Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,781)

Search Parameters:
Keywords = cure process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

19 pages, 3671 KiB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

25 pages, 6357 KiB  
Article
Investigation of a Composite Material Painting Method: Assessment of the Mixture Curing of Organic Coatings
by Anca Barbu, Anamaria Ioana Feier, Edward Petzek and Marilena Gheorghe
Processes 2025, 13(8), 2394; https://doi.org/10.3390/pr13082394 - 28 Jul 2025
Viewed by 223
Abstract
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes [...] Read more.
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes because it is lightweight and five times stronger than steel. This paper will present the methods for measuring paint layer thickness in accordance with EN ISO 2808:2019, confirming that organic coatings have fully cured, and coating thickness will be measured using magnetic currents. This study will also address the topic of determining liquid resistance. The protocols for manufacturing the Kevlar specimen are in accordance with ISO 2812-2:2018 using the water immersion method and structural testing. The investigation also demonstrates the progress of the framing test following immersion in Airbus PTP metal test tubes. Full article
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Study of an SSA-BP Neural Network-Based Strength Prediction Model for Slag–Cement-Stabilized Soil
by Bei Zhang, Xingyu Tao, Han Zhang and Jun Yu
Materials 2025, 18(15), 3520; https://doi.org/10.3390/ma18153520 - 27 Jul 2025
Viewed by 340
Abstract
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, [...] Read more.
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, curing age, and moisture content, forming a complex influence mechanism. To achieve accurate strength prediction and mix proportion optimization for slag–cement-stabilized soil, this study prepared cement-stabilized soil specimens with different slag powder contents using typical sandy soil and clay from the Nantong region, and obtained sample data through unconfined compressive strength tests. A Back Propagation (BP) neural network prediction model was also established. Addressing the limitations of traditional BP neural networks in prediction accuracy caused by random initial weight thresholds and susceptibility to local optima, the sparrow search algorithm (SSA) was introduced to optimize initial network parameters, constructing an SSA-BP model that effectively enhances convergence speed and generalization capability. Research results demonstrated that the SSA-BP model reduced prediction error by 53.4% compared with the traditional BP model, showing superior prediction accuracy and effective characterization of multifactor nonlinear relationships. This study provides theoretical support and an efficient prediction tool for industrial waste recycling and environmentally friendly solidified soil engineering design. Full article
Show Figures

Figure 1

15 pages, 2062 KiB  
Article
Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma
by Emre Kabil, Fatma Yağmur Hazar Suncak, Güzin Kaban and Mükerrem Kaya
Appl. Sci. 2025, 15(15), 8343; https://doi.org/10.3390/app15158343 - 26 Jul 2025
Viewed by 261
Abstract
Pastırma is a traditional dry-cured meat product made from whole pieces of cattle or water buffalo carcasses. Sixteen or more types of pastırma can be produced from different parts of the carcass. This study investigated the effect of low salt processing (3% NaCl) [...] Read more.
Pastırma is a traditional dry-cured meat product made from whole pieces of cattle or water buffalo carcasses. Sixteen or more types of pastırma can be produced from different parts of the carcass. This study investigated the effect of low salt processing (3% NaCl) on the lipolytic enzyme activity, volatile profile, color, lipid oxidation, and microbiological properties of commonly produced types of pastırma (kuşgömü, sırt, bohça, and şekerpare). In the study, 5% NaCl level was used as the control group. For all pastırma types, the pH changed between 5.5 and 6.0. The aw value was less than 0.90 for the pastırma types. The L* value increased when the salt level decreased from 5% to 3% (p < 0.05); however, the salt level did not affect the a* and b* values (p > 0.05). Reducing the salt level increased the neutral lipase activity and decreased the TBARS. As the salt level increased, the acid lipase activity increased in the bohça pastırma, and the phospholipase activity increased in the kuşgömü and sırt pastırma (p < 0.05). Furthermore, while Micrococcus/Staphylococcus constituted the dominant microbiota in pastırma types, a 5% salt level led to a decrease in the number of lactic acid bacteria. The volatile compounds were more affected by salt level than by pastırma type. The correlation analysis showed that there are some differences between 3% and 5% salt levels and the use of a 3% salt level increases the abundance of the compounds. The correlation analysis also revealed that there are differences between the pastırma types in terms of the volatile compounds and that kuşgömü pastırma differs from other pastırma types. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

22 pages, 4935 KiB  
Article
Material Optimization and Curing Characterization of Cold-Mix Epoxy Asphalt: Towards Asphalt Overlays for Airport Runways
by Chong Zhan, Ruochong Yang, Bingshen Chen, Yulou Fan, Yixuan Liu, Tao Hu and Jun Yang
Polymers 2025, 17(15), 2038; https://doi.org/10.3390/polym17152038 - 26 Jul 2025
Viewed by 266
Abstract
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt [...] Read more.
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt (CEA) for non-disruptive overlays. Eight commercial CEAs were examined through tensile and overlay tests to evaluate their strength, toughness, and reflective cracking resistance. Two high-performing formulations (CEA 1 and CEA 8) were selected for further curing characterization using differential scanning calorimetry (DSC) tests, and the non-isothermal curing kinetics were analyzed with different contents of Component C. The results reveal that CEA 1 and CEA 8 were selected as promising formulations with superior toughness and reflective cracking resistance across a wide temperature range. DSC-based curing kinetic analysis shows that the curing reactions follow an autocatalytic mechanism, and activation energy decreases with conversion, confirming a self-accelerating process of CEA. The addition of Component C effectively modified the curing behavior, and CEA 8 with 30% Component C reduced curing time by 60%, enabling traffic reopening within half a day. The curing times were accurately predicted for each type of CEA using curing kinetic models based on autocatalytic and iso-conversional approaches. These findings will provide theoretical and practical guidance for high-performance airport runway overlays, supporting rapid repair, extended service life, and environmental sustainability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 344 KiB  
Review
Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review
by Chloe Lahoud, Toni Habib, Daniel Kalta, Reem Dimachkie, Suzanne El Sayegh and Liliane Deeb
J. Clin. Med. 2025, 14(15), 5260; https://doi.org/10.3390/jcm14155260 - 25 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript [...] Read more.
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript aimed to provide a comprehensive and updated review of the available literature on fecal microbiota transplantation, its clinical use in IBD in general, as well as in patients with IBD and CDI. Methods: An extensive literature search was performed from October 2024 to March 2025. All publications available within PubMed, Medline, Embase, Google Scholar, and Cochrane databases were reviewed. All original articles, case reports, review articles, systematic reviews, and meta-analyses were included. Qualitative and quantitative data were both extracted. Discussion: Intestinal microbiota is an integral part of the human body, and dysbiosis (an imbalance in the gut’s microbial community) has been linked with several pathologies. Dysbiosis in IBD is marked by reduced beneficial bacteria and increased pro-inflammatory pathogens, contributing to mucosal damage and immune dysregulation. FMT has emerged as a solution to dysbiosis, with the first case recorded in 1917. FMT has been successful in treating patients with CDI. The diagnostic value of the gut microbiome is currently being explored as a possible therapeutic approach to IBD. Several studies have assessed FMT in patients with IBD and CDI with promising results in both ulcerative colitis (UC) and Crohn’s disease (CD) but varying efficacy based on administration routes, donor selection, and processing methods. In the context of recurrent CDI in patients with IBD, FMT demonstrates a high cure rate and potential benefit in concurrently improving IBD activity. However, risks such as IBD flare-ups post-FMT remain a concern. Conclusions: FMT holds promising potential in the management of CDI in patients with IBD. By restoring microbial diversity and correcting dysbiosis, FMT offers a novel, microbiota-targeted alternative to conventional therapies. While data support its efficacy in improving disease remission, variability in outcomes underscores the need for standardized protocols and additional large-scale, controlled studies. Continued research efforts into donor selection, treatment regimens, and long-term safety will be critical to optimizing FMT’s role in IBD and CDI care as well as improving patient outcomes. Full article
(This article belongs to the Special Issue Emerging Treatment Options in Inflammatory Bowel Disease)
16 pages, 3068 KiB  
Article
Hydrothermally Treated Cement Bypass Dust as a Supplementary Cementitious Material
by Rimvydas Kaminskas, Brigita Savickaite and Anatolijus Eisinas
Sustainability 2025, 17(15), 6757; https://doi.org/10.3390/su17156757 - 24 Jul 2025
Viewed by 171
Abstract
In this study, the possibility of using cement bypass dust as a cement additive was investigated. The utilization of cement bypass dust remains a major problem in cement production, as huge amounts of it are stored in landfills. In this study, a hydrothermal [...] Read more.
In this study, the possibility of using cement bypass dust as a cement additive was investigated. The utilization of cement bypass dust remains a major problem in cement production, as huge amounts of it are stored in landfills. In this study, a hydrothermal treatment is proposed to modify the properties of this dust and to expand its use. Hydrothermal treatment with pure bypass dust and quartz was carried out to achieve a CaO/SiO2 ratio of 1 to 2. Samples were synthesized at 200 °C for 2, 4, 8, and 24 h. To examine the influence of the hydrothermal treatment on cement properties, a sample with a CaO/SiO2 ratio of 1, hydrothermally treated for 8 h, was selected. This study employed XRD, XRF, DSC-TG, and isothermal calorimetry. Most of the target synthesis products, e.g., tobermorite and calcium silicate hydrates, formed after 8 h of sample synthesis, during which quartz was added to bypass dust and a CaO/SiO2 ratio of 1 was achieved. An examination of the composition of the liquid medium following hydrothermal processing showed that almost all chlorine passed into the liquid medium, while some K2O remained in the solid synthesis product. The synthesized additive is an effective catalyst for the hydration of Portland cement. After a 28-day curing period, specimens incorporating modified bypass dust replacing up to 10% of the Portland cement by weight demonstrated compressive strengths comparable to, or surpassing, those of specimens composed exclusively of Portland cement. Full article
Show Figures

Figure 1

18 pages, 2695 KiB  
Article
Environmentally Sustainable Functionalized WS2 Nanoparticles as Curing Promoters and Interface Modifiers in Epoxy Nanocomposites
by Lyazzat Tastanova, Amirbek Bekeshev, Sultan Nurlybay, Andrey Shcherbakov and Anton Mostovoy
Nanomaterials 2025, 15(15), 1145; https://doi.org/10.3390/nano15151145 - 24 Jul 2025
Viewed by 308
Abstract
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to [...] Read more.
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to producing more efficient nanofillers. Functionalization, as confirmed by FTIR, EDS, and XRD analyses, led to elevated surface polarity and greater chemical affinity between WS2 and the epoxy matrix, thereby promoting uniform nanoparticle dispersion. The strengthened interfacial bonding resulted in a notable decrease in the curing onset temperature—from 51 °C (for pristine WS2) to 43 °C—accompanied by an increase in polymerization enthalpy from 566 J/g to 639 J/g, which reflects more extensive crosslinking. The SEM examination of fracture surfaces revealed tortuous crack paths and localized plastic deformation zones, indicating superior fracture resistance. Mechanical testing showed marked improvements in flexural and tensile strength, modulus, and impact toughness at the optimal WS2 loading of 0.5 phr and a 7.5 wt% aminoacetic acid concentration. The surface-modified WS2 nanoparticles, which perform dual functions, not only reinforce interfacial adhesion and structural uniformity but also accelerate the curing process through chemical interaction with epoxy groups. These findings support the development of high-performance, environmentally sustainable epoxy nanocomposites utilizing amino acid-modified 2D nanofillers. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 3207 KiB  
Article
Evaluation of Various Thiourea Derivatives as Reducing Agents in Two-Component Methacrylate-Based Materials
by Coralie Ohl, Estelle Thetiot, Laurence Charles, Yohann Catel, Pascal Fässler and Jacques Lalevée
Polymers 2025, 17(15), 2017; https://doi.org/10.3390/polym17152017 - 23 Jul 2025
Viewed by 308
Abstract
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found [...] Read more.
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found in a wide range of commercially available dental materials. The thiourea is a key component of the initiator system. This study explores the influence of the nature of the thiourea reducing agent on the reactivity and efficiency of redox initiator systems. In this work, six different thiourea structures were investigated, in combination with copper(II) acetylacetonate and cumene hydroperoxide (CHP), to understand their impact on polymerization kinetics and mechanical properties of methacrylate-based materials. Various experimental techniques, including mass spectrometry (MS) and spectroscopic analyses, were employed to elucidate the underlying mechanisms governing these redox systems. The results highlight that thiourea plays a dual role, acting both as a reducing agent and as a ligand in copper complexes, affecting radical generation and polymerization efficiency. Structural modifications of thiourea significantly influence the initiation process, demonstrating that reactivity is governed by a combination of factors rather than a single property. Self-cure dental flowable composites exhibiting excellent flexural strength (>100 MPa) and modulus (>6000 MPa) were obtained using hexanoyl thiourea, N-benzoylthiourea, or 1-(pyridin-2-yl)thiourea as a reducing agent. The adjustment of the Cu(acac)2 enables to properly set the working time in the range of 100 to 200 s. These findings provide valuable insights into the design of the next generation of redox initiating systems for mild and safe polymerization conditions. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 238
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

18 pages, 4169 KiB  
Article
Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin
by Luca Ferretti, Pietro Russo, Jessica Passaro, Francesca Nanni, Saverio D’Ascoli, Francesco Fabbrocino and Mario Bragaglia
Materials 2025, 18(15), 3453; https://doi.org/10.3390/ma18153453 - 23 Jul 2025
Viewed by 278
Abstract
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus [...] Read more.
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus on Digital Light Processing (DLP) 3D printing. Although UV curing proved ineffective at high filler concentrations due to the light opacity of Bi2Te3, thermal curing enabled the fabrication of stable, homogeneously dispersed composites. The samples were thoroughly characterized through rheology, FTIR, TGA, XRD, SEM, and density measurements. Thermoelectric performance was assessed under a 70 °C temperature gradient, with Seebeck coefficients reaching up to 51 µV/K. Accelerated chemical degradation studies in basic media confirmed the degradability of the matrix. The results demonstrate the feasibility of combining additive manufacturing with sustainable materials for low-power thermoelectric energy harvesting applications. Full article
Show Figures

Figure 1

31 pages, 8031 KiB  
Article
Study on the Mechanical Properties of Coal Gangue Materials Used in Coal Mine Underground Assembled Pavement
by Jiang Xiao, Yulin Wang, Tongxiaoyu Wang, Yujiang Liu, Yihui Wang and Boyuan Zhang
Appl. Sci. 2025, 15(15), 8180; https://doi.org/10.3390/app15158180 - 23 Jul 2025
Viewed by 162
Abstract
To address the limitations of traditional hardened concrete road surfaces in coal mine tunnels, which are prone to damage and entail high maintenance costs, this study proposes using modular concrete blocks composed of fly ash and coal gangue as an alternative to conventional [...] Read more.
To address the limitations of traditional hardened concrete road surfaces in coal mine tunnels, which are prone to damage and entail high maintenance costs, this study proposes using modular concrete blocks composed of fly ash and coal gangue as an alternative to conventional materials. These blocks offer advantages including ease of construction and rapid, straightforward maintenance, while also facilitating the reuse of substantial quantities of solid waste, thereby mitigating resource wastage and environmental pollution. Initially, the mineral composition of the raw materials was analyzed, confirming that although the physical and chemical properties of Liangshui Well coal gangue are slightly inferior to those of natural crushed stone, they still meet the criteria for use as concrete aggregate. For concrete blocks incorporating 20% fly ash, the steam curing process was optimized with a recommended static curing period of 16–24 h, a temperature ramp-up rate of 20 °C/h, and a constant temperature of 50 °C maintained for 24 h to ensure optimal performance. Orthogonal experimental analysis revealed that fly ash content exerted the greatest influence on the compressive strength of concrete, followed by the additional water content, whereas the aggregate particle size had a comparatively minor effect. The optimal mix proportion was identified as 20% fly ash content, a maximum aggregate size of 20 mm, and an additional water content of 70%. Performance testing indicated that the fabricated blocks exhibited a compressive strength of 32.1 MPa and a tensile strength of 2.93 MPa, with strong resistance to hydrolysis and sulfate attack, rendering them suitable for deployment in weakly alkaline underground environments. Considering the site-specific conditions of the Liangshuijing coal mine, ANSYS 2020 was employed to simulate and analyze the mechanical behavior of the blocks under varying loads, thicknesses, and dynamic conditions. The findings suggest that hexagonal coal gangue blocks with a side length of 20 cm and a thickness of 16 cm meet the structural requirements of most underground mine tunnels, offering a reference model for cost-effective paving and efficient roadway maintenance in coal mines. Full article
Show Figures

Figure 1

20 pages, 3274 KiB  
Article
Investigation of the Influence of Process Parameters on the Physicochemical and Functional Properties of Oil-Based Composites
by Anita Zawadzka and Magda Kijania-Kontak
Materials 2025, 18(15), 3447; https://doi.org/10.3390/ma18153447 - 23 Jul 2025
Viewed by 247
Abstract
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) [...] Read more.
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) acid, hydrobromic acid, acetic acid, salicylic acid, glycolic acid, zinc acetate, ethanol, hydrogen peroxide, and their selected mixtures. The manufacturing process was optimised, and the composites were evaluated for physicochemical and mechanical properties, including compressive strength, bending strength, and water absorption. The best performance was observed for composites catalysed with a mixture of sulfuric(VI) acid and 20% hydrogen peroxide, cured at 240 °C, yielding compressive and bending strengths of 5.20 MPa and 1.34 MPa, respectively. Under modified curing conditions, a compressive strength of 5.70 MPa and a bending strength of 0.75 MPa were obtained. The composite modified with glycolic acid showed the lowest water absorption (3%). These findings demonstrate how catalyst type and curing parameters influence composite structure, porosity, and mechanical behaviour. The study provides new insights into the process–structure–property relationships in oil-based materials and supports the development of environmentally friendly composites from waste feedstocks. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 174
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

Back to TopTop