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Abstract: Current perpendicular-to-plane (CPP) giant magnetoresistance (GMR) effects are of interest
in a possible application of magnetic sensor elements, such as read-head of hard disk drives.
To improve the junction performance, the interface tailoring effects were investigated for the Heulser
alloy, Co2Fe0.4Mn0.6Si (CFMS), based CPP-GMR junctions with an L12-Ag3Mg ordered alloy spacer.
Ultra-thin Fe or Mg inserts were utilized for the CFMS/Ag3Mg interfaces, and CPP-GMR at low bias
current density, J and the J dependence were evaluated for the junctions. Although, at low bias J, MR
ratio decreased with increasing the inserts thickness, the device output at high bias J exhibited quite
weak dependence on the insert thickness. The output voltages of the order of 4 mV were obtained for
the junctions regardless of the insert at an optimal bias J for each. The critical current density Jc was
evaluated by the shape of MR curves depending on J. Jc increased with the insert thicknesses up to
0.45 nm. The enhancement of Jc suggests that spin-transfer-torque effect may reduce in the junctions
with inserts, which enables a reduction of noise and can be an advantage for device applications.
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1. Introduction

Current perpendicular to plane (CPP) giant magnetoresistance (GMR) junction is potentially
utilized for highly sensitive magnetic sensor applications, e.g., read-head devices for hard disk drives
(HDDs) [1–4]. A merit of CPP-GMR junction is a relatively low areal resistance (RA) of the order of
10−2–10−3 Ω·µm2, which is an advantage over tunnel magnetoresistance (TMR) junctions. The low
RA in the optimum range applicable to the next generation HDDs with areal recording density of
several tera-bit-per-square-inches [3]. Magnetic tunnel junctions (MTJs) with an MgO barrier exhibit
a high MR ratio over 100% with RA down to 1 Ω·µm2 [5,6]; however, the MR ratio decreases for a
lower RA region because of the ultra-thin tunneling barrier. The reduction of the MR with the reduced
barrier thickness is unavoidable from the principle of coherent tunneling [7,8]. Thus, we can say that
an advantage of CPP-GMR is the low RA compared to MgO-MTJs, which is currently used for HDD
read-heads, and the development of CPP-GMR is necessary for futre HDD tecnology. According to
the theoretical model proposed by Valet and Fert in 1993 [9], spin asymmetry coefficients crucially
affect the resistance change of CPP-GMR junctions, which are defined by magnetic material as well as
the interface between a non-magnetic spacer and the magnetic layer. For realization of high output
for the CPP-GMR junctions, magnetic materials with high-spin polarization are essential. One of the
developed magnetic material classes for CPP-GMR junctions is half-metallic cobalt (Co)-based Heusler
alloys for some of which the theoretically predicted spin polarization is 100% [10]. In experiments
for CPP-GMR, a pioneer work has been reported for junctions using Co2MnSi Heusler alloy and a
Cr spacer, in which relatively large resistance change was observed [11]. The next trigger was given
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by a Ag spacer for the Co2-Heusler junctions, in which MR ratio and the areal resistance change
(∆RA) reached to about 30% and 10 mΩ·µm2, respectively, at room temperature [12,13]. To date,
several Heusler alloys are known as half-metallic and have been utilized for CPP-GMR junctions,
e.g., Co2(Al-Si) [13,14], Co2MnGe [15,16], Co2(Fe-Mn)Si [17,18], and Co2(Ga-Ge) [19]. Selection of the
spacer material is another crucial factor for CPP-GMR from a viewpoint of band-dispersion-matching
to the Heusle alloy layers [20–23], for the purpose of which various non-magnetic materials have also
been investigated experimentally, e.g., Cr, Ag, Cu, non-magnetic Heusler alloys [20,24,25], B2-type
NiAl [26], noble-metal(Cu or Ag)-Zn alloys [27,28], conductive oxide [29], and so on.

Among the numerous materials we have focused on a Co2Fe0.4Mn0.6Si (CFMS) alloy as a
half-metallic material, and an L12 Ag3Mg alloy as a spacer, for which schematic crystal structures
are shown in Figure 1a,b, respectively. CFMS is a known half-metallic material on the bases of both
theoretical and experimental studies [18,30,31]. One of the merits is a high exchange stiffness at the
interface which is important for realizing large CPP-GMR at room temperature [32,33]. The L12 Ag3Mg
is an ordered alloy spacer material for which good band-dispersion-matching to CFMS has been
predicted [34], and large CPP-GMR have experimentally demonstrated for CFMS/L12 Ag3Mg/CFMS
junctions, which is an advantage over the Ag spacer junctions [34–36].

In this work, the interface tailoring effect is investigated for the CFMS/L12 Ag3Mg/CFMS
junctions to improve the output performance. According to literatures [37,38], ultra-thin inserts at
Heusler layer/spacer interfaces drastically modified the CPP-GMR properties. For the insert materials,
Fe and Mg have been selected. The Fe insert is interested in enhancing the exchange stiffness at the
interface [33,38], and the Mg insert is interesting because the electronic state consists of sp-components
only [39], which may result in a filtering effect for the highly spin polarized electrons of Heusler alloys
with sp-like symmetry.
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Figure 1. Schematic illustrations of crystal structures for (a) Co2(Fe,Mn)Si (CFMS) full Heusler alloy
in the L21 phase; (b) Ag3Mg alloy in the L12 phase, and (c) stacking structure of the layered films for
current perpendiculr to plane (CPP) giant magnetoresistance (GMR) junctions.

2. Materials and Methods

Layered films were deposited onto MgO (100) single crystalline substrates by using an ultra-high
vacuum magnetron sputtering system for which base pressure of the vacuum chamber was less than
1 × 10−7 Pa. For the sputtering power sources, radio frequency source was used for the Ag target, and
direct current source was used for other targets. The stacking structure of samples is as follows and
shown in Figure1c: Cr (20 nm) | Ag (40 nm) | CFMS (20 nm) | Fe or Mg (tFeorMg) | Ag3Mg (5 nm) |
Fe or Mg (tFeorMg) | CFMS (7 nm) | Ag (2 nm) | Au (5 nm), from bottom to top. The film compositions
of the CFMS and Ag3Mg layeres were Co47Fe13Mn15Si25 (at.%) and Ag78Mg22 (at.%), respectively.
The thicknesses for the inserts, tFeorMg, ranged from 0 to 0.6 nm in 0.15 nm increments. The surface of
the MgO substrates was flushed at 650 ◦C by using an infrared heater equipped inside the ultra-high
vacuum chamber. All layeres were deposited at room temperature and in situ post-annealing was
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carried out at 650 and 550 ◦C after the deposition of the Cr and the upper CFMS layer, respectively.
Crystalline property of the films was examined using reflection high energy electron diffraction,
RHEED, patterns for the surface of the upper CFMS electrode. The layered films were patterned into a
pillar shape with sub-micrometer-scale using electron-beam lithography and argon ion dry etching
technique. Designed pillar sizes ranged from 50 × 100 nm2 to 400 × 800 nm2 with a rectangular shape.
And actual pillar sizes were estimated using the same method as that in our previous studies [34,40],
which ranged from 40 × 80 nm2 to 390 × 780 nm2, approximately. The RA values of junctions were
estimated using resistance at the parallel magnetization configuration, Rp, as a function of the inverse
junction area, 1/A, where A is in the unit of µm2. The measuerments of Rp were carried out for all
sizes of junctions. The detail for the procedure of RA estimation was described in a previous paper of
ours [36]. CPP-GMR effects were measured by four-probe method at room temperature. In this paper
CPP-GMR effects were characterized by two aspects: CPP-GMR effects at low bias current density,
J and the bias J dependence of CPP-GMR. For the measurements at low J, the current was fixed so that
the applied bias voltage was about 1 mV at a parallel magnetization configuration, and the magnetic
field was swept along a long axis of the pillar shape which is an easy magnetization axis. Regarding the
value of MR ratio, two definitions are used: The observed MR ratio, MRobs, and the intrinsic MR ratio,
MRint, for which the parasitic resistance, Rpara was subtracted from RP(AP), where RAP represents
the junction resistance at antiparallel magnetization configuration. Here, Rpara originates from the
resistance of the lead electrodes for the junction. The values are defined by the following equations;

MRobs =
RAP − RP

RP
× 100(%), (1)

MRint =
RAP − RP

RP − Rpara
× 100(%), (2)

And ∆RA is also defined as follows;

∆RA = (RAP − RP)A = RA×MRint, (3)

For the J dependence, GMR curves were measured at several values of J within the range of about
108 A/cm2, and the magnetic field was swept along a short axis of the pillar shape, which is a hard
magnetization axis direction.

3. Results and Discussion

RHEED images are shown in Figure 2 for the surface of the upper CFMS layer in the layered films
for CFMS<110> azimuth. The thickness of the inserts is 0.6 nm for Fe (Figure 2b) or Mg (Figure 2c),
which is the maximum thickness of the inserts among the samples. Regardless of the inserts, streaks
are clearly observed including the superlattice streaks from the L21 phase of the CFMS layer which
are pointed by arrows. RHEED images for another azimuth of CFMS<100> also showed streak
patterns including the fundamental diffractions only (not shown here). RHEED images for other
insert-thicknesses samples also showed similar features. Thus, it is confirmed that the epitaxial growth
and the L21 phase in the CFMS electrode are maintained for all samples including the samples with Fe
or Mg inserts.

Summaries of RA, ∆RA, and MR ratios at low bias J are shown in Figure 3a,d, Figure 3b,e and
Figure 3c,f, respectively. Figure 3a–f indicate the inserts thickness dependence of the junctions with the
Fe inserts and the Mg inserts, respectively. The error bars represent the standard deviation estimated
from the measured junctions.
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tFe = 0.60 nm tMg = 0.60 nmNo insert(a) (b) (c)

Figure 2. Reflection high-energy electron diffraction (RHEED) images for the surface of the upper
CFMS layer for azimuth of CFMS <110>. Layered films with (a) no insert; (b) Fe inserts of 0.60 nm, and
(c) Mg inserts of 0.60 nm. The arrows indicate the superlattice streaks from the L21 phase of CFMS.
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Figure 3. A summary of the insert thickness dependence of CPP-GMR at low bias current density for
junctions with (a–c) Fe inserts and (d–f) Mg insert. (a,d) RA, (b,e) ∆RA, and (c,f) MR ratios. Definitions
of the observed MR ratio, MRobs, the intrinsic MR ratio, MRint, and ∆RA are shown in Equation (1),
Equation (2), and Equation (3), respectively.

Regarding the junctions with Fe inserts, the RA value slightly increases with tFe of up to 0.45 nm
and decreases for tFe of 0.60 nm. Both ∆RA and MR ratios monotonically decrease with increasing
tFe. Although the reason for the RA dependence is unclear, a change of band-matching is a possible
factor caused by the inserts [23,37]. On the other hand, regarding the junctions with Mg inserts, RA,
∆RA and MR ratios exhibit smaller values than those for junctions with no insert . For the junctions
with Mg inserts, ∆RA and MR ratios show non-monotonic decrease, which is different from junctions
with Fe inserts . The difference between the Fe and Mg inserts is discussed as follows: Firstly the
Fe inserts possibly formed an alloy with the CFMS layer by annealing at 550 ◦C. Assuming that the
interfaces became Fe-rich CFMS, the spin polarization was smaller than that of the original CFMS
composition, which was reported by Sakuraba et al. [18]. Even in case that the Fe layers remained at
the interfaces, the spin polarization would be smaller than that of the original CFMS/Ag3Mg interfaces,
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which is similar with a work done by Jung et al. [38]. On the other hand for the Mg inserts, the Mg
possibly remained as Mg-layeres at the CFMS/Ag3Mg interfaces, because Mg atoms are less soluble
with the CFMS layers, which was discussed in a previous paper of ours [36]. The ∆RA and the MR
ratios decrease due to the reduced interface spin asymmetry at the Mg interfaces. Concerning the
non-monotonic decrease for the ∆RA and the MR ratios, a conduction channel through the quantum
states in the ultra-thin Mg layer is a possible factor [39].

Figure 4 shows typical MR curves for the investigation of bias J dependence, the shapes of which
are explained as follows for the low bias region, J < Jc: Firstly, magnetizations of the CFMS layers
are coupled with antiferromagnetically through the dipolar field from the pillar edges, thus the MR
ratios exhibit a maximum value at the zero magnetic field, H = 0. With increasing H, magnetizations
gradually rotate, the behavior of which is similar with that of the edges of scissors schematically
illustrated by arrows in Figure 4a. By applying sufficiently large H, e.g., 200 mT, magnetizations
aligned in parallel configuration and the junction resistance becomes a minimum. A similar shape of
MR curve was reported in the literature for a Heusler alloy based CPP-GMR with antiferromagentic
coupling [41].
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From the shape of MR curves, the critical current density, Jc, is defined at the point where
small shoulders start to appear in the MR curve. The shoulders are pointed by arrows in Figure 4b,
Figure 4e and Figure 4h for junctions with no insert, 0.45 nm-thick Fe inserts, and 0.45 nm-thick Mg
insert, respectively. For J > Jc, the shapes of MR curves collapse because of the unstable antiparallel
configuration of the magnetization which were fluctuated by spin-transfer torque (the curves are shown
in Figure 4c, Figure 4f and Figure 4i for no insert, the Fe inserts, and Mg inserts junctions, respectively).

The J dependence of the output voltage (∆V) is shown in Figure 5 for a junction with no insert
and junctions with 0.45 nm-thick Fe or Mg inserts. Here ∆V is defined by the following equation:

∆V ≡ ∆R× |Ibias| = (Rmax − RH=200mT)× |Ibias|, (4)

where Rmax, RH=200mT, and Ibias represent the maximum resistance in the MR curve, resistance at
H = 200 mT, and the bias current for the measured MR curve, respectively. The positive bias is defined
by the electron flow from the bottom to top. The ∆R for each data point was obtained by sweeping an
MR curve at a bias J, for which examples are shown in Figure 4. ∆V shows asymmetric dependence
on J, because the volume of the upper CFMS layer is smaller than that of the bottom: Considering
the effect of spin-transfer-torque (STT), the parallel magnetization configuration is stabilized by the
electron flow for the positive bias, while the antiparallel configuration is stabilized for the negative
bias. ∆V exhibits a maximum value at J at around −90–−50 ×106 A/cm2, which is defined as ∆Vmax.
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Figure 5. Bias current density, J, dependence of the output voltage, ∆V for the junctions with
(a) no insert; (b) Fe inserts, and (c) Mg inserts. The thickness of the inserts is 0.45 nm for (b,c).

Summaries of ∆Vmax and |Jc| as a function of the insert thickness, tFeorMg are shown in Figure 6.
For the Fe insert junctions, ∆Vmax of the order of 4 mV is obtained for tFe in the range of 0.45 nm,
and the value drops to about 3 mV for tFe = 0.60 nm. For the Mg insert junctions, ∆Vmax is almost
independent of tMg and the values are about 4 mV. Regarding the dependence of Jc, the values increase
with the insert thickness of up to 0.45 nm for the Fe insert junctions and decreases at 0.60 nm, which is
similar to the dependence for the Mg insert junctions. The increase of Jc can be qualitatively explained
that the STT effect reduced because of the reduced spin polarization which correlates with MR ratio.
In addition, for the case of the Fe insert junctions, enhancement of Gilbert damping constant is another
possible factor [42,43], which enhances torque acting towards opposite direction to that of the STT [44].
Although MR ratio was degraded at low bias J by the inserts, ∆V almost unchanged because of
the balance between the spin polarization and the STT effect. Considering CPP-GMR for read head
application of HDDs, the noise caused by STT is an issue to be suppressed [3]. From the bias J
dependence for the present junctions, it is suggested for the junction with inserts that the ∆V can be
maintained under a condition with smaller STT effect. Such a device feature is favorable for the read
head or similar sensor applications.
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4. Conclusions

Interface tailoring effect was investigated for the CPP-GMR junctions including the
CFMS/Ag3Mg/CFMS structure with the ultra-thin Fe or Mg inserts. Epitaxially grown layered
structures were successfully fabricated including the samples with the Fe or Mg inserts of the thickness
up to 0.60 nm. At low bias J, MR ratio decreased with the insert thickness. On the other hand, the
junctions output ∆V was almost unchanged by the inserts, which was of the order of 4 mV. These
trends were similar between the junctions using Fe and Mg inserts. The inserts possibly suppressed
the STT effect, resulting in the relatively large ∆V at the large bias J. The suppressed STT is considered
as a merit of the insert for CPP-GMR junctions for device applications.
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