Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = crystallization-enhanced emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1917 KiB  
Article
Influence of Energetic Xe132 Ion Irradiation on Optical, Luminescent and Structural Properties of Ce-Doped Y3Al5O12 Single Crystals
by Ruslan Assylbayev, Gulnur Tursumbayeva, Guldar Baubekova, Zhakyp T. Karipbayev, Aleksei Krasnikov, Evgeni Shablonin, Gulnara M. Aralbayeva, Yevheniia Smortsova, Abdirash Akilbekov, Anatoli I. Popov and Aleksandr Lushchik
Crystals 2025, 15(8), 683; https://doi.org/10.3390/cryst15080683 - 27 Jul 2025
Viewed by 610
Abstract
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are [...] Read more.
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are employed to analyze radiation-induced changes. Irradiation leads to the formation of Frenkel (F, F+) and antisite defects and attenuates Ce3+ emission (via enhanced nonradiative processes and Ce3+ → Ce4+ recharging). A redistribution between the fast and slow components of the Ce3+-emission is considered. Excitation spectra show the suppression of exciton-related emission bands, as well as a shift of the excitation onset due to increased lattice disorder. XRD data confirm partial amorphization and a high level of local lattice disordering, both increasing with irradiation fluence. These findings provide insight into radiation-induced processes in YAG:Ce, which are relevant for its application in radiation–hard scintillation detectors. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 870
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

18 pages, 11678 KiB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 210
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

14 pages, 5943 KiB  
Article
Preparation and Optimization of Mn2+-Activated Na2ZnGeO4 Phosphors: Insights into Precursor Selection and Microwave-Assisted Solid-State Synthesis
by Xiaomeng Wang, Siyi Wei, Jiaping Zhang, Jiaren Du, Yukun Li, Ke Chen and Hengwei Lin
Nanomaterials 2025, 15(14), 1117; https://doi.org/10.3390/nano15141117 - 18 Jul 2025
Viewed by 322
Abstract
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for [...] Read more.
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for the preparation of Na2ZnGeO4:Mn2+. Leveraging the unique attributes of the MASS technique, a systematic investigation into the applicability of various Mn-source precursors was conducted. Additionally, the integration of the MASS approach with traditional solid-state reaction (SSR) methods was assessed. The findings indicate that the MASS technique effectively incorporates Mn ions from diverse precursors (including higher oxidation states of manganese) into the crystal lattice, resulting in efficient green emission from Mn2+. Notably, the photoluminescence quantum yield (PLQY) of the sample utilizing MnCO3 as the manganese precursor was recorded at 2.67%, whereas the sample synthesized from MnO2 exhibited a remarkable PLQY of 17.69%. Moreover, the post-treatment of SSR-derived samples through the MASS process significantly enhanced the PLQY from 0.67% to 8.66%. These results underscore the promise of the MASS method as a novel and efficient synthesis strategy for the rapid and scalable production of Mn2+-doped green luminescent materials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

20 pages, 2896 KiB  
Article
Annealing-Driven Modifications in ZnO Nanorod Thin Films and Their Impact on NO2 Sensing Performance
by Sandip M. Nikam, Tanaji S. Patil, Nilam A. Nimbalkar, Raviraj S. Kamble, Vandana R. Patil, Uttam E. Mote, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Ravindra D. Mane
Micromachines 2025, 16(7), 778; https://doi.org/10.3390/mi16070778 - 30 Jun 2025
Viewed by 334
Abstract
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at [...] Read more.
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at 300, 400, and 500 °C. Diffraction analysis confirmed that both non-annealed and annealed ZnO nanorods crystallize in a hexagonal wurtzite structure. However, increasing the annealing temperature shifts the growth orientation from the c-axis (002) toward the (100) and (101) directions. Microscopy images (FE-SEM) revealed a reduction in nanorod diameter as the annealing temperature increases. Optical characterization using UV–visible and photoluminescence spectroscopy indicated shifts in the band gap energy and emission properties. Contact angle measurements demonstrated the hydrophobic nature of the films. Gas sensing tests at 200 °C revealed that the ZnO thin film annealed at 400 °C achieved the highest NO2 response of 5.88%. The study highlights the critical role of annealing in modifying the crystallinity, growth orientation, and defect states of ZnO thin films, ultimately enhancing their NO2 detection capability. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for High-Performance Gas Sensors)
Show Figures

Figure 1

16 pages, 2642 KiB  
Article
Enhanced Optoelectronic Synaptic Performance in Sol–Gel Derived Al-Doped ZnO Thin Film Devices
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Materials 2025, 18(13), 2931; https://doi.org/10.3390/ma18132931 - 20 Jun 2025
Viewed by 707
Abstract
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of [...] Read more.
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of ZnO films. Notably, 2.0 wt% Al doping yields the widest bandgap (3.31 eV), stable PL emission, and uniform deep-level absorption without inducing significant lattice disorder. Synaptic performance, including learning–forgetting dynamics and persistent photoconductivity (PPC), is strongly dependent on Al concentration. The 2.0 wt% AZO device exhibits the lowest forgetting rate and longest memory retention due to optimized trap formation, particularly Al–oxygen vacancy complexes that enhance carrier lifetime. Visual memory simulations using a 3 × 3 pixel array under patterned UV illumination further confirm superior long-term memory (LTM) behavior at 2.0 wt%, with stronger excitatory postsynaptic current (EPSC) retention during repeated stimulation. These results demonstrate that precise doping control via the sol–gel method enables defect engineering in oxide-based neuromorphic devices. Our findings provide an effective strategy for designing low-cost, scalable optoelectronic synapses with tunable memory characteristics suitable for future in-sensor computing and neuromorphic vision systems. Full article
Show Figures

Figure 1

15 pages, 4047 KiB  
Article
Effect of a Recycled Phosphogypsum Modifier on the Performance of High-Content Phosphogypsum Cementing Materials
by Jiuyang Lian, Chiqiu Wu, Zhonghe Shui and Wei Lyu
Materials 2025, 18(12), 2807; https://doi.org/10.3390/ma18122807 - 14 Jun 2025
Viewed by 426
Abstract
Phosphogypsum, a byproduct of phosphate fertilizer production, represents a significant environmental concern due to its large-scale production and low utilization rates. Although preparing phosphogypsum-based cementitious materials offers a potential solution to these issues, high-content phosphogypsum cementitious systems encounter significant technical barriers, including long [...] Read more.
Phosphogypsum, a byproduct of phosphate fertilizer production, represents a significant environmental concern due to its large-scale production and low utilization rates. Although preparing phosphogypsum-based cementitious materials offers a potential solution to these issues, high-content phosphogypsum cementitious systems encounter significant technical barriers, including long setting durations and insufficient early-age strength development, thereby restricting their practical implementation. Hence, this research developed innovative modifiers through an environmentally friendly low-temperature thermal activation process (100–160 °C) utilizing recycled phosphogypsum aggregates and circumventing the substantial carbon emissions associated with conventional modification approaches. Systematic characterization demonstrated that the dehydration phase modifier synthesized at 120 °C (DH120) exhibited optimal phase composition, resulting in a 35.7% enhancement in its 14-d compressive strength (9.8 MPa vs. 7.2 MPa for the control) and an 11.3% reduction in its initial setting time (27.5 vs. 31.0 h for the control). Microstructural characterization by low-field nuclear magnetic resonance and X-ray diffractometry revealed that DH120 effectively enhanced refinement of the pore structure (37.7% mesopore volume reduction) and promoted the ettringite crystallization kinetics. This work establishes a sustainable framework for utilizing industrial byproducts in cementitious material systems. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

13 pages, 3137 KiB  
Article
Studies and Rejection of Intercrystal Crosstalk on FPGA in a High-Energy Photon-Counting System
by Jiahao Chang, Huaxia Zhang, Shibo Jiang, Zhifang Wu and Shuo Xu
Appl. Sci. 2025, 15(11), 6050; https://doi.org/10.3390/app15116050 - 28 May 2025
Viewed by 392
Abstract
Intercrystal scatter reduces system sensitivity and spatial resolution, a phenomenon that has been extensively studied in positron emission tomography (PET) systems. However, the issue is even more significant in high-energy systems. The purpose of this study is to propose a practical crosstalk rejection [...] Read more.
Intercrystal scatter reduces system sensitivity and spatial resolution, a phenomenon that has been extensively studied in positron emission tomography (PET) systems. However, the issue is even more significant in high-energy systems. The purpose of this study is to propose a practical crosstalk rejection technique and demonstrate its applicability in high-energy photon-counting systems. The effect of inter-crystal scattering interactions between 60Co γ photons and lutetium yttrium oxyorthosilicate (LYSO) scintillator crystals is investigated through Monte Carlo simulations conducted using the Geant4 toolkit. To suppress the crosstalk phenomenon, a field-programmable gate array (FPGA)-based algorithm is proposed to suppress inter-crystal scattering events, characterized by a time window of 5 nanoseconds and detector window sizes of one or two. The 250 mm Fe steel penetration model is used to evaluate the proposed algorithm, showing improved radiation image quality, particularly with a detector window size of two, which performs better under low-count-rate conditions. Laboratory testing indicates that the proposed algorithm can enhance steel penetration (SP) by 60–70 mm of Fe when compared to the existing current integration system under the same settings. The suggested method has been proven effective in producing higher-quality images and demonstrates good adaptability by adapting the detector window width according to different system count rates. Full article
Show Figures

Figure 1

13 pages, 4984 KiB  
Article
Evaluation of Manufacturing Accuracy in Merlon Fracture Models Fabricated by Vat Photopolymerization 3D-Printing Technologies
by Hee-jung Lee, Chang-sub Jeong, Joon-mo Moon, Ji-myung Bae, Eun-joo Choi and Seung-han Oh
Appl. Sci. 2025, 15(10), 5595; https://doi.org/10.3390/app15105595 - 16 May 2025
Viewed by 422
Abstract
This study evaluates the manufacturing accuracy of Merlon fracture models produced using two vat-photopolymerization-based three-dimensional (3D) printers: digital light processing (DLP) and liquid-crystal display (LCD). The Merlon fracture model is used to assess dimensional precision and machining accuracy. The root mean square (RMS) [...] Read more.
This study evaluates the manufacturing accuracy of Merlon fracture models produced using two vat-photopolymerization-based three-dimensional (3D) printers: digital light processing (DLP) and liquid-crystal display (LCD). The Merlon fracture model is used to assess dimensional precision and machining accuracy. The root mean square (RMS) values, wall and bottom thicknesses, and field-emission scanning electron microscopy images are analyzed. The DLP-based printers exhibit lower RMS values and superior accuracy compared with LCD-based printing and subtractive milling. Polymer-based slurries for permanent dental applications exhibit better dimensional stability than those for temporary restorations. This study also highlights the significant impact of postprocessing and cleaning procedures on the final model accuracy. These findings suggest that optimizing the postprocessing parameters is crucial for enhancing the precision of 3D-printed dental restorations. The Merlon fracture model is a viable method for evaluating additive manufacturing accuracy, contributing to the improved clinical application of vat photopolymerization in dental prosthetics. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing: Novel Technologies and Processes)
Show Figures

Figure 1

12 pages, 3193 KiB  
Article
High-Efficiency Luminescence of Mn2+-Doped Two-Dimensional Hybrid Metal Halides and X-Ray Detection
by Yue Fan, Yingyun Wang, Yunlong Bai, Bingsuo Zou and Ruosheng Zeng
Nanomaterials 2025, 15(10), 713; https://doi.org/10.3390/nano15100713 - 9 May 2025
Viewed by 464
Abstract
Mn2+ doping in metal halide perovskites enables host-to-dopant energy transfer, creating new emission pathways for optoelectronic applications. However, achieving high-efficiency luminescence in 2D systems remains challenging. We synthesized Mn2+-doped 2D PEA2CdCl4 via the hydrothermal method, characterizing its [...] Read more.
Mn2+ doping in metal halide perovskites enables host-to-dopant energy transfer, creating new emission pathways for optoelectronic applications. However, achieving high-efficiency luminescence in 2D systems remains challenging. We synthesized Mn2+-doped 2D PEA2CdCl4 via the hydrothermal method, characterizing its properties through PL spectroscopy, quantum yield measurements, and DFT calculations. Flexible films were fabricated using PDMS and PMMA matrices. The 15% Mn2+-doped crystal showed orange–red emission with 90.85% PLQY, attributed to efficient host-to-Mn2+ energy transfer and 4T16A1 transition. Prototype LEDs exhibited stable emission, while PDMS films demonstrated flexibility and PMMA films showed excellent X-ray imaging capability. This work demonstrates Mn2+ doping as an effective strategy to enhance luminescence in 2D perovskites, with potential applications in flexible optoelectronics and X-ray scintillators. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Graphical abstract

25 pages, 5180 KiB  
Article
Thermodynamics-Guided Neural Network Modeling of a Crystallization Process
by Tae-Hyun Kim, Seon-Hwa Baek, Sung-Jin Yoo, Sung-Kyu Lee and Jeong-Won Kang
Processes 2025, 13(5), 1414; https://doi.org/10.3390/pr13051414 - 6 May 2025
Viewed by 494
Abstract
Melt crystallization is a promising separation technique that produces ultra-high-purity products while consuming less energy and generating lower CO2 emissions than conventional methods. However, accurately modeling melt crystallization is challenging due to significant non-idealities and complex phase equilibria in multicomponent systems. This [...] Read more.
Melt crystallization is a promising separation technique that produces ultra-high-purity products while consuming less energy and generating lower CO2 emissions than conventional methods. However, accurately modeling melt crystallization is challenging due to significant non-idealities and complex phase equilibria in multicomponent systems. This study develops and evaluates two neural network-based surrogate models for acrylic acid melt crystallization: a stand-alone (black-box) model and a thermodynamically guided (hybrid) model. The hybrid model incorporates UNIQUAC-based solid–liquid equilibrium constraints into the learning process. This framework combines first-principles thermodynamic knowledge—particularly activity coefficient calculations and mass balance equations—with multi-output regression to predict key process variables. Both models are rigorously tested for interpolation and extrapolation, with the hybrid approach demonstrating superior accuracy even under operating conditions significantly outside the training domain. Further analysis reveals the critical importance of accurate solid–liquid equilibrium (SLE) data for thermodynamic parameterization. A final case study illustrates how the hybrid approach can quickly explore feasible operating regions while adhering to strict product purity targets. These findings confirm that integrating mechanistic constraints into neural networks significantly enhances predictive accuracy, especially when processes deviate from nominal conditions, providing a practical framework for designing and optimizing industrial-scale melt crystallization processes. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

15 pages, 6124 KiB  
Article
Design and Research on the Preparation of Pervious Concrete Using Carbonized Steel Slag as a Full Component
by Xiao Chen, Kai Zhang, Benren Wang, Zhiqiang Wu and Mingkai Zhou
Buildings 2025, 15(9), 1526; https://doi.org/10.3390/buildings15091526 - 2 May 2025
Viewed by 498
Abstract
To address the environmental pressures and resource waste caused by massive stockpiling of steel slag, this study developed a carbonated steel slag pervious concrete binder using 40% steel slag powder as the primary cementitious component combined with CaO and MgO. The mechanical performance [...] Read more.
To address the environmental pressures and resource waste caused by massive stockpiling of steel slag, this study developed a carbonated steel slag pervious concrete binder using 40% steel slag powder as the primary cementitious component combined with CaO and MgO. The mechanical performance evolution was investigated, while XRD, SEM, and TG-DTG microcharacterization techniques were employed to reveal the carbonation mechanism and strength formation principles. The results demonstrate that when CaO and MgO contents reached 5% and 15%, respectively, the 28d compressive strength of mortar increased by 134.49% compared to the reference group. Microstructural analysis confirmed that CaO reacted to form CaCO3 crystals, while MgO enhanced strength by regulating CaCO3 crystal morphology to optimize product structure. Using steel slag as an aggregate, carbonated steel slag pervious concrete was prepared to investigate the influence mechanisms of B/A ratio and W/B ratio on compressive strength, permeability coefficient, and carbonation effects. The post-carbonation strength increase was adopted to evaluate carbonation efficiency. Increasing B/A ratio enhanced paste filling in aggregate voids, raising 28d compressive strength to 24.76 MPa, but thickened paste coating layers reduced permeability coefficient to 0.33 mm/s while impeding CO2 diffusion, decreasing carbonation strength growth rate by 22.76%. Initial W/B ratio elevation improved workability to increase strength to 23.76 MPa, whereas excessive water caused paste sedimentation and strength reduction. As W/B ratio rose, permeability coefficient decreased by 65.6%, while carbonation strength growth rate increased. The carbonated steel slag pervious concrete contained approximately 82% steel slag, demonstrating high resource utilization efficiency of steel slag and significant potential for carbon emission reduction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2935 KiB  
Article
Tannic Acid-Loaded Antibacterial Hydroxyapatite-Zirconia Composite for Dental Applications
by Nusrat Yeasmin, Joel Pilli, Julian McWilliams, Sarah Norris and Arjak Bhattacharjee
Crystals 2025, 15(5), 396; https://doi.org/10.3390/cryst15050396 - 24 Apr 2025
Cited by 1 | Viewed by 676
Abstract
The development of advanced biomaterials for dental applications has gained significant attention due to the need for enhanced mechanical properties, biocompatibility, and antibacterial activity. Hydroxyapatite (HA) is widely used in bone tissue engineering owing to its chemical similarities to bone. However, biofilm formation [...] Read more.
The development of advanced biomaterials for dental applications has gained significant attention due to the need for enhanced mechanical properties, biocompatibility, and antibacterial activity. Hydroxyapatite (HA) is widely used in bone tissue engineering owing to its chemical similarities to bone. However, biofilm formation and bacterial infection on HA may lead to implant failure and revision surgery. Tannic acid, a polyphenolic compound with strong antibacterial and antioxidant properties, was incorporated into the composite to provide antimicrobial effects, that may address the challenge of biofilm formation on dental surfaces. In this study, the biomedical potential of tannic acid (TA)-loaded hydroxyapatite-zirconia composites were analyzed. The crystallization characteristics, functional groups, and morphology were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) analysis. The biocompatibility of composite samples was analyzed through in vitro cell culture studies. The combined effect of TA and zirconia showed antibacterial efficacy against Staphylococcus aureus (S. aureus) after 24 h of sample–bacterial interactions. The results demonstrate that this tannic acid-loaded hydroxyapatite-zirconia composite holds significant promise for improving the performance of dental materials and preventing infections in oral healthcare applications. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

11 pages, 3429 KiB  
Article
A Sensitive and Fast microRNA Detection Platform Based on CRlSPR-Cas12a Coupled with Hybridization Chain Reaction and Photonic Crystal Microarray
by Bingjie Xue, Bokang Qiao, Lixin Jia, Jimei Chi, Meng Su, Yanlin Song and Jie Du
Biosensors 2025, 15(4), 233; https://doi.org/10.3390/bios15040233 - 5 Apr 2025
Viewed by 713
Abstract
Changes in microRNA (miRNA) levels are closely associated with the pathological processes of many diseases. The sensitive and fast detection of miRNAs is critical for diagnosis and prognosis. Here, we report a platform employing CRISPR/Cas12a to recognize and report changes in miRNA levels [...] Read more.
Changes in microRNA (miRNA) levels are closely associated with the pathological processes of many diseases. The sensitive and fast detection of miRNAs is critical for diagnosis and prognosis. Here, we report a platform employing CRISPR/Cas12a to recognize and report changes in miRNA levels while avoiding complex multi-thermal cycling procedures. A non-enzyme-dependent hybridization chain reaction (HCR) was used to convert the miRNA signal into double-stranded DNA, which contained a Cas12a activation sequence. The target sequence was amplified simply and isothermally, enabling the test to be executed at a constant temperature of 37 °C. The detection platform had the capacity to measure concentrations down to the picomolar level, and the target miRNA could be distinguished at the nanomolar level. By using photonic crystal microarrays with a stopband-matched emission spectrum of the fluorescent-quencher modified reporter, the fluorescence signal was moderately enhanced to increase the sensitivity. With this enhancement, analyzable fluorescence results were obtained in 15 min. The HCR and Cas12a cleavage processes could be conducted in a single tube by separating the two procedures into the bottom and the cap. We verified the sensitivity and specificity of this one-pot system, and both were comparable to those of the two-step method. Overall, our study produced a fast and sensitive miRNA detection platform based on a CRISPR/Cas12a system and enzyme-free HCR amplification. This platform may serve as a potential solution for miRNA detection in clinical practice. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

14 pages, 3070 KiB  
Article
Zero-Dimensional Organic Amine-Copper Bromide Hybrid Crystal with Highly Efficient Yellow Emission
by Yanxi Chen, Ye Tian, Tao Huang, Shangfei Yao, Hui Peng and Bingsuo Zou
Crystals 2025, 15(4), 312; https://doi.org/10.3390/cryst15040312 - 27 Mar 2025
Viewed by 501
Abstract
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their [...] Read more.
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their application in solid-state lighting due to the low excitation efficiency at about 400 nm in devices. Here, we report a new zero-dimensional organic cuprous bromide of (C13H30N)2Cu5Br7 single crystals, which can be excited by visible light (390–400 nm) and give a bright yellow and broad self-trapped exciton emission band with the photoluminescence quantum yield (PLQY) of 92.3% at room temperature. The experimental and theoretical results show that the existence of Cu-Br-Cu metal bonds in a Cu5Br7 cluster package produces three components of self-trapped excitons (STE) that emit at room temperature but merge into one at 80 K. This occurs because of the anomalously enhanced electron–phonon coupling and electron–electron coupling in the coupled clusters in this system. These effects cause the excitation near visible light and emission broader at higher temperature. Additionally, their remarkable anti-water emission stability was demonstrated even after soaking in water for 6 h. Finally, a highly efficient white-light-emitting diode (WLED) based on (C13H30N)2Cu5Br7 was fabricated. Full article
(This article belongs to the Special Issue Synthesis, Structure and Application of Metal Halides)
Show Figures

Figure 1

Back to TopTop