Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = current perpendicular-to-the-plane giant magnetoresistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3341 KB  
Article
Magnetocaloric and Giant Magnetoresistance Effects in La-Ba-Mn-Ti-O Epitaxial Thin Films: Influence of Phase Transition and Magnetic Anisotropy
by Marwène Oumezzine, Cristina Florentina Chirila, Iuliana Pasuk, Aurelian Catalin Galca, Aurel Leca, Bogdana Borca and Victor Kuncser
Materials 2022, 15(22), 8003; https://doi.org/10.3390/ma15228003 - 12 Nov 2022
Cited by 4 | Viewed by 2226
Abstract
Magnetic perovskite films have promising properties for use in energy-efficient spintronic devices and magnetic refrigeration. Here, an epitaxial ferromagnetic La0.67Ba0.33Mn0.95Ti0.05O3 (LBMTO-5) thin film was grown on SrTiO3(001) single crystal substrate by pulsed [...] Read more.
Magnetic perovskite films have promising properties for use in energy-efficient spintronic devices and magnetic refrigeration. Here, an epitaxial ferromagnetic La0.67Ba0.33Mn0.95Ti0.05O3 (LBMTO-5) thin film was grown on SrTiO3(001) single crystal substrate by pulsed laser deposition. High-resolution X-ray diffraction proved the high crystallinity of the film with tetragonal symmetry. The magnetic, magnetocaloric and magnetoresistance properties at different directions of the applied magnetic field with respect to the ab plane of the film were investigated. An in-plane uni-axial magnetic anisotropy was evidenced. The LBMTO-5 epilayer exhibits a second-order ferromagnetic-paramagnetic phase transition around 234 K together with a metal–semiconductor transition close to this Curie temperature (TC). The magnetic entropy variation under 5 T induction of a magnetic field applied parallel to the film surface reaches a maximum of 17.27 mJ/cm3 K. The relative cooling power is 1400 mJ/cm3 K (53% of the reference value reported for bulk Gd) for the same applied magnetic field. Giant magnetoresistance of about 82% under 5 T is obtained at a temperature close to TC. Defined as the difference between specific resistivity obtained under 5 T with the current flowing along the magnetic easy axis and the magnetic field oriented transversally to the current, parallel and perpendicular to the sample plane, respectively, the in-plane magneto-resistance anisotropy in 5 T is about 9% near the TC. Full article
Show Figures

Figure 1

9 pages, 2327 KB  
Article
Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2
by Pirat Khunkitti, Apirat Siritaratiwat and Kotchakorn Pituso
Micromachines 2021, 12(9), 1010; https://doi.org/10.3390/mi12091010 - 25 Aug 2021
Cited by 4 | Viewed by 2352
Abstract
Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read sensors based on Heusler alloys are promising candidates for ultrahigh areal densities of magnetic data storage technology. In particular, the thickness of reader structures is one of the key factors for the development of practical CPP-GMR sensors. In [...] Read more.
Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read sensors based on Heusler alloys are promising candidates for ultrahigh areal densities of magnetic data storage technology. In particular, the thickness of reader structures is one of the key factors for the development of practical CPP-GMR sensors. In this research, we studied the dependence of the free layer thickness on the stability of the Co2(Mn0.6Fe0.4)Ge Heusler-based CPP-GMR read head for an areal density of 1 Tb/in2, aiming to determine the appropriate layer thickness. The evaluations were done through simulations based on micromagnetic modelling. The reader stability indicators, including the magnetoresistance (MR) ratio, readback signal, dibit response asymmetry parameter, and power spectral density profile, were characterized and discussed. Our analysis demonstrates that the reader with a free layer thickness of 3 nm indicates the best stability performance for this particular head. A reasonably large MR ratio of 26% was obtained by the reader having this suitable layer thickness. The findings can be utilized to improve the design of the CPP-GMR reader for use in ultrahigh magnetic recording densities. Full article
(This article belongs to the Special Issue Magnetic and Spin Devices)
Show Figures

Figure 1

11 pages, 2799 KB  
Article
Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected NixFe1−x/Cu Multilayered Nanowire Networks
by Nicolas Marchal, Tristan da Câmara Santa Clara Gomes, Flavio Abreu Araujo and Luc Piraux
Nanomaterials 2021, 11(5), 1133; https://doi.org/10.3390/nano11051133 - 27 Apr 2021
Cited by 12 | Viewed by 2865
Abstract
The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant [...] Read more.
The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant magnetoresistance effect in the current-perpendicular-to-plane configuration that can be reliably measured along the macroscopic in-plane direction of the films. Moreover, the system also enables reliable measurements of the analogous magneto-thermoelectric properties of the multilayered nanowire networks. Here, three-dimensional interconnected NixFe1x/Cu multilayered nanowire networks (with 0.60x0.97) are fabricated and characterized, leading to large magnetoresistance and magneto-thermopower ratios up to 17% and −25% in Ni80Fe20/Cu, respectively. A strong contrast is observed between the amplitudes of magnetoresistance and magneto-thermoelectric effects depending on the Ni content of the NiFe alloys. In particular, for the highest Ni concentrations, a strong increase in the magneto-thermoelectric effect is observed, more than a factor of 7 larger than the magnetoresistive effect for Ni97Fe3/Cu multilayers. This sharp increase is mainly due to an increase in the spin-dependent Seebeck coefficient from −7 µV/K for the Ni60Fe40/Cu and Ni70Fe30/Cu nanowire arrays to −21 µV/K for the Ni97Fe3/Cu nanowire array. The enhancement of the magneto-thermoelectric effect for multilayered nanowire networks based on dilute Ni alloys is promising for obtaining a flexible magnetic switch for thermoelectric generation for potential applications in heat management or logic devices using thermal energy. Full article
(This article belongs to the Special Issue Advances in Nanowire)
Show Figures

Figure 1

19 pages, 3515 KB  
Article
Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes
by Tristan da Câmara Santa Clara Gomes, Nicolas Marchal, Flavio Abreu Araujo, Yenni Velázquez Galván, Joaquín de la Torre Medina and Luc Piraux
Nanomaterials 2021, 11(1), 221; https://doi.org/10.3390/nano11010221 - 16 Jan 2021
Cited by 19 | Viewed by 3789
Abstract
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes [...] Read more.
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes are also planar and lightweight. This fabrication technique allows for the control of the geometric characteristics and material composition of interconnected magnetic nanowire or nanotube networks, which can be used to fine-tune their magnetic and magneto-transport properties. The magnetostatic contribution to the magnetic anisotropy of crossed nanowire networks can be easily controlled using the diameter, packing density, or angle distribution characteristics. Furthermore, the fabrication of Co and Co-rich NiCo alloy crossed nanowires with textured hcp phases leads to an additional significant magnetocrystalline contribution to the magnetic anisotropy that can either compete or add to the magnetostatic contribution. The fabrication of an interconnected nanotube network has also been demonstrated, where the hollow core and the control over the tube wall thickness add another degree of freedom to control the magnetic properties and magnetization reversal mechanisms. Finally, three-dimensional networks made of interconnected multilayered nanowire with a succession of ferromagnetic and non-magnetic layers have been successfully fabricated, leading to giant magnetoresistance responses measured in the current-perpendicular-to-plane configuration. These interconnected nanowire networks have high potential as integrated, reliable, and stable magnetic field sensors; magnetic devices for memory and logic operations; or neuromorphic computing. Full article
(This article belongs to the Special Issue Multifunctional Magnetic Nanowires and Nanotubes)
Show Figures

Figure 1

14 pages, 5220 KB  
Article
Determination of Cobalt Spin-Diffusion Length in Co/Cu Multilayered Heterojunction Nanocylinders Based on Valet–Fert Model
by Saeko Mizoguchi, Masamitsu Hayashida and Takeshi Ohgai
Nanomaterials 2021, 11(1), 218; https://doi.org/10.3390/nano11010218 - 15 Jan 2021
Cited by 5 | Viewed by 3374
Abstract
Anodized aluminum oxide (AAO) nanochannels of diameter, D, of ~50 nm and length, L, of ~60 µm (L/D: approx. 1200 in the aspect ratio), were synthesized and applied as an electrode for the electrochemical growth of Co/Cu [...] Read more.
Anodized aluminum oxide (AAO) nanochannels of diameter, D, of ~50 nm and length, L, of ~60 µm (L/D: approx. 1200 in the aspect ratio), were synthesized and applied as an electrode for the electrochemical growth of Co/Cu multilayered heterojunction nanocylinders. We synthesized numerous Co/Cu multilayered nanocylinders by applying a rectangular pulsed potential deposition method. The Co layer thickness, tCo, ranged from ~8 to 27 nm, and it strongly depended on the pulsed-potential condition for Co layers, ECo. The Cu layer thickness, tCu, was kept at less than 4 nm regardless of ECo. We applied an electrochemical in situ contact technique to connect a Co/Cu multilayered nanocylinder with a sputter-deposited Au thin layer. Current perpendicular-to-plane giant magnetoresistance (CPP-GMR) effect reached up to ~23% in a Co/Cu multilayered nanocylinder with ~4760 Co/Cu bilayers (tCu: 4 nm and tCo: 8.6 nm). With a decrease in tCo, (ΔR/Rp)−1 was linearly reduced based on the Valet–Fert equation under the condition of tF > lFsf and tN < lNsf. The cobalt spin-diffusion length, lCosf, was estimated to be ~12.5 nm. Full article
(This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles)
Show Figures

Graphical abstract

15 pages, 4614 KB  
Article
CPP-GMR Performance of Electrochemically Synthesized Co/Cu Multilayered Nanowire Arrays with Extremely Large Aspect Ratio
by Himeyo Kamimura, Masamitsu Hayashida and Takeshi Ohgai
Nanomaterials 2020, 10(1), 5; https://doi.org/10.3390/nano10010005 - 18 Dec 2019
Cited by 18 | Viewed by 3894
Abstract
Anodized aluminum oxide (AAO) films, which have numerous nanochannels ca. 75 nm in diameter, D and ca. 70 µm in length, L (ca. 933 in aspect ratio, L/D), were used as a template material for growing Co/Cu multilayered nanowire arrays. [...] Read more.
Anodized aluminum oxide (AAO) films, which have numerous nanochannels ca. 75 nm in diameter, D and ca. 70 µm in length, L (ca. 933 in aspect ratio, L/D), were used as a template material for growing Co/Cu multilayered nanowire arrays. The multilayered nanowires with alternating Cu layer and Co layers were synthesized by using an electrochemical pulsed-potential deposition technique. The thickness of the Cu layer was adjusted from ca. 2 to 4 nm while that of the Co layer was regulated from ca. 13 to 51 nm by controlling the pulsed potential parameters. To get a Co/Cu multilayered nanowire in an electrochemical in-situ contact with a sputter-deposited Au thin layer, the pulsed potential deposition was continued up to ca. 5000 cycles until the nanowire reached out toward the surface of AAO template. Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) effect reached up to ca. 23.5% at room temperature in Co/Cu multilayered nanowires with ca. 3500 Co/Cu bilayers (Cu: 1.4 nm and Co: 18.8 nm). When decreasing the thickness of Co layer, the CPP-GMR value increased due to the Valet–Fert model in the long spin diffusion limit. Full article
(This article belongs to the Special Issue Growth and Characterization in Nanowires)
Show Figures

Graphical abstract

9 pages, 558 KB  
Article
Interface Tailoring Effect for Heusler Based CPP-GMR with an L12-Type Ag3Mg Spacer
by Takahide Kubota, Yusuke Ina, Zhenchao Wen and Koki Takanashi
Materials 2018, 11(2), 219; https://doi.org/10.3390/ma11020219 - 31 Jan 2018
Cited by 6 | Viewed by 5025
Abstract
Current perpendicular-to-plane (CPP) giant magnetoresistance (GMR) effects are of interest in a possible application of magnetic sensor elements, such as read-head of hard disk drives. To improve the junction performance, the interface tailoring effects were investigated for the Heulser alloy, Co2Fe [...] Read more.
Current perpendicular-to-plane (CPP) giant magnetoresistance (GMR) effects are of interest in a possible application of magnetic sensor elements, such as read-head of hard disk drives. To improve the junction performance, the interface tailoring effects were investigated for the Heulser alloy, Co2Fe0.4Mn0.6Si (CFMS), based CPP-GMR junctions with an L 1 2 -Ag3Mg ordered alloy spacer. Ultra-thin Fe or Mg inserts were utilized for the CFMS/Ag3Mg interfaces, and CPP-GMR at low bias current density, J and the J dependence were evaluated for the junctions. Although, at low bias J, MR ratio decreased with increasing the inserts thickness, the device output at high bias J exhibited quite weak dependence on the insert thickness. The output voltages of the order of 4 mV were obtained for the junctions regardless of the insert at an optimal bias J for each. The critical current density J c was evaluated by the shape of MR curves depending on J. J c increased with the insert thicknesses up to 0.45 nm. The enhancement of J c suggests that spin-transfer-torque effect may reduce in the junctions with inserts, which enables a reduction of noise and can be an advantage for device applications. Full article
(This article belongs to the Special Issue Magnetoresistance Effects and Their Application to Spintronic Devices)
Show Figures

Figure 1

Back to TopTop