidation. Overall, our research concludes that arthrocolin B has the ability to suppress the early stages of adipocyte differentiation mainly by modulating the signaling proteins involved in cell cycle progression. This work broadens our understanding of the function and mechanisms of arthrocolins in regulation of adipogenesis and might provide a potential lead compound for treating the obesity. Full article
Show Figures

Graphical abstract

19 pages, 3421 KiB  
Article
Dried Apricot Polyphenols Suppress the Growth of A549 Human Lung Adenocarcinoma Cells by Inducing Apoptosis via a Mitochondrial-Dependent Pathway
by Caiyun Zhao, Jingteng Wang, Jintian Guo, Wenjing Gao, Bin Li, Xin Shang, Li Zheng, Bin Wu and Yinghua Fu
Foods 2025, 14(1), 108; https://doi.org/10.3390/foods14010108 - 2 Jan 2025
Cited by 1 | Viewed by 1179
Abstract
Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2′,7-dihydroxy-3′,4′-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could [...] Read more.
Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2′,7-dihydroxy-3′,4′-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells. Moreover, the ROS and Bax levels were increased, and the Bcl-2 and mitochondrial membrane potential were decreased in A549 cells treated with DAP, increasing caspase-9, caspase-3, and cleaved-PARP1 activities and leading to apoptosis of the A549 cells. Meanwhile, tumor growth was also inhibited by DAPs in an A549 tumor-bearing mouse model, Bax and caspase-3 were upregulated, and Bcl-2 was downregulated, inducing apoptosis of lung cancer cells. In conclusion, DAPs could inhibit lung cancer cell growth by inducing apoptosis due to cell cycle arrest and mitochondria-dependent pathways. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
TCF12 and LncRNA MALAT1 Cooperatively Harness High Cyclin D1 but Low β-Catenin Gene Expression to Exacerbate Colorectal Cancer Prognosis Independently of Metastasis
by Chia-Ming Wu, Chung-Hsing Chen, Kuo-Wang Tsai, Mei-Chen Tan, Fang-Yu Tsai, Shih-Sheng Jiang, Shang-Hung Chen, Wei-Shone Chen, Horng-Dar Wang and Tze-Sing Huang
Cells 2024, 13(24), 2035; https://doi.org/10.3390/cells13242035 - 10 Dec 2024
Cited by 1 | Viewed by 1481
Abstract
Metastasis is a well-known factor worsening colorectal cancer (CRC) prognosis, but mortality mechanisms in non-metastatic patients with poor outcomes are less understood. TCF12 is a transcription factor that can be physically associated with the long non-coding RNA MALAT1, creating an alliance with correlated [...] Read more.
Metastasis is a well-known factor worsening colorectal cancer (CRC) prognosis, but mortality mechanisms in non-metastatic patients with poor outcomes are less understood. TCF12 is a transcription factor that can be physically associated with the long non-coding RNA MALAT1, creating an alliance with correlated expression levels in CRC patients. This TCF12–MALAT1 alliance is linked to poorer prognosis independently of age and metastasis. To identify the downstream effects responsible for this outcome, we analyzed 2312 common target genes of TCF12 and MALAT1, finding involvement in pathways like Aurora B, ATM, PLK1, and non-canonical WNT. We investigated the impact of WNT downstream genes CTNNB1 and CCND1, encoding β-catenin and cyclin D1, respectively, on survival in CRC patients with this alliance. Tumors with higher TCF12 and MALAT1 gene expressions alongside increased β-catenin gene expressions were classified as having a “Pan-CMS-2 pattern”, showing relatively better prognoses. Conversely, tumors with high TCF12, MALAT1, and cyclin D1 gene expressions but low β-catenin expression were categorized as “TMBC pattern”, associated with poor survival, with survival rates dropping sharply from 60% at one year to 30% at three years. This suggests that targeting cyclin D1-associated CDK4/6 could potentially reduce early mortality risks in TMBC patients, supporting personalized medicine approaches. Full article
Show Figures

Figure 1

26 pages, 2977 KiB  
Article
Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer’s Amyloidosis
by Dina Medina-Vera, Antonio J. López-Gambero, Julia Verheul-Campos, Juan A. Navarro, Laura Morelli, Pablo Galeano, Juan Suárez, Carlos Sanjuan, Beatriz Pacheco-Sánchez, Patricia Rivera, Francisco J. Pavon-Morón, Cristina Rosell-Valle and Fernando Rodríguez de Fonseca
Nutrients 2024, 16(23), 4186; https://doi.org/10.3390/nu16234186 - 4 Dec 2024
Cited by 1 | Viewed by 2226
Abstract
Background/Objectives: Alzheimer’s disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, [...] Read more.
Background/Objectives: Alzheimer’s disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut. Given this context, exploring alternative therapeutic interventions capable of addressing the multifaceted components of AD etiology is essential. Methods: This study suggests D-Pinitol (DPIN) as a potential treatment modifier for AD. DPIN, derived from carob pods, demonstrates insulin-sensitizing, tau hyperphosphorylation inhibition, and antioxidant properties. To test this hypothesis, we studied whether chronic oral administration of DPIN (200 mg/kg/day) could reverse the AD-like disease progression in the 5×FAD mice. Results: Results showed that treatment of 5×FAD mice with DPIN improved cognition, reduced hippocampal Aβ and hyperphosphorylated tau levels, increased insulin-degrading enzyme (IDE) expression, enhanced pro-cognitive hormone circulation (such as ghrelin and leptin), and normalized the PI3K/Akt insulin pathway. This enhancement may be mediated through the modulation of cyclin-dependent kinase 5 (CDK5). DPIN also protected the gut barrier and microbiota, reducing the pro-inflammatory impact of the leaky gut observed in 5×FAD mice. DPIN reduced bacterial lipopolysaccharide (LPS) and LPS-associated inflammation, as well as restored intestinal proteins such as Claudin-3. This effect was associated with a modulation of gut microbiota towards a more balanced bacterial composition. Conclusions: These findings underscore DPIN’s promise in mitigating cognitive decline in the early AD stages, positioning it as a potential disease modifier. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

20 pages, 5538 KiB  
Article
Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer
by Eva González-Cantó, Mariana Monteiro, Cristina Aghababyan, Ana Ferrero-Micó, Sergio Navarro-Serna, Maravillas Mellado-López, Sarai Tomás-Pérez, Juan Sandoval, Antoni Llueca, Alejandro Herreros-Pomares, Juan Gilabert-Estellés, Vicente Pérez-García and Josep Marí-Alexandre
Cells 2024, 13(22), 1904; https://doi.org/10.3390/cells13221904 - 18 Nov 2024
Cited by 4 | Viewed by 1828
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls MIR145 expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC. Full article
Show Figures

Figure 1

17 pages, 3180 KiB  
Article
Transcriptome Analysis Reveals the Early Development in Subcutaneous Adipose Tissue of Laiwu Piglets
by Liwen Bian, Zhaoyang Di, Mengya Xu, Yuhan Tao, Fangyuan Yu, Qingyan Jiang, Yulong Yin and Lin Zhang
Animals 2024, 14(20), 2955; https://doi.org/10.3390/ani14202955 - 14 Oct 2024
Viewed by 1482
Abstract
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the [...] Read more.
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the subcutaneous adipose tissue (SAT) of 1-day and 21-day old Laiwu piglets. The results showed that the SAT of Laiwu piglets significantly increased from 1-day to 21-day, and transcriptome analysis showed that there were 2352 and 2596 differentially expressed genes (DEGs) between 1-day and 21-day SAT in male and female piglets, respectively. Expression of genes in glycolysis, gluconeogenesis, and glycogen metabolism such as pyruvate kinase M1/2 (PKM), phosphoenolpyruvate carboxy kinase 1 (PCK1) and amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) were significantly different between 1-day and 21-day SAT. Genes in lipid uptake, synthesis and lipolysis such as lipase E (LIPE), acetyl-CoA carboxylase alpha (ACACA), Stearoyl-CoA desaturase (SCD), and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were also differentially expressed. Functional analysis showed enrichment of DEGs in transcriptional regulation, protein metabolism and cellular signal transduction. The protein–protein interaction (PPI) networks of these DEGs were analyzed and potential hub genes in these pathways were identified, such as transcriptional factors forkhead box O4 (FOXO4), CCAAT enhancer binding protein beta (CEBPB) and CCAAT enhancer binding protein delta (CEBPD), signal kinases BUB1 mitotic checkpoint serine/threonine kinase (BUB1) and cyclin-dependent kinase 1 (CDK1), and proteostasis-related factors ubiquitin conjugating enzyme E2 C (UBE2C) and cathepsin D (CTSD). Moreover, we further analyzed the transcriptomes of SAT between genders and the results showed that there were 54 and 72 DEGs in 1-day and 21-day old SAT, respectively. Genes such as KDM5D and KDM6C showed gender-specific expression in 1-day and 21-day SAT. These results showed the significant changes in SAT between 1-day and 21-day in male and female Laiwu pigs, which would provide information to comprehensively understand the programming of adipose tissue early development and to regulate adipose tissue function. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

17 pages, 15660 KiB  
Article
Effect of Spicatoside a on Anti-Osteosarcoma MG63 Cells through Reactive Oxygen Species Generation and the Inhibition of the PI3K-AKT-mTOR Pathway
by Hyung-Mun Yun, Soo Hyun Kim, Yoon-Ju Kwon and Kyung-Ran Park
Antioxidants 2024, 13(10), 1162; https://doi.org/10.3390/antiox13101162 - 25 Sep 2024
Cited by 3 | Viewed by 1574
Abstract
Osteosarcoma is a primary malignant tumor found in the bones of children and adolescents. Unfortunately, many patients do not respond well to treatment and succumb to the illness. Therefore, it is necessary to discover novel bioactive compounds to overcome therapeutic limitations. Liriope platyphylla [...] Read more.
Osteosarcoma is a primary malignant tumor found in the bones of children and adolescents. Unfortunately, many patients do not respond well to treatment and succumb to the illness. Therefore, it is necessary to discover novel bioactive compounds to overcome therapeutic limitations. Liriope platyphylla Wang et Tang is a well-known herb used in oriental medicine. Studies have shown that metabolic diseases can be clinically treated using the roots of L. platyphylla. Recent studies have demonstrated the anticarcinoma potential of root extracts; however, the exact mechanism remains unclear. The aim of this study was to examine the anti-osteosarcoma activity of a single compound extracted from the dried roots of L. platyphylla. We purified Spicatoside A (SpiA) from the dried roots of L. platyphylla. SpiA significantly inhibited the proliferation of human osteosarcoma MG63 cells in a dose- and time-dependent manner. SpiA also regulated the expression of various downstream proteins that mediate apoptosis (PARP, Bcl-2, and Bax), cell growth (cyclin D1, Cdk4, and Cdk6), angiogenesis (VEGF), and metastasis (MMP13). The Proteome Profiler Human Phospho-Kinase Array Kit showed that the AKT signaling protein was a target of SpiA in osteosarcoma cells. We also found that SpiA suppressed the constitutive activation of the PI3K-AKT-mTOR-p70S6K1 signaling pathway. We further validated the effects of SpiA on the AKT signaling pathway. SpiA induced autophagosome formation and suppressed necroptosis (a form of programmed cell death). SpiA increased the generation of reactive oxygen species (ROS) and led to the loss of mitochondrial membrane potential. N-acetylcysteine (NAC)-induced inhibition of ROS generation reduced SpiA-induced AKT inhibition, apoptotic cell death, and anti-metastatic effects by suppressing cell migration and invasion. Overall, these results highlight the anti-osteosarcoma effect of SpiA by inhibiting the AKT signaling pathway through ROS generation, suggesting that SpiA may be a promising compound for the treatment of human osteosarcoma. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

18 pages, 3491 KiB  
Review
Aaptamine: A Versatile Marine Alkaloid for Antioxidant, Antibacterial, and Anticancer Therapeutics
by Navin Kumar Tailor, Geeta Deswal and Ajmer Singh Grewal
Chemistry 2024, 6(4), 677-694; https://doi.org/10.3390/chemistry6040040 - 3 Aug 2024
Cited by 1 | Viewed by 2297
Abstract
Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine), an alkaloid obtained from marine sponges of the genus Aaptos (Demospongiae, Suberitida, Suberitidae), has attracted significant attention as a promising scaffold for the development of antioxidant, antibacterial, and anticancer agents. This review offers an extensive overview of updated research on aaptamine, [...] Read more.
Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine), an alkaloid obtained from marine sponges of the genus Aaptos (Demospongiae, Suberitida, Suberitidae), has attracted significant attention as a promising scaffold for the development of antioxidant, antibacterial, and anticancer agents. This review offers an extensive overview of updated research on aaptamine, focusing on its multifaceted pharmacological properties. The antioxidant potential of aaptamine reflects its potential ability for use in the DPPH free radical scavenging assay, for suppressing ROS, and subsequently deactivating the MAPK and AP-1 signaling pathway. Moreover, it demonstrates notable antibacterial activity against pathogenic bacteria, including mycobacterial active and dormant states, making it a potential candidate for combating bacterial infections. Additionally, aaptamine shows promising anticancer activity by inhibiting cancer cell proliferation, apoptosis induction, and suppressing tumor growth through various signaling pathways, including the regulation of PTEN/PI3K/Akt and CDK2/4, and the regulation of cyclin D1/E in cell cycle arrest. The unique chemical structure of aaptamine offers opportunities for structural modifications aimed at enhancing its antioxidant, antibacterial, and anticancer activities. The exploration of aaptamine as a scaffold in the development of novel therapeutic agents offers great promise for addressing various challenges associated with oxidative stress, bacterial infections, and cancer. This article underscores the potential of aaptamine as a valuable marine-derived scaffold in the fields of antioxidant, antibacterial, and anticancer therapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop