Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,864)

Search Parameters:
Keywords = crystal optics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

11 pages, 2306 KiB  
Article
Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides
by Chengwei Xian, Pengju Kuang, Zhe Li, Yi Zhang, Changsong Wang, Rudi Zhou, Guangjun Wen, Yongjun Huang and Boyu Fan
Photonics 2025, 12(8), 785; https://doi.org/10.3390/photonics12080785 (registering DOI) - 4 Aug 2025
Abstract
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element [...] Read more.
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. Full article
Show Figures

Figure 1

8 pages, 2685 KiB  
Proceeding Paper
Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate
by Kentaro Yamauchi, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 5; https://doi.org/10.3390/chemproc2025017005 - 4 Aug 2025
Abstract
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B [...] Read more.
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B (RhB) under visible light irradiation. The absorbance at 554 nm gradually decreased over time and disappeared completely within 80 min. The crystal structure, morphology, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The improved photocatalytic activity of the treated catalysts was attributed to partial carbonate removal and the formation of Bi5+ species. Scavenger experiments indicated that superoxide radicals (·O2) and photogenerated holes (h+) played significant roles in the photocatalytic decolorization of RhB. Full article
Show Figures

Figure 1

17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

11 pages, 1217 KiB  
Article
Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals
by Natalia Demyanyshyn, Oleh Buryy, Bohdan Mytsyk, Pavlo Solomenchuk, Oleksandr Lishchuk and Anatoliy Andrushchak
Crystals 2025, 15(8), 708; https://doi.org/10.3390/cryst15080708 - 31 Jul 2025
Viewed by 135
Abstract
The elastic and photoelastic coefficients of Ba3TaGa3Si2O14 (BTGS) crystals were determined by the quantum–mechanical calculation technique. Based on these data, extreme piezo-optic surfaces π′°km were constructed, which describe the change in the path difference [...] Read more.
The elastic and photoelastic coefficients of Ba3TaGa3Si2O14 (BTGS) crystals were determined by the quantum–mechanical calculation technique. Based on these data, extreme piezo-optic surfaces π′°km were constructed, which describe the change in the path difference in light beams in the crystal under the influence of mechanical stress. The results for BTGS crystals are compared with the ones for other crystals of the langasite group (La3Ga5SiO14, Ca3Ga2Ge4O14, Ca3TaGa3Si2O14 and Ca3NbGa3Si2O14). The global maxima of the π′°km surfaces for BTGS crystals significantly exceed the ones for the other crystals mentioned above and, accordingly, BTGS crystals can be suitable for use in polarization-optic light modulators and devices based on them. The acousto-optic efficiency of BTGS crystals was evaluated. The correlations between the magnitude of the piezo- and elasto-optic coefficients and the parameters of the unit cell of the studied crystals were determined. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Crystal Materials)
12 pages, 2575 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 - 31 Jul 2025
Viewed by 91
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
Show Figures

Figure 1

19 pages, 2722 KiB  
Article
Fluorene-Containing β-Diketonato Ligands and Their Rhodium(I) Complexes—A Characterization and Crystallographic Study
by Frederick Jacobus Francois Jacobs, Siyanda Khoza and Eleanor Fourie
Inorganics 2025, 13(8), 255; https://doi.org/10.3390/inorganics13080255 - 30 Jul 2025
Viewed by 199
Abstract
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized [...] Read more.
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized containing the fluorene-functional group, where the varying substituent on the β-diketone was CF3 (1), PhCF3 (2), Ph (3) and PhCH3 (4). The corresponding cyclooctadiene rhodium(I) complexes of the type [Rh(cod)((fluorene)COCHCOR)], with R = CF3 (5), PhCF3 (6), Ph (7) and PhCH3 (8) were also synthesized. A crystal structure determination of 2 and 6 was performed, highlighting important changes in the ligand structure as a result of metal complexation. The structure of 2 also showed a hydrogen interaction between the hydroxy and carboxyl groups, forming a pseudo six-membered ring that stabilizes the enol form of the compound. Cyclic voltammetry (CV) of the β-diketones 14 showed a reduction wave for the reduction of the β-diketonato backbone between −1500 mV and −2100 mV as measured against ferrocene (FcH). CVs of rhodium(I) complexes 58 showed a reduction of the β-diketonato backbone between −1800 and −2000 mV, as well as an oxidation wave for the oxidation of the rhodium(I) metal centre at approximately 300 mV. Full article
Show Figures

Graphical abstract

12 pages, 2191 KiB  
Article
A Structural Colored Epoxy Resin Sensor for the Discrimination of Methanol and Ethanol
by Yongxing Guo, Yingying Yi, Limin Wu, Wei Liu, Yi Li and Yonggang Yang
Chemistry 2025, 7(4), 122; https://doi.org/10.3390/chemistry7040122 - 30 Jul 2025
Viewed by 184
Abstract
A thermochromic cholesteric liquid crystal (CLC) mixture was prepared using epoxies. The structural color of the CLCN film was tuned by changing the concentration of a chiral dopant and the polymerization temperature. It was found the yellow CLCN film can be used as [...] Read more.
A thermochromic cholesteric liquid crystal (CLC) mixture was prepared using epoxies. The structural color of the CLCN film was tuned by changing the concentration of a chiral dopant and the polymerization temperature. It was found the yellow CLCN film can be used as a sensor for the discrimination of methanol and ethanol which was proposed to be driven by the difference between the solubility parameters. Moreover, a colorful pattern was prepared based on the thermochromic property of the CLC mixture, which could be applied for decoration and as a sensor for chloroform. Full article
Show Figures

Figure 1

25 pages, 15689 KiB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 (registering DOI) - 29 Jul 2025
Viewed by 316
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

18 pages, 1917 KiB  
Article
Influence of Energetic Xe132 Ion Irradiation on Optical, Luminescent and Structural Properties of Ce-Doped Y3Al5O12 Single Crystals
by Ruslan Assylbayev, Gulnur Tursumbayeva, Guldar Baubekova, Zhakyp T. Karipbayev, Aleksei Krasnikov, Evgeni Shablonin, Gulnara M. Aralbayeva, Yevheniia Smortsova, Abdirash Akilbekov, Anatoli I. Popov and Aleksandr Lushchik
Crystals 2025, 15(8), 683; https://doi.org/10.3390/cryst15080683 - 27 Jul 2025
Viewed by 645
Abstract
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are [...] Read more.
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are employed to analyze radiation-induced changes. Irradiation leads to the formation of Frenkel (F, F+) and antisite defects and attenuates Ce3+ emission (via enhanced nonradiative processes and Ce3+ → Ce4+ recharging). A redistribution between the fast and slow components of the Ce3+-emission is considered. Excitation spectra show the suppression of exciton-related emission bands, as well as a shift of the excitation onset due to increased lattice disorder. XRD data confirm partial amorphization and a high level of local lattice disordering, both increasing with irradiation fluence. These findings provide insight into radiation-induced processes in YAG:Ce, which are relevant for its application in radiation–hard scintillation detectors. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

17 pages, 7162 KiB  
Article
Microbeam X-Ray Investigation of the Structural Transition from Circularly Banded to Ringless Dendritic Assemblies in Poly(Butylene Adipate) Through Dilution with Poly(Ethylene Oxide)
by Selvaraj Nagarajan, Chia-I Chang, I-Chuan Lin, Yu-Syuan Chen, Chean-Cheng Su, Li-Ting Lee and Eamor M. Woo
Polymers 2025, 17(15), 2040; https://doi.org/10.3390/polym17152040 - 26 Jul 2025
Viewed by 295
Abstract
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous [...] Read more.
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous ways, such as bending, scrolling, and twisting in self-assembly, into final aggregated morphologies of periodic bands or straight dendrites. Diluting PBA with a significant amount of PEO uncovers intricate periodic banded assemblies, facilitating better structural analysis. Both circularly banded and straight dendritic PBA aggregates have similar basic lamellar patterns. In straight dendritic PBA spherulites, crystal plates can twist from edge-on to flat-on, similar to those in ring-banded spherulites. Therefore, twists—whether continuous or discontinuous—are not limited to the conventional models proposed for classical periodic-banded spherulites. Thus, it would not be universally accurate to claim that the periodic circular bands observed in polymers or small-molecule compounds are caused by continuous lamellar helix twists. Straight dendrites, which do not exhibit optical bands, may also involve alternate crystal twists or scrolls during growth. Iridescence tests are used to compare the differences in crystal assemblies of straight dendrites vs. circularly banded PBA crystals. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

14 pages, 2733 KiB  
Article
Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel
by Yuzhen Yu, Weikang Ding, Xi Wang, Donglu Mo and Fan Chen
Materials 2025, 18(15), 3505; https://doi.org/10.3390/ma18153505 - 26 Jul 2025
Viewed by 254
Abstract
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based [...] Read more.
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based alloy that exhibits excellent hardness, structural stability, and wear resistance. It is widely used in surface engineering applications, especially laser cladding, due to its ability to form dense and crack-free metallurgical coatings. To enhance the surface hardness and wear resistance of 65 Mn steel, this study employs a laser melting process to deposit a multi-layer Fe901 alloy coating. The phase composition, microstructure, microhardness, and wear resistance of the coatings are investigated using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), Vickers hardness testing, and friction-wear testing. The results show that the coatings are dense and uniform, without visible defects. The main phases in the coating include solid solution, carbides, and α-phase. The microstructure comprises dendritic, columnar, and equiaxed crystals. The microhardness of the cladding layer increases significantly, with the multilayer coating reaching 3.59 times the hardness of the 65 Mn substrate. The coatings exhibit stable and relatively low friction coefficients ranging from 0.38 to 0.58. Under identical testing conditions, the wear resistance of the coating surpasses that of the substrate, and the multilayer coating shows better wear performance than the single-layer one. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

28 pages, 8135 KiB  
Communication
Angle-Dispersion-Free Near-Infrared Transparent Bands in One-Dimensional Photonic Hypercrystals
by Feng Wu, Jiayi Ruan, Li He, Abinash Panda and Haitao Jiang
Photonics 2025, 12(8), 748; https://doi.org/10.3390/photonics12080748 - 24 Jul 2025
Viewed by 247
Abstract
In classic all-dielectric one-dimensional photonic crystals, transparent bands exhibit strong angular dispersion. Herein, we realize an angle-dispersion-free near-infrared transparent band in a one-dimensional photonic hypercrystal containing hyperbola-dispersion metamaterials. As the incident angle increases from 0° to 80°, the relative shifts of the wavelengths [...] Read more.
In classic all-dielectric one-dimensional photonic crystals, transparent bands exhibit strong angular dispersion. Herein, we realize an angle-dispersion-free near-infrared transparent band in a one-dimensional photonic hypercrystal containing hyperbola-dispersion metamaterials. As the incident angle increases from 0° to 80°, the relative shifts of the wavelengths of four transmittance peaks within the transparent band are smaller than 1.5% and the bandwidth of the transparent band marginally fluctuates from 1098.2 to 1132.5 nm. Particularly, the angle-dispersion-free property of the transparent band is quite robust with respect to the layer thickness disturbance. Our work not only offers a viable method of achieving angle-dispersion-free transparent bands but also facilitates the development of transparency-based optical devices. Full article
(This article belongs to the Special Issue Photonic Crystals: Physics and Devices, 2nd Edition)
Show Figures

Figure 1

22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 880
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 170
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

Back to TopTop