#
Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected Ni_{x}Fe_{1−x}/Cu Multilayered Nanowire Networks

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Rauber, M.; Alber, I.; Müller, S.; Neumann, R.; Picht, O.; Roth, C.; Schökel, A.; Toimil-Molares, M.E.; Ensinger, W. Highly-Ordered Supportless Three-Dimensional Nanowire Networks with Tunable Complexity and Interwire Connectivity for Device Integration. Nano Lett.
**2011**, 11, 2304–2310. [Google Scholar] [CrossRef] [PubMed] - Araujo, E.; Encinas, A.; Velázquez-Galván, Y.; Martinez-Huerta, J.M.; Hamoir, G.; Ferain, E.; Piraux, L. Artificially modified magnetic anisotropy in interconnected nanowire networks. Nanoscale
**2015**, 7, 1485–1490. [Google Scholar] [CrossRef] [PubMed] - Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; Fischer, P.; Cowburn, R.P. Three-dimensional nanomagnetism. Nat. Commun.
**2017**, 8, 15756. [Google Scholar] [CrossRef] [PubMed][Green Version] - Piraux, L.; da Câmara Santa Clara Gomes, T.; Abreu Araujo, F.; De La Torre Medina, J. Chapter 27: 3D Magnetic Nanowire Networks. In Magnetic Nano- and Microwires, 2nd ed.; Vázquez, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, W.; Tian, M.; Abdulagatov, A.; George, S.M.; Lee, Y.C.; Yang, R. Three-Dimensional Ni/TiO
_{2}Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. Nano Lett.**2012**, 12, 655–660. [Google Scholar] [CrossRef] - Wei, C.; Pang, H.; Zhang, B.; Lu, Q.; Liang, S.; Gao, F. Two-Dimensional β-MnO
_{2}Nanowire Network with Enhanced Electrochemical Capacitance. Sci. Rep.**2013**, 3, 2193. [Google Scholar] [CrossRef][Green Version] - Vlad, A.; Antohe, V.A.; Martinez-Huerta, J.M.; Ferain, E.; Gohy, J.F.; Piraux, L. Three-dimensional interconnected Ni
_{core}NiO_{shell}nanowire networks for lithium microbattery architectures. J. Mater. Chem. A**2016**, 4, 1603–1607. [Google Scholar] [CrossRef] - Omale, J.O.; Rupp, R.; Van Velthem, P.; Van Kerckhoven, V.; Antohe, V.A.; Vlad, A.; Piraux, L. Three-dimensional microsupercapacitors based on interdigitated patterns of interconnected nanowire networks. Energy Storage Mater.
**2019**, 21, 77–84. [Google Scholar] [CrossRef] - Rahong, S.; Yasui, T.; Yanagida, T.; Nagashima, K.; Kanai, M.; Klamchuen, A.; Meng, G.; He, Y.; Zhuge, F.; Kaji, N.; et al. Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires. Sci. Rep.
**2014**, 4, 5252. [Google Scholar] [CrossRef] - Wang, S.; Xu, L.P.; Liang, H.W.; Yu, S.H.; Wen, Y.; Wang, S.; Zhang, X. Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor. Nanoscale
**2015**, 7, 11460–11467. [Google Scholar] [CrossRef] - Rahong, S.; Yasui, T.; Yanagida, T.; Nagashima, K.; Kanai, M.; Meng, G.; He, Y.; Zhuge, F.; Kaji, N.; Kawai, T.; et al. Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules. Sci. Rep.
**2015**, 5, 10584. [Google Scholar] [CrossRef][Green Version] - Da Câmara Santa Clara Gomes, T.; de la Torre Medina, J.; Velázquez-Galván, Y.G.; Martínez-Huerta, J.M.; Encinas, A.; Piraux, L. Interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks. J. Appl. Phys.
**2016**, 120, 043904. [Google Scholar] [CrossRef] - De la Torre Medina, J.; da Câmara Santa Clara Gomes, T.; Velázquez Galván, Y.G.; Piraux, L. Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties. Sci. Rep.
**2018**, 8, 14555. [Google Scholar] [CrossRef] - Da Câmara Santa Clara Gomes, T.; Marchal, N.; Abreu Araujo, F.; Velázquez Galván, Y.; de la Torre Medina, J.; Piraux, L. Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes. Nanomaterials
**2021**, 11, 221. [Google Scholar] [CrossRef] - Da Câmara Santa Clara Gomes, T.; Abreu Araujo, F.; Piraux, L. Making flexible spin caloritronic devices with interconnected nanowire networks. Sci. Adv.
**2019**, 5, eaav2782. [Google Scholar] [CrossRef][Green Version] - Abreu Araujo, F.; da Câmara Santa Clara Gomes, T.; Piraux, L. Magnetic Control of Flexible Thermoelectric Devices Based on Macroscopic 3D Interconnected Nanowire Networks. Adv. Electron. Mater.
**2019**, 5, 1800819. [Google Scholar] [CrossRef][Green Version] - Da Câmara Santa Clara Gomes, T.; Marchal, N.; Abreu Araujo, F.; Piraux, L. Tunable magnetoresistance and thermopower in interconnected NiCr and CoCr nanowire networks. Appl. Phys. Lett.
**2019**, 115, 242402. [Google Scholar] [CrossRef] - Da Câmara Santa Clara Gomes, T.; Marchal, N.; Abreu Araujo, F.; Piraux, L. Spin Caloritronics in 3D Interconnected Nanowire Networks. Nanomaterials
**2020**, 10, 2092. [Google Scholar] [CrossRef] - Da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Velázquez-Galván, Y.G.; Martínez-Huerta, J.M.; Encinas, A.; Piraux, L. 3-D Interconnected Magnetic Nanofiber Networks With Multifunctional Properties. IEEE Trans. Magn.
**2017**, 53, 1–6. [Google Scholar] [CrossRef] - Marchal, N.; da Câmara Santa Clara Gomes, T.; Abreu Araujo, F.; Piraux, L. Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks. Nanoscale Res. Lett.
**2020**, 15, 137. [Google Scholar] [CrossRef] - Liebing, N.; Serrano-Guisan, S.; Rott, K.; Reiss, G.; Langer, J.; Ocker, B.; Schumacher, H.W. Tunneling Magnetothermopower in Magnetic Tunnel Junction Nanopillars. Phys. Rev. Lett.
**2011**, 107, 177201. [Google Scholar] [CrossRef][Green Version] - Walter, M.; Walowski, J.; Zbarsky, V.; Münzenberg, M.; Schäfers, M.; Ebke, D.; Reiss, G.; Thomas, A.; Peretzki, P.; Seibt, M.; et al. Seebeck effect in magnetic tunnel junctions. Nat. Mater.
**2011**, 10, 742–746. [Google Scholar] [CrossRef] - Ho, C.Y.; Bogaard, R.H.; Chi, T.C.; Havill, T.N.; James, H.M. Thermoelectric power of selected metals and binary alloy systems. Thermochim. Acta
**1993**, 218, 29–56. [Google Scholar] [CrossRef] - Fert, A.; Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater.
**1999**, 200, 338–358. [Google Scholar] [CrossRef] - da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Lemaitre, M.; Piraux, L. Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks. Nanoscale Res. Lett.
**2016**, 11, 466. [Google Scholar] [CrossRef][Green Version] - Jayathilaka, P.B.; Miller, C.W. Longitudinal magnetothermopower in permalloy spin valves. J. Magn. Magn. Mater.
**2018**, 449, 228–231. [Google Scholar] [CrossRef] - MacDonald, D.K.C. Thermoelectricity: An Introduction to the Principles; Wiley: Hoboken, NY, USA, 1962. [Google Scholar]
- Yamashita, O.; Tomiyoshi, S.; Makita, K. Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys.
**2002**, 93, 368–374. [Google Scholar] [CrossRef] - Rossella, F.; Pennelli, G.; Roddaro, S. Chapter Six—Measurement of the Thermoelectric Properties of Individual Nanostructures. In Nanowires for Energy Applications; Semiconductors and, Semimetals; Mokkapati, S., Jagadish, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 98, pp. 409–444. [Google Scholar] [CrossRef]
- Roddaro, S.; Ercolani, D.; Safeen, M.A.; Suomalainen, S.; Rossella, F.; Giazotto, F.; Sorba, L.; Beltram, F. Giant Thermovoltage in Single InAs Nanowire Field-Effect Transistors. Nano Lett.
**2013**, 13, 3638–3642. [Google Scholar] [CrossRef][Green Version] - Elyamny, S.; Dimaggio, E.; Magagna, S.; Narducci, D.; Pennelli, G. High Power Thermoelectric Generator Based on Vertical Silicon Nanowires. Nano Lett.
**2020**, 20, 4748–4753. [Google Scholar] [CrossRef] - Dimaggio, E.; Pennelli, G. Potentialities of silicon nanowire forests for thermoelectric generation. Nanotechnology
**2018**, 29, 135401. [Google Scholar] [CrossRef] - Yazji, S.; Hoffman, E.A.; Ercolani, D.; Rossella, F.; Pitanti, A.; Cavalli, A.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Zardo, I. Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis. Nano Res.
**2015**, 8, 4048–4060. [Google Scholar] [CrossRef] - Shi, J.; Kita, E.; Xing, L.; Salamon, M.B. Magnetothermopower of a Ag
_{80}Co_{20}granular system. Phys. Rev. B**1993**, 48, 16119–16122. [Google Scholar] [CrossRef] [PubMed] - Shi, J.; Parkin, S.S.P.; Xing, L.; Salamon, M.B. Giant magnetoresistance and magnetothermopower in Co/Cu multilayers. J. Magn. Magn. Mater.
**1993**, 125, L251–L256. [Google Scholar] [CrossRef] - Piraux, L.; George, J.M.; Despres, J.F.; Leroy, C.; Ferain, E.; Legras, R.; Ounadjela, K.; Fert, A. Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett.
**1994**, 65, 2484–2486. [Google Scholar] [CrossRef] - Blatt, F.J.; Schroeder, P.A.; Foiles, C.L.; Greig, D. The Thermoelectric Power of Transition Metals; Springer: Boston, MA, USA, 1976. [Google Scholar]
- Lee, S.F.; Pratt, W.P.; Loloee, R.; Schroeder, P.A.; Bass, J. “Field-dependent interface resistance” of Ag/Co multilayers. Phys. Rev. B
**1992**, 46, 548–551. [Google Scholar] [CrossRef] - Bass, J. CPP magnetoresistance of magnetic multilayers: A critical review. J. Magn. Magn. Mater.
**2016**, 408, 244–320. [Google Scholar] [CrossRef][Green Version] - Farrell, T.; Greig, D. The thermoelectric power of nickel and its alloys. J. Phys. Solid State Phys.
**1970**, 3, 138. [Google Scholar] [CrossRef] - Cadeville, M.C.; Roussel, J. Thermoelectric power and electronic structure of dilute alloys of nickel and cobalt with d transition elements. J. Phys. Met. Phys.
**1971**, 1, 686. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Low-magnification SEM image of the interconnected NiFe/Cu NW network film, 80 nm in diameter and about 3% in packing density. The inset shows the branched structure of the NWs, at higher magnification. The diagram shows the experimental set-up for the measurements of (

**b**) the electrical resistance and (

**c**) the Seebeck coefficient of 3D interconnected NW network film.

**Figure 2.**Room-temperature magnetoresistance (left side, in blue) and magneto-Seebeck (right side, in red) curves obtained by sweeping an external magnetic field along the in-plane direction of (

**a**) Ni${}_{60}$Fe${}_{40}$/Cu (Sample A), (

**b**) Ni${}_{70}$Fe${}_{30}$/Cu (Sample B), (

**c**) Ni${}_{80}$Fe${}_{20}$/Cu (Sample C), and (

**d**) Ni${}_{97}$Fe${}_{3}$/Cu (Sample D) NW networks.

**Figure 3.**(

**a**) Room-temperature Seebeck coefficients at zero magnetic field ${S}_{0}$ (in blue) and at saturation ${S}_{\mathrm{sat}}$ (in red) as a function of the Ni content for various Ni${}_{x}$Fe${}_{1-x}$/Cu NW networks. The results previously obtained [20] on homogeneous Ni${}_{x}$Fe${}_{1-x}$ NW networks are also shown for comparison (in grey). (

**b**–

**e**) Linear variation of $\mathsf{\Delta}S\left(H\right)=S\left(H\right)-{S}_{0}$ vs. $\mathsf{\Delta}(1/R\left(H\right))=1/R\left(H\right)-1/{R}_{0}$, illustrating the Gorter–Nordheim characteristics for (

**b**) Ni${}_{60}$Fe${}_{40}$/Cu (Sample A), (

**c**) Ni${}_{70}$Fe${}_{30}$/Cu (Sample B), (

**d**) Ni${}_{80}$Fe${}_{20}$/Cu (Sample C), and (

**e**) Ni${}_{97}$Fe${}_{3}$/Cu (Sample D) NW networks. The dashed grey lines in (

**b**–

**e**) shows the theoretical linear relation given in Equation (1).

**Figure 4.**(

**a**) |MTP/MR| ratio as a function of the Ni content at room temperature for Ni${}_{x}$Fe${}_{1-x}$/Cu NW networks. The dashed and dot-dashed grey lines correspond to the |MTP/MR| values previously reported for Co/Cu [16] and Co${}_{50}$Ni${}_{50}$/Cu [15] NW networks, respectively. (

**b**) Seebeck coefficients in the anti-parallel (AP, in light blue) and parallel (P, in light red) states, together with the calculated Seebeck coefficient for spin up (in green) and spin down (in purple) electrons using Equations (4) and (5) as a function of the Ni content of Ni${}_{x}$Fe${}_{1-x}$/Cu NW networks at room temperature. (

**c**) Variation of $\mathsf{\Delta}S=({S}_{\uparrow}-{S}_{\downarrow})$ with the Ni content at room temperature. (

**d**) Room temperature values of the spin asymmetry coefficient for the Seebeck coefficient $\eta $ as a function of the Ni content. The dashed and dot-dashed grey lines in (

**c**,

**d**) corresponds to the $\mathsf{\Delta}S$ and $\eta $ values reported for Co/Cu [16] and Co${}_{50}$Ni${}_{50}$/Cu [15] NW networks, respectively.

**Figure 5.**Schematics of a thermoelectric generator based on FM/Cu/FM NWs where (

**a**) $\beta \eta =$−1 and (

**b**) $\beta \eta =$ 1, leading to ${S}_{\mathrm{AP}}=$ 0 and ${S}_{\mathrm{P}}=$ 0, respectively.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Marchal, N.; da Câmara Santa Clara Gomes, T.; Abreu Araujo, F.; Piraux, L.
Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected Ni_{x}Fe_{1−x}/Cu Multilayered Nanowire Networks. *Nanomaterials* **2021**, *11*, 1133.
https://doi.org/10.3390/nano11051133

**AMA Style**

Marchal N, da Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L.
Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected Ni_{x}Fe_{1−x}/Cu Multilayered Nanowire Networks. *Nanomaterials*. 2021; 11(5):1133.
https://doi.org/10.3390/nano11051133

**Chicago/Turabian Style**

Marchal, Nicolas, Tristan da Câmara Santa Clara Gomes, Flavio Abreu Araujo, and Luc Piraux.
2021. "Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected Ni_{x}Fe_{1−x}/Cu Multilayered Nanowire Networks" *Nanomaterials* 11, no. 5: 1133.
https://doi.org/10.3390/nano11051133