Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals
Abstract
1. Introduction
2. Material and Method for Determining Photoelastic Coefficients
3. Results and Discussion
3.1. Elastic and Photoelastic Coefficients
3.2. Evaluation of Acousto-Optic Efficiency
3.3. Extreme Piezo-Optic Surfaces of the Path Difference
- (1)
- The directions of light propagation indicated in these tables do not correspond to the main crystallographic axes (an exception exists only for BTGS crystal, see rows 4 and 5 in Table 4); the directions of light propagation and uniaxial pressure applying are either strictly orthogonal (α = 90°, see rows 1 and 2 in Table 3 and rows 1 and 5 in Table 4), or deviate from orthogonality by small angles from 2.4° to 5.5° (see row 3 in Table 3 and rows 2–4 in Table 4);
- (2)
- Among the experimentally and theoretically studied crystals, the maximal value of was obtained for BTGS crystal (14.5 Br);
- (3)
- CGG crystal reveals the lowest global maximum of (6.8 Br); for comparison, the maximum value of the POE (in terms of path difference) for quartz found by the extreme surface method is equal to 7.4 Br, which is also significantly (by a factor of 2) lower than that for BTGS crystal (Table 4). Therefore, it is BTGS crystals that should be preferred when using them as sensitive elements of polarization-optic light modulators and devices based on them.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Remark, T.; Segonds, P.; Debray, J.; Jegouso, D.; Víllora, E.; Shimamura, K.; Boulanger, B. Linear and nonlinear optical properties of the langasite crystal Ca3TaAl3Si2O14. Opt. Mater. Expr. 2023, 13, 2053–2060. [Google Scholar] [CrossRef]
- Usui, H.; Kusakabe, H.; Tokuda, M.; Sugiyama, K.; Hoshina, T.; Tsurumi, T.; Takeda, H. Structure and electrical properties of Ba3TaGa3Si2O14 single crystals grown by Czochralski method. J. Ceram. Soc. Jpn. 2020, 128, 441–446. [Google Scholar] [CrossRef]
- Kuzmin, N.; Klimin, S.; Mavrin, B.; Boldyrev, K.; Chernyshev, V.; Mill, B.; Popova, M. Lattice dynamics and structure of the new langasites Ln3CrGe3Be2O14 (Ln = La, Pr, Nd): Vibration alspectra and abinitio calculations. J. Phys. Chem. Solids 2020, 138, 109266. [Google Scholar] [CrossRef]
- Golovina, T.; Konstantinova, A.; Zabelina, E.; Kozlova, N.; Kasimova, V. Allowance for the imperfection of the spectrophotometric complex optical elements when measuring transmission spectra of gyrotropic uniaxial crystals. I: Samples are cut perpendicular to the optical axis. Cryst. Rep. 2025, 70, 39–49. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Zhang, J.; Xie, W.; Jin, H.; Xuan, W.; Dong, S.; Luo, J. Numerical design and optimization of high performance Langasite and hetero-acoustic layer-based surface acoustic wave device. Micromachines 2025, 16, 166. [Google Scholar] [CrossRef]
- Roshchupkin, D.; Kovalev, D. Coefficients of thermal expansion in La3Ga5SiO14 and Ca3TaGa3Si2O14 crystals. Materials 2023, 16, 4470. [Google Scholar] [CrossRef]
- Andreev, I. Two decades following the discovery of thermallys table elastic properties of La3Ga5SiO14 crystal and coining of the term langasite. Tech. Phys. 2004, 49, 1101–1103. [Google Scholar] [CrossRef]
- Andreev, I.; Dubovik, M. A new piezoelectric material, langasite (La3Ga5SiO14), with a zero temperature coefficient of the elastic vibration frecuency. Sov. Tech. Phys. Lett. 1984, 10, 205–207. [Google Scholar]
- Fu, X.; Villora, E.; Matsushita, Y.; Kitanaka, Y.; Noguchi, Y.; Miyayama, M.; Shimamura, K.; Ohashi, N. Influence of growth conditions on the optical, electrical resistivity and piezoelectric properties of Ca3TaGa3Si2O14 single crystals. J. Ceram. Soc. Jpn. 2016, 124, 523–527. [Google Scholar] [CrossRef]
- Irzhak, D.; Roshchupkin, D. Piezoelectric strain coefficients in La3Ga5.3Ta0.5Al0.2O14 and Ca3TaGa3Si2O14 crystals. AIP Adv. 2013, 3, 102108. [Google Scholar] [CrossRef]
- Irzhak, D.; Roshchupkin, D. Measurement of independent piezoelectric moduli of Ca3NbGa3Si2O14, La3Ga5.5Ta0.5O14 and La3Ga5SiO14 single crystals. J. Appl. Cryst. 2018, 51, 1174–1181. [Google Scholar] [CrossRef]
- Fritze, H. High-temperature bulk acoustic wave sensors. Meas. Sci. Technol. 2011, 22, 012002. [Google Scholar] [CrossRef]
- Xin, Y.; Shaojun, Z.; Jiyang, W. Mutualaction of the opticalactivity and the electro-optic effect and itsinf luence on the La3Ga5SiO14 crystal electro-optic Q switch. J. Opt. Soc. Am. B 2005, 22, 394–397. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Q.; Zhang, L.; Zhao, N.; Liang, X. Langasite bonding via high temperature for fabricating sealed microcavity of pressure sensors. Micromachines 2022, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Wang, J.; Zhang, H.; Yin, X.; Zhang, S.; Liu, Y.; Cheng, X.; Gao, L.; Hu, X.; Jiang, M. Growth, properties and application as an electrooptic Q-switch of langasite crystal. J. Cryst. Growth 2003, 254, 360–367. [Google Scholar] [CrossRef]
- Boursier, E.; Segonds, P.; Boulanger, B.; Félix, C.; Debray, J.; Jegouso, D.; Ménaert, B.; Roshchupkin, D.; Shoji, I. Phase-matching directions, refined sellmeier equations, and second-order nonlinear coefficient of the infrared langatate crystal La3Ga5.5Ta0.5O14. Opt. Lett. 2014, 39, 4033–4036. [Google Scholar] [CrossRef]
- Boursier, E.; Giedre, M.; Delagnes, J.-C.; Petit, S.; Ernotte, G.; Lassonde, P.; Segonds, P.; Boulanger, B.; Petit, Y.; Légaré, F.; et al. Study of middle infrared difference frequency generation using a femtosecond laser source in LGT. Opt. Lett. 2017, 42, 3698–3701. [Google Scholar] [CrossRef]
- Mytsyk, B.; Demyanyshyn, N.; Andrushchak, A.; Kost’, Y.; Parasyuk, O.; Kityk, A. Piezooptical coefficients of La3Ga5SiO14 and CaWO4 crystals: A combined optical interferometry and polarization-optical study. Opt. Mater. 2010, 33, 26–30. [Google Scholar] [CrossRef]
- Mytsyk, B.; Suhak, Y.; Demyanyshyn, N.; Buryy, O.; Syvorotka, N.; Sugak, D.; Ubizskii, S.; Fritze, H. Full set of piezo-optic and elasto-optic coefficients of Ca3TaGa3Si2O14 crystals at room temperature. Appl. Opt. 2020, 59, 8951–8958. [Google Scholar] [CrossRef]
- Mytsyk, B.; Demyanyshyn, N.; Andrushchak, A.; Maksishko, Y.; Kohut, Z.; Kityk, A. Characterization of photoelastic materials by Mach-Zehnder interferometry: Application to trigonal calcium galogermanate (CGG) crystals. J. Appl. Phys. 2024, 135, 085111. [Google Scholar] [CrossRef]
- Chani, V.; Shimamura, K.; Yu, Y.; Fukuda, T. Design of newoxidecrystals with improved structural stability. J. Mater. Sci. Eng. 1997, 20, 281–338. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, S.; Chen, J.; Tu, X.; Xin, J.; Kong, H.; Shi, E. Advances in design, growth and application of piezoelectric crystals with langasite structure. Proc. 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Shanghai, China, 23–25 November 2012; IEEE Xplore: Piscataway, NJ, USA, 2013; pp. 252–259. [Google Scholar]
- Mytsyk, B.; Kryvyy, T.; Demyanyshyn, N.; Mys, O.; Martynyuk-Lototska, I.; Kokhan, O.; Vlokh, R. Piezo-, elasto- and acousto-optic properties of Tl3AsS4 crystals. Appl. Opt. 2018, 57, 3796–3801. [Google Scholar] [CrossRef]
- Mytsyk, B.; Erba, A.; Maul, J.; Demyanyshyn, N.; Shchepanskyi, P.; Syrotynsky, O. Photoelasticity of CNGS crystals. Appl. Opt. 2023, 62, 7952–7959. [Google Scholar] [CrossRef]
- Mytsyk, B.; Demyanyshyn, N. Piezooptic surfaces of lithium niobate crystals. Crystallogr. Rep. 2006, 51, 653–660. [Google Scholar] [CrossRef]
- Mytsyk, B.; Andrushchak, A. Spatial distribution of the longitudinal and transverse piezooptical effect in lithium tantalate crystals. Crystallogr. Rep. 1996, 41, 1001–1006. [Google Scholar]
- Buryy, O.; Demyanyshyn, N.; Mytsyk, B.; Andrushchak, A. Optimization of the piezooptic interaction geometry in SrB4O7 crystal. Opt. Applik. 2016, XLVI, 447–459. [Google Scholar]
- Buryy, O.; Demyanyshyn, N.; Mytsyk, B.; Andrushchak, A.; Sugak, D. Acousto-optic interaction in LGS and CTGS crystals. Opt. Contin. 2022, 1, 1314–1323. [Google Scholar] [CrossRef]
- Konstantinova, A.; Golovina, T.; Nabatov, B.; Dudka, A.; Mill, B. Experimental and theoretical determination of the optical rotation in langasite family crystals. Crystallogr. Rep. 2015, 60, 907–914. [Google Scholar] [CrossRef]
- Pinnow, D.; Van, G.; Warner, A.; Bonner, W. Lead molybdate: A melt-grown crystal with a high figure of merit for acousto-optic device applications. Appl. Phys. Lett. 1969, 15, 83–86. [Google Scholar] [CrossRef]
- Dixon, R. Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners. J. Appl. Phys. 1967, 38, 5149–5153. [Google Scholar] [CrossRef]
- Uchida, N.; Niizeki, N. Acoustooptic deflection materials and techniques. Proc. IEEE 1973, 61, 1073–1092. [Google Scholar] [CrossRef]
- Spillman, W.B., Jr. Multimode fiber-optic pressure sensor based on the photoelastic effect. Opt. Lett. 1982, 7, 388–390. [Google Scholar] [CrossRef]
- Trainer, N. Photoelastic Measuring Transducer and Accelerometer Based Thereon. U.S. Patent 4,648,273, 10 March 1987. [Google Scholar]
- Andrushchak, A.; Mytsyk, B.; Osyka, B. Polarized-optical pressure meter. Devices Tech. Exp. 1990, 3, 241. (In Russian) [Google Scholar]
- Wang, B. Linear birefringence measurement instrument using two photoelastic modulators. Opt. Eng. 2000, 41, 981–987. [Google Scholar] [CrossRef]
- Erba, A.; Ruggiero, M.; Korter, T.; Dovesi, R. Piezo-optic tensor of crystals from quantum-mechanical calculations. J. Chem. Phys. 2015, 143, 144504. [Google Scholar] [CrossRef]
- Demyanyshyn, N.; Mytsyk, B.; Andrushchak, A.; Kityk, A. Photoelasticity of crystals with the scheelite structure: Quantum mechanical calculations. Acta Crystallogr. Sect. B 2025, B81, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Perger, W.; Criswell, J.; Civalleri, B.; Dovesi, R. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput. Phys. Commun. 2009, 180, 1753–1759. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.; Civalleri, B.; Maschio, L.; Rèrat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Erba, A.; Caglioti, D.; Zicovich-Wilson, C.; Dovesi, R. Nuclear-relaxed elastic and piezoelectric constants of aterials: Computational aspects of two quantum-mechanical approaches. J. Comput. Chem. 2017, 38, 257–264. [Google Scholar] [CrossRef]
- Erba, A.; Dovesi, R. Photoelasticity of crystals from theoretical simulations. Phys. Rev. 2013, B88, 045121. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Mahmoud, A.; Erba, A.; El-Kelany, K.; Rérat, M.; Orlando, R. Low-temperature phase of BaTiO3: Piezoelectric, dielectric, elastic and photoelastic properties from ab initio simulations. Phys. Rev. 2014, B89, 045103. [Google Scholar] [CrossRef]
- El-Kelany, K.; Carbonnière, P.; Erba, A.; Rérat, M. Inducing a finite in-plane piezoelectricity in graphene with low concentration of inversion symmetry-breaking defects. J. Phys. Chem. C 2015, 119, 8966–8973. [Google Scholar] [CrossRef]
- El-Kelany, K.; Carbonnière, P.; Erba, A.; Sotiropoulos, J.-M.; Rérat, M. Piezoelectricity of functionalized graphene: A quantum mechanical rationalization. J. Phys. Chem. C 2016, 120, 7795–7803. [Google Scholar] [CrossRef]
- Laun, J.; Bredow, T. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the sixth period for solid-state calculations. J. Comput. Chem. 2021, 42, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Laun, J.; Bredow, T. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculations. J. Comput. Chem. 2022, 43, 839–846. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals; Oxford: Clarendon Press: Oxford, UK, 1964. [Google Scholar]
- Narasimhamurty, T. Photoelastic and Electro-Optic Properties of Crystals; Plenum Press: New York, NY, USA; London, UK, 1981. [Google Scholar]
- Dudka, A. Ab Initio calculation of elastic and electromechanical constants of langasite family crystals. Crystallogr. Rep. 2012, 57, 131–133. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, W.; Yuan, D.; Wang, X.; Xue, G.; Shi, X.; Xu, D.; Lv, M. Crystal structure of tricacium tantalum trigallium disilicon oxide, Ca3TaGa3Si2O14. Z. Für Krist.—New Cryst. Struct. 2003, 218, 389–390. [Google Scholar]
- Dudka, A. New multicell model for describing the atomic structure of La3Ga5SiO14 piezoelectric crystal: Unitcells of different compositions in the same single crystal. Crystallogr. Rep. 2017, 62, 195–204. [Google Scholar] [CrossRef]
- Dudka, A.; Mill, B. Accurate crystal-structure refinement of Ca3Ga2Ge4O14 at 295 and 100 K and analysis of the disorder in the atomic positions. Crystallogr. Rep. 2013, 58, 594–603. [Google Scholar] [CrossRef]
- Chait, B.; Bustamante, A.; Chout, M. A new class of ordered langasite structure compound. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052), New York, NY, USA, 9 June 2000; pp. 163–168. [Google Scholar]
- Mytsyk, B.; Demyanyshyn, N.; Martynyuk-Lototska, I.; Vlokh, R. Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals. Appl. Opt. 2011, 50, 3889–3895. [Google Scholar] [CrossRef] [PubMed]
- Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C. The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mytsyk, B. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. I. Methodology for the studies of piezo-optical effect. Ukr. J. Phys. Opt. 2003, 4, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Sirotin, Y.; Shaskolskaja, M. Fundamentals of Crystal Physics; Mir Publishers: Moscow, Russia, 1982. [Google Scholar]
Cmk | C11 | C12 | C13 | C33 | C14 | C44 |
---|---|---|---|---|---|---|
[22] | 166.0 | – | – | – | 6.3 | – |
[51] ** | 160.5 | 77.4 | 85.5 | 170.9 | 3.03 | 63.3 |
Our data | 164.9 | 72.0 | 83.6 | 192.0 | –6.38 | 66.3 |
Skm | S11 | S12 | S13 | S33 | S14 | S44 |
[51] * | 9.32 | −2.75 | −3.28 | 9.14 | 0.58 | 15.85 |
Our data | 8.50 | −2.41 | −2.65 | 7.50 | 1.05 | 15.28 |
π11 | π12 | π13 | π31 | π33 | π14 | π41 | π44 |
---|---|---|---|---|---|---|---|
−0.18 | 0.65 | 0.78 | 1.31 | −1.48 | 0.26 | 0.11 | −0.46 |
p11 | p12 | p13 | p31 | p33 | p14 | p41 | p44 |
0.08 | 0.162 | 0.189 | 0.185 | −0.067 | 0.023 | 0.013 | −0.032 |
Crystal | Light Wave | Direction of Uniaxial Pressure Applying | α, deg. | The Global Maximum, Br | ||||
---|---|---|---|---|---|---|---|---|
θk, deg. | φk, deg. | θi, deg. | φi, deg. | θm, deg. | φm, deg. | |||
CGG | 104 | 90 | 90 (o), 14 (e) | 0 (o), 90 (e) | 90 | 0 | 90 | 6.8 |
CTGS | 101.3 | 90 | 90 (o), 11.3 (e) | 0 (o), 90 (e) | 90 | 0 | 90 | 10.4 |
LGS | 91 | 90 | 90 (o), 1 (e) | 0 (o), 90 (e) | −4.5 | 90 | 95.5 | 10.8 |
Crystal | Light Wave | Direction of Uniaxial Pressure Applying | α, deg. | The Global Maximum, Br | ||||
---|---|---|---|---|---|---|---|---|
θk, deg. | φk, deg. | θi, deg. | φi, deg. | θm, deg. | φm, deg. | |||
CTGS | 124 | 90 | 90 (o), 35 (e) | 0 (o), 90 (e) | 90 | 0 | 90 | 11.0 |
155 | 90 | 90 (o), 65 (e) | 0 (o), 90 (e) | 60 | 90 | 95 | 11.0 | |
CNGS | 146.4 | 90 | 90 (o), 56.4 (e) | 0 (o), 90 (e) | 52 | 90 | 94.4 | 11.6 |
BTGS | 90 | 90 | 90 (o), 0 (e) | 0 (o), 0 (e) | 2.4 | 90 | 87.6 | 14.5 |
90 | 90 | 90 (o), 0 (e) | 0 (o), 0 (e) | 90 | 0 | 90 | 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demyanyshyn, N.; Buryy, O.; Mytsyk, B.; Solomenchuk, P.; Lishchuk, O.; Andrushchak, A. Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals. Crystals 2025, 15, 708. https://doi.org/10.3390/cryst15080708
Demyanyshyn N, Buryy O, Mytsyk B, Solomenchuk P, Lishchuk O, Andrushchak A. Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals. Crystals. 2025; 15(8):708. https://doi.org/10.3390/cryst15080708
Chicago/Turabian StyleDemyanyshyn, Natalia, Oleh Buryy, Bohdan Mytsyk, Pavlo Solomenchuk, Oleksandr Lishchuk, and Anatoliy Andrushchak. 2025. "Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals" Crystals 15, no. 8: 708. https://doi.org/10.3390/cryst15080708
APA StyleDemyanyshyn, N., Buryy, O., Mytsyk, B., Solomenchuk, P., Lishchuk, O., & Andrushchak, A. (2025). Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals. Crystals, 15(8), 708. https://doi.org/10.3390/cryst15080708