Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (572)

Search Parameters:
Keywords = crystallization speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2537 KiB  
Proceeding Paper
Theoretical and Experimental Research on Centrifugal Casting of Short and Long Castings
by Angel Velikov, Ivan Georgiev, Boyko Krastev and Krum Petrov
Eng. Proc. 2025, 100(1), 58; https://doi.org/10.3390/engproc2025100058 - 28 Jul 2025
Viewed by 105
Abstract
The technological process of the centrifugal casting of short and long castings is examined during development. The values of the technological parameters at applying heat-resistant coating on the working surface of metal molds were established. With a high-speed camera, the temperature of the [...] Read more.
The technological process of the centrifugal casting of short and long castings is examined during development. The values of the technological parameters at applying heat-resistant coating on the working surface of metal molds were established. With a high-speed camera, the temperature of the free surface during the pouring of the melts was measured. Research experiments were conducted. A mathematical model of the centrifugal casting process with a horizontal axis was created. Full article
Show Figures

Figure 1

21 pages, 5914 KiB  
Article
Simple Spin-Coating Preparation of Hydrogel and Nanoparticle-Loaded Hydrogel Thin Films
by Sara Calistri, Chiara Ciantelli, Sebastiano Cataldo, Vincenzo Cuzzola, Roberta Guzzinati, Simone Busi and Alberto Ubaldini
Coatings 2025, 15(7), 859; https://doi.org/10.3390/coatings15070859 - 21 Jul 2025
Viewed by 335
Abstract
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new [...] Read more.
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new study regarding the preparation of pure and nanoparticle-loaded alginate-based films by spin-coating. Two-microliter solutions of sodium alginate and calcium chloride with different concentrations were deposited on a glass substrate and subjected to rapid rotations of between 100 and 1000 RPM. Film formation can be achieved by optimizing the ratio between the viscosity of the solutions, depending on their concentrations and the rotation speed. When these conditions are in the right range, a homogeneous film is obtained, showing good adherence to the substrate and uniform thickness. Films containing silver nanoparticles were prepared, exploiting the reaction between sodium borohydride and silver nitrate. The two reagents were added to the sodium alginate and calcium nitrate solution, respectively. Their concentration is the driving force for the formation of a uniform film: particles of about 50 nm that are well-dispersed throughout the film are obtained using AgNO3 at 4 mM and NaBH4 at 2 or 0.2 mM; meanwhile, at higher concentrations, one can also obtain the precipitation of inorganic crystals. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

9 pages, 1553 KiB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 169
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 2910 KiB  
Communication
Theoretical Study on Low-Chirp Directly Modulated DFB Lasers with (110)-Oriented Quantum Well
by Jianwei Li, Mengzhu Hu, Xinyang Su, Yanting Liu and Ke Zhan
Photonics 2025, 12(7), 647; https://doi.org/10.3390/photonics12070647 - 25 Jun 2025
Viewed by 312
Abstract
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well [...] Read more.
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well (QW). The energy band structure of AlGaInAs quantum-well DFB lasers grown with a (110) crystal orientation in the active region of the L-band has been theoretically analyzed using multi-band k.p perturbation theory, by reducing the asymmetry of conduction bands and valence bands and thus the linewidth enhancement factor parameter, which is related to the frequency chirp. Simulation results show that the LEF of the directly modulated DFB laser is reduced from 2.434 to 1.408 by designing the (110)-oriented compression-strained Al0.06Ga0.24InAs multiple-quantum-well structure, and the eye diagram of the (110)-oriented quantum-well DFB laser with a digital signal transmission of 20 km is significantly better than the (001) crystal-oriented quantum-well DFB laser for the 10Gbps optical fiber communication system, thus achieving a longer distance and higher-quality optical signal transmission. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

16 pages, 6146 KiB  
Article
Current-Carrying Wear Behavior of Cu–TiC Coatings Obtained Through High-Speed Laser Cladding on Conductive Slip Rings of 7075 Aluminum Alloy
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(7), 688; https://doi.org/10.3390/met15070688 - 20 Jun 2025
Viewed by 199
Abstract
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated [...] Read more.
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated using a scanning electron microscope, an X-ray diffractometer, a hardness tester, and a wear tester, respectively. The results show that the increase in scanning speed accelerates the coating’s solidification rate. Among the samples, the coating comprised of equiaxed crystals prepared at 149.7 mm/s presents the best quality, but solidification speeds that are too rapid lead to elemental segregation. The hardness of the coating also decreases with the increase in scanning speed. The coating prepared at 149.7 mm/s exhibits the best wear resistance and electrical conductivity. The wear rate of the coating prepared at 149.7 mm/s at 25 A was 4 × 10−3 mg·m−1, respectively. During the current-carrying friction process, the presence of thermal effects and arc erosion cause the worn track to be prone to oxidation, adhesion, and plastic deformation, so the current-carrying wear mechanisms of coatings at 25 A include adhesive wear, oxidation wear, and electrical damage. Full article
Show Figures

Figure 1

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 267
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

13 pages, 2262 KiB  
Article
Application of Bioinspired Structural Ceramics with High-Temperature Electrical Insulation and High Adhesion in K-Type Coaxial Thermocouples
by Zhenyin Hai, Yue Chen, Zhixuan Su, Yemin Wang, Shigui Gong, Yihang Zhang, Shanmin Gao, Chengfei Zhang, Zhangquan Wang, Hongwei Ji, Chenyang Xue and Zhichun Liu
Materials 2025, 18(12), 2901; https://doi.org/10.3390/ma18122901 - 19 Jun 2025
Viewed by 332
Abstract
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, [...] Read more.
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, the fabrication of a high-temperature electrical insulation layer and a high-adhesion insulating layer in the coaxial thermocouples remains a challenge. Inspired by calcium carbonate/oxalate crystals in jujube leaves that strengthen the leaves, a bioinspired structural ceramic (BSC) mimicking these needle-like crystals is designed. This BSC demonstrates excellent high-temperature insulation (with insulation impedance of 2.55 kΩ at 1210 °C) and adhesion strength (35.3 Newtons). The BSC is successfully used as the insulating layer in a K-type coaxial thermocouple. The generation rules for surface junctions are systematically studied, revealing that stable and reliable measurement junctions can be created when the sandpaper grit does not exceed 600#. Static test results show that the K-type coaxial thermocouple ranges from 200 °C to 1200 °C with an accuracy of 1.1%, a drift rate better than 0.0137%/h, and hysteresis better than 0.81%. Dynamic test results show that the response time is 1.08 ms. The K-type coaxial thermocouple can withstand a high-temperature flame impact for 300 s at 1200 °C, as well as over forty cycles of high-power laser thermal shock, while maintaining good response characteristics. Therefore, the K-type coaxial thermocouple designed in this study provides an ideal solution for long-term temperature monitoring of the thermal components of aerospace engines under extremely high-temperature, high-speed, and strong thermal shock conditions. Full article
Show Figures

Figure 1

21 pages, 4620 KiB  
Article
PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale and Chan-Wook Jeon
Polymers 2025, 17(12), 1683; https://doi.org/10.3390/polym17121683 - 17 Jun 2025
Viewed by 389
Abstract
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic [...] Read more.
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic two-step strategy involving the electrochemical deposition of amorphous WO3 and the controlled hydrothermal crystallization of TiO2. Structural and morphological analyses confirm the formation of phase-pure heterostructures with a tunable TiO2 crystallinity governed by reaction time. The optimized WTi-5 configuration exhibits a hierarchically organized nanostructure that couples the fast ion intercalation dynamics of amorphous WO3 with the interfacial stability and electrochemical modulation capability of crystalline TiO2. Electrochromic characterization reveals pronounced redox activity, a high charge reversibility (98.48%), and superior coloration efficiency (128.93 cm2/C). Optical analysis confirms an exceptional transmittance modulation (ΔT = 82.16% at 600 nm) and rapid switching kinetics (coloration/bleaching times of 15.4 s and 6.2 s, respectively). A large-area EC device constructed with the WTi-5 electrode delivers durable performance, with only a 3.13% degradation over extended cycling. This study establishes interface-engineered WO3/TiO2 bilayers as a scalable platform for next-generation smart windows, highlighting the pivotal role of a heterostructure design in uniting a high contrast, speed, and longevity within a single EC architecture. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Electrochromic Energy Storage Systems)
Show Figures

Graphical abstract

13 pages, 3330 KiB  
Article
Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
by Hai Wang, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren and Xiaowen Qi
Polymers 2025, 17(12), 1664; https://doi.org/10.3390/polym17121664 - 16 Jun 2025
Viewed by 425
Abstract
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 [...] Read more.
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 °C and enabling energy dissipation. All composites exhibit hydrophobicity, with optimal formulations (UPP3/UPP4) reaching superhydrophobicity. Tribological testing under varied loads and frequencies reveals low friction, where UPP1 achieves a COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load conditions. UHMWPE oxidative degradation forming carboxylic acids at the interface (C=O at 289 eV, C–O at 286 eV). Formation of tungsten oxides (WO3/WO2), carbides (WC), and transfer films on steel counterparts. A four-step tribochemical reaction pathway is established. PVA promotes uniform transfer films, while PTFE lamellar peeling and UHMWPE chain stability enable sustained lubrication. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive effects. The composites demonstrate exceptional biocompatibility and provide a scalable solution for biomedical and industrial tribological applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4539 KiB  
Article
Effect of Scanning Speed on Wear and Corrosion Behaviors of High-Speed Laser-Cladded Cu-TiC Coating
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(6), 641; https://doi.org/10.3390/met15060641 - 9 Jun 2025
Cited by 1 | Viewed by 770
Abstract
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed [...] Read more.
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed laser cladding (HLC) technology. The influence laws of the scanning speed (86.4–149.7 mm/s) on the microstructure, tribological properties, and corrosion resistance of the coating were explored. The results show that the scanning speed significantly changes the phase composition and grain morphology of the coating by regulating the thermodynamic behavior of the molten pool. At a low scanning speed (86.4 mm/s), the CuAl2 phase is dominant, and the grains are mainly columnar crystals. As the scanning speed increases to 149.7 mm/s, the accelerated cooling rate promotes an increase in the proportion of Cu2Al3 phase, refines the grains to a coexisting structure of equiaxed crystals and cellular crystals, and improves the uniformity of TiC particle distribution. Tribological property analysis shows that the high scanning speed (149.7 mm/s) coating has a 17.9% lower wear rate than the substrate due to grain refinement and TiC interface strengthening. The wear mechanism is mainly abrasive wear and adhesive wear, accompanied by slight oxidative wear. Electrochemical tests show that the corrosion current density of the high-speed cladding coating is as low as 7.36 × 10−7 A·cm−2, and the polarization resistance reaches 23,813 Ω·cm2. The improvement in corrosion resistance is attributed to the formation of a dense passivation film and the blocking of the Cl diffusion path. The coating with a scanning speed of 149.7 mm/s exhibits optimal wear-resistant and corrosion-resistant synergistic performance and is suitable for the surface strengthening of conductive rings in extreme marine environments. This research provides theoretical support for the process performance regulation and engineering application of copper-based composite coatings. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

14 pages, 2006 KiB  
Article
Design and Optimization of Optical NAND and NOR Gates Using Photonic Crystals and the ML-FOLD Algorithm
by Alireza Mohammadi, Fariborz Parandin, Pouya Karami and Saeed Olyaee
Photonics 2025, 12(6), 576; https://doi.org/10.3390/photonics12060576 - 6 Jun 2025
Viewed by 638
Abstract
The continuous demand for faster processing systems, driven by the rise of artificial intelligence, has exposed limitations in traditional transistor-based electronics, including quantum tunneling, heat dissipation, and switching delays due to challenges in further miniaturization. This study explores optical systems as a promising [...] Read more.
The continuous demand for faster processing systems, driven by the rise of artificial intelligence, has exposed limitations in traditional transistor-based electronics, including quantum tunneling, heat dissipation, and switching delays due to challenges in further miniaturization. This study explores optical systems as a promising alternative, leveraging the speed of photons over electrons. Specifically, we design and simulate optical NAND and NOR logic gates using a two-dimensional photonic crystal structure with a square lattice. Symmetrical waveguides are used for the input paths to make the structure relatively more straightforward to fabricate. A key innovation is the ability to realize both gates within a single structure by adjusting the phases of the input sources. To optimize the phase parameters efficiently, we employ the ML-FOLD (Meta-Learning and Formula Optimization for Logic Design) optimization formula, which outperforms traditional methods and machine learning approaches in terms of computational efficiency and data requirements. Through finite-difference time-domain (FDTD) simulations, the proposed optical structure demonstrates successful implementation of NAND and NOR gate logic, achieving high contrast ratios of 4.2 dB and 4.8 dB, respectively. The results validate the effectiveness of the ML-FOLD method in identifying optimal configurations, offering a streamlined approach for the design of all-optical logic devices. Full article
Show Figures

Figure 1

17 pages, 698 KiB  
Article
Numerical Method for Band Gap Structure and Dirac Point of Photonic Crystals Based on Recurrent Neural Network
by Yakun Wang and Jianhua Yuan
Axioms 2025, 14(6), 445; https://doi.org/10.3390/axioms14060445 - 6 Jun 2025
Viewed by 458
Abstract
In this paper, we propose a recurrent neural network numerical method with the finite element method for partial differential equations to study the band gap structure and Dirac points in two-dimensional photonic crystals. Electromagnetic wave propagation is governed by Maxwell’s equations. We transform [...] Read more.
In this paper, we propose a recurrent neural network numerical method with the finite element method for partial differential equations to study the band gap structure and Dirac points in two-dimensional photonic crystals. Electromagnetic wave propagation is governed by Maxwell’s equations. We transform the partial differential equations into large-scale generalized eigenvalue problems by spatially discretising them using the finite element method. Compared with traditional numerical computation methods, neural networks can perform high-speed parallel computation. Existing neural network-based eigenvalue solvers are typically restricted to computing extremal eigenvalues of real symmetric matrix pairs. To overcome this limitation, we develop a novel RNN-based numerical scheme tailored for solving the band structure problem in photonic crystals. We validate our method by computing the dispersion relations of photonic crystals with periodic dielectric columns, achieving excellent agreement with the plane-wave expansion method. In addition, we calculate the Dirac points at the center of the Brillouin zone, which is crucial for understanding the unique optical properties of photonic crystals. We determine the precise filling ratios at which these Dirac points appear, thus providing insight into the relationship between geometrical and material parameters and the appearance of Dirac points. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

13 pages, 2972 KiB  
Article
The Formation of the Heat-Wave Effect in Hessonite
by Tao Chen, Mengyuan Wang, Jinyu Zheng, Jinglin Tian, Lili Lou, Jingcheng Pei and Xing Xu
Minerals 2025, 15(6), 601; https://doi.org/10.3390/min15060601 - 3 Jun 2025
Viewed by 384
Abstract
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In [...] Read more.
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In this study, the gemological properties, mineral compositions, fabric characteristics, and grain sizes of hessonite samples were investigated using infrared spectroscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS). Hessonite exhibits the heat-wave effect and is found to be polycrystal rather than single-crystal, composed of submillimeter-sized granules with random orientation and limited variations in Fe and Al contents. Abundant micropores exist among the granules, indicating imperfect contact among them. Due to these structural features, incident light is interrupted and undergoes changes in direction and speed as it passes through the hessonite granules, grain borders, and micropores. Light reflects off the granules’ surfaces and refracts within the granules, respectively, causing the incident light to swirl and roil within the hessonite and form the heat-wave effect. This study considers that the heat-wave effect is a special optical phenomenon not caused by impurity minerals or inclusions. Full article
Show Figures

Figure 1

12 pages, 5625 KiB  
Proceeding Paper
Molding Characteristics and Impact Strength of Polypropylene with Different Numbers of Recycling Cycles
by Hui-Mei Zheng, Jui-Chan Li, Yen-Kai Wang, Kai-Fu Liew and Hsin-Shu Peng
Eng. Proc. 2025, 92(1), 88; https://doi.org/10.3390/engproc2025092088 - 29 May 2025
Viewed by 333
Abstract
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the [...] Read more.
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the number of recycling cycles. After the material is injected and crushed, it is recycled to produce the material required for re-injection, and a pressure sensor is installed at the nozzle position to observe the effects of material properties and impact characteristics in recycling. Injecting and pulverizing PP several times results in looser molecular spacing, increasing the fluidity of the material. After several recycling cycles, the fluidity of the material gradually decreased. Its crystallinity fluctuated depending on the crystallinity and crystallization rates. Recycled PP materials in various molding processes were influenced by melt temperature, screw speed, back pressure, and injection speed, which also affected nozzle pressure and strength. As the melt temperature increased, the effect on the nozzle pressure and impact strength became more evident. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

12 pages, 2553 KiB  
Article
Investigating the Influence of Mechanical Loads on Built-Up Edge Formation Across Different Length Scales at Diamond–Transition Metal Interfaces
by Mazen S. Alghamdi, Mohammed T. Alamoudi, Rami A. Almatani and Meenakshisundaram Ravi Shankar
J. Manuf. Mater. Process. 2025, 9(6), 176; https://doi.org/10.3390/jmmp9060176 - 28 May 2025
Viewed by 475
Abstract
Investigating failure mechanisms in cutting tools used in advanced industries like biomedical and aerospace, which operate under extreme mechanical and chemical conditions, is essential to prevent failures, optimize performance, and minimize financial losses. The diamond-turning process, operating at micrometer-length scales, forms a tightly [...] Read more.
Investigating failure mechanisms in cutting tools used in advanced industries like biomedical and aerospace, which operate under extreme mechanical and chemical conditions, is essential to prevent failures, optimize performance, and minimize financial losses. The diamond-turning process, operating at micrometer-length scales, forms a tightly bonded built-up edge (BUE). The tribochemical interactions between a single-crystal diamond and its deformed chip induce inter-diffusion and contact, rapidly degrading the cutting edge upon BUE fracture. These effects intensify at higher deformation speeds, contributing to the observed rapid wear of diamond tools during d-shell-rich metal machining in industrial settings. In this study, these interactions were studied with niobium (Nb) as the transition metal. Tribochemical effects were observed at low deformation speeds (quasistatic; <1 mm/s), where thermal effects were negligible under in situ conditions inside the FEI /SEM vacuum chamber room. The configuration of the interface region of diamond and transition metals was characterized and analyzed using focused ion beam (FIB) milling and subsequently characterized through transmission electron microscopy (TEM). The corresponding inter-diffusion was examined by elucidating the phase evolution, element concentration profiles, and microstructure evolution via high-resolution TEM/Images equipped with an TEM/EDS system for elemental characterization. Full article
Show Figures

Figure 1

Back to TopTop