Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = crude oil fouling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 559
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

18 pages, 1588 KiB  
Article
Root Cause Analysis for Observed Increased Sedimentation in a Commercial Residue Hydrocracker
by Ivelina Shishkova, Dicho Stratiev, Petko Kirov, Rosen Dinkov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Krassimir Atanassov, Vesislava Toteva, Svetlin Vasilev, Dobromir Yordanov, Radoslava Nikolova and Anife Veli
Processes 2025, 13(3), 674; https://doi.org/10.3390/pr13030674 - 27 Feb 2025
Cited by 2 | Viewed by 806
Abstract
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that [...] Read more.
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that leads to equipment fouling and cycle length shortening. With the severity enhancement, the asphaltenes become more aromatic and less soluble which leads to sediment formation when the difference between solubility parameters of asphaltenes and maltenes goes beyond a threshold value. Although theoretical models have been developed to predict asphaltene precipitation, the great diversity of oils makes it impossible to embrace the full complexity of oil chemistry by any theoretical model making it impractical for using it in all applications. The evaluation of process data of a commercial ebullated bed vacuum residue hydrocracker, properties of different feeds, and product streams by intercriteria and regression analyses enabled us to decipher the reason for hydrocracked oil sediment content rising from 0.06 to 1.15 wt.%. The ICrA identified the presence of statistically meaningful relations between the single variables, while the regression analysis revealed the combination of variables having a statistically meaningful effect on sediment formation rate. In this study, vacuum residues derived from 16 crude oils have been hydrocracked as blends, which also contain fluid catalytic cracking heavy cycle oil and slurry oil (SLO), in a commercial H-Oil plant. It was found that the hydrocracked oil sediment content decreased exponentially with fluid catalytic cracking slurry oil augmentation. It was also established that it increased with the magnification of resin and asphaltene and the reduction in sulfur contents in the H-Oil feed. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

26 pages, 3616 KiB  
Article
The Incompatibility Pitfall in Refining Opportunity Crude Oils
by Dicho Stratiev, Ivelina Shishkova, Georgi Georgiev, Rosen Dinkov, Angel Nedelchev, Radoslava Nikolova, Anife Veli, Veselina Bureva, Krassimir Atanassov, Frans van den Berg, Dobromir Yordanov and Vesislava Toteva
Processes 2025, 13(2), 593; https://doi.org/10.3390/pr13020593 - 19 Feb 2025
Viewed by 684
Abstract
Refining light and heavy oils in different proportions seems attractive, especially in cases of geopolitical, economic, environmental, and logistical constraints. The economical attractiveness could be undermined in cases where incompatibility occurs. The current study explores a highly complex refinery performance during processing a [...] Read more.
Refining light and heavy oils in different proportions seems attractive, especially in cases of geopolitical, economic, environmental, and logistical constraints. The economical attractiveness could be undermined in cases where incompatibility occurs. The current study explores a highly complex refinery performance during processing a blend consisting of 17 crude oils of which one was extra light, five were light, nine were medium, and two were heavy. A n-heptane dilution test, using centrifugation, was employed to assess the colloidal stability of crude oils. In addition, a previously established correlation to relate crude oil vacuum residue fraction Conradson carbon content to asphaltene peptizability Sa according to ASTM D 7157 was also availed for the purpose of evaluating colloidal stability. It was found that the crude desalter amperage increases with the SBNIBN ratio and Sa reduction, reaching its maximum allowable value of 180 A at the SBNIBN ratio of 1.35, and Sa of 0.64. The SBNIBN ratio was found more reliable in predicting oil compatibility than the other SBNINmax ratio used to assess colloidal stability in various research. Along with the increase in crude desalter amperage, fouling of the heat exchangers of a crude oil distillation plant was also recorded. An intercriteria analysis of process data together with crude composition data, and compatibility indices revealed that the amperage enhancement is statistically meaningfully related to an increase in the heaviest crude oil content in the process blend and the compatibility indices SBNIBN ratio and Sa, while the fouling was related only to the content of one of the light crude oils in the processed blend. Full article
Show Figures

Figure 1

30 pages, 4182 KiB  
Article
Experience in Processing Alternative Crude Oils to Replace Design Oil in the Refinery
by Dicho Stratiev, Ivelina Shiskova, Vesislava Toteva, Georgi Georgiev, Rosen Dinkov, Iliyan Kolev, Ivan Petrov, Georgi Argirov, Veselina Bureva, Simeon Ribagin, Krassimir Atanassov, Svetoslav Nenov, Sotir Sotirov, Radoslava Nikolova and Anife Veli
Resources 2024, 13(6), 86; https://doi.org/10.3390/resources13060086 - 20 Jun 2024
Cited by 4 | Viewed by 2601
Abstract
A comprehensive investigation of a highly complex petroleum refinery (Nelson complexity index of 10.7) during the processing of 11 crude oils and an imported atmospheric residue replacing the design Urals crude oil was performed. Various laboratory oil tests were carried out to characterize [...] Read more.
A comprehensive investigation of a highly complex petroleum refinery (Nelson complexity index of 10.7) during the processing of 11 crude oils and an imported atmospheric residue replacing the design Urals crude oil was performed. Various laboratory oil tests were carried out to characterize both crude oils, and their fractions. The results of oil laboratory assays along with intercriteria and regression analyses were employed to find quantitative relations between crude oil mixture quality and refining unit performance. It was found that the acidity of petroleum cannot be judged by its total acid number, and acid crudes with lower than 0.5 mg KOH/g and low sulphur content required repeated caustic treatment enhancement and provoked increased corrosion rate and sodium contamination of the hydrocracking catalyst. Increased fouling in the H-Oil hydrocracker was observed during the transfer of design Urals crude oil to other petroleum crudes. The vacuum residues with higher sulphur, lower nitrogen contents, and a lower colloidal instability index provide a higher conversion rate and lower fouling rate in the H-Oil unit. The regression equations developed in this work allow quantitative assessment of the performance of crucial refining units like the H-Oil, fluid catalytic cracker, naphtha reformer, and gas oil hydrotreatment based on laboratory oil test results. Full article
Show Figures

Figure 1

25 pages, 3005 KiB  
Article
Application of Intercriteria and Regression Analyses and Artificial Neural Network to Investigate the Relation of Crude Oil Assay Data to Oil Compatibility
by Ivelina Shiskova, Dicho Stratiev, Mariana Tavlieva, Angel Nedelchev, Rosen Dinkov, Iliyan Kolev, Frans van den Berg, Simeon Ribagin, Sotir Sotirov, Radoslava Nikolova, Anife Veli, Georgi Georgiev and Krassimir Atanassov
Processes 2024, 12(4), 780; https://doi.org/10.3390/pr12040780 - 12 Apr 2024
Cited by 3 | Viewed by 1981
Abstract
The compatibility of constituents making up a petroleum fluid has been recognized as an important factor for trouble-free operations in the petroleum industry. The fouling of equipment and desalting efficiency deteriorations are the results of dealing with incompatible oils. A great number of [...] Read more.
The compatibility of constituents making up a petroleum fluid has been recognized as an important factor for trouble-free operations in the petroleum industry. The fouling of equipment and desalting efficiency deteriorations are the results of dealing with incompatible oils. A great number of studies dedicated to oil compatibility have appeared over the years to address this important issue. The full analysis of examined petroleum fluids has not been juxtaposed yet with the compatibility characteristics in published research that could provide an insight into the reasons for the different values of colloidal stability indices. That was the reason for us investigating 48 crude oil samples pertaining to extra light, light, medium, heavy, and extra heavy petroleum crudes, which were examined for their colloidal stability by measuring solvent power and critical solvent power utilizing the n-heptane dilution test performed by using centrifuge. The solubility power of the investigated crude oils varied between 12.5 and 74.7, while the critical solubility power fluctuated between 3.3 and 37.3. True boiling point (TBP) analysis, high-temperature simulation distillation, SARA analysis, viscosity, density and sulfur distribution of narrow petroleum fractions, and vacuum residue characterization (SARA, density, Conradson carbon, asphaltene density) of the investigated oils were performed. All the experimentally determined data in this research were evaluated by intercriteria and regression analyses. Regression and artificial neural network models were developed predicting the critical solubility power with correlation coefficients R of 0.80 and 0.799, respectively. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 4284 KiB  
Article
Investigation of the Behavior of Hydrocarbons during Crude Oil Fouling by High-Resolution Electrospray Ionization Mass Spectrometry
by Aikaterini Kondyli and Wolfgang Schrader
Energies 2024, 17(6), 1299; https://doi.org/10.3390/en17061299 - 8 Mar 2024
Cited by 1 | Viewed by 1209
Abstract
Crude oil is probably the most complex natural chemical mixture processed in various ways to make fuel and fine chemicals among a wide range of products in industrial processing. The conditions of those industrial processes often include high temperatures, which often cause undesired [...] Read more.
Crude oil is probably the most complex natural chemical mixture processed in various ways to make fuel and fine chemicals among a wide range of products in industrial processing. The conditions of those industrial processes often include high temperatures, which often cause undesired chemical reactions. One of those reaction sequences is crude oil fouling, which finally results in the formation of undesired solid deposits of carbon material, a calamity that costs millions of dollars worldwide each year and produces toxic waste. However, the compounds involved in fouling, let alone the underlying reaction mechanisms, are not understood to date. Here, in order to investigate chemical fouling, the process was simulated under laboratory conditions, focusing on hydrocarbons as the main constituents of crude oil. The results demonstrate large differences within the hydrocarbon class of compounds before and after thermal treatment, even for a very light crude oil fraction, which initially does not contain any bigger or heavier compounds. Here, the fouling reaction is simulated and studied on the molecular level using high-resolution mass spectrometry. After thermal treatment, new, higher molecular weight hydrocarbon compounds with high aromaticity were detected. Results indicate that a radical reaction leads to the formation of larger and more aromatic compounds. The findings were verified by the use of a model hydrocarbon compound to study the mechanism. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

13 pages, 1886 KiB  
Article
Experimental Evaluation of the Deposition Dynamics of Different Petroleum Blends in a Benchtop Heat Exchanger Test Instrument
by H. G. D. Villardi, F. F. de Medeiros, L. C. Orrico, A. L. B. de Souza, I. M. Junior, F. S. Liporace and F. L. P. Pessoa
Energies 2023, 16(21), 7387; https://doi.org/10.3390/en16217387 - 31 Oct 2023
Cited by 1 | Viewed by 1203
Abstract
The article delves into the intricate phenomenon of deposition in heat exchangers and how a piece of equipment known as the benchtop heat exchanger test instrument (BHETI) has been developed to expedite the examination of this phenomenon. The BHETI subjects samples to substantial [...] Read more.
The article delves into the intricate phenomenon of deposition in heat exchangers and how a piece of equipment known as the benchtop heat exchanger test instrument (BHETI) has been developed to expedite the examination of this phenomenon. The BHETI subjects samples to substantial stress, facilitating the assessment of an oil’s tendency to generate deposits. Tests were conducted on two crude oil blends referred to as blend A and blend B using a BHETI unit. This equipment permits testing under various controlled conditions, including temperature, pressure, and volumetric flow rate. The results indicated that blend A exhibited a higher susceptibility to deposition compared to blend B due to its elevated concentration of light hydrocarbons. The wall temperature exerted a significant influence on the deposition rate, with higher temperatures leading to elevated deposition rates. Conversely, lower oil flow rates resulted in increased deposition rates. Furthermore, extended-term tests unveiled fluctuations in deposition rates over time when blending the two oil samples, suggesting intermittent fouling processes, possibly attributable to thermodynamic imbalances induced by mixing, rendering the oil’s asphaltenes less stable. The outcomes were subjected to analysis employing the Colloidal Instability Index (CII), which indicated that the majority of samples exhibited values exceeding 0.9, signifying asphaltene instability. Additionally, the examination of saturated, aromatic, and NSO (nitrogen, sulfur, oxygen) fractions revealed decreased saturation and increased aromatics after the deposition tests. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 3907 KiB  
Article
Acrylonitrile–Acrylic Acid Copolymer Ultrafiltration Membranes for Selective Asphaltene Removal from Crude Oil
by Alexey A. Yushkin, Alexey V. Balynin, Alexandra P. Nebesskaya, Elena V. Chernikova, Dmitriy G. Muratov, Mikhail N. Efimov and Galina P. Karpacheva
Membranes 2023, 13(9), 775; https://doi.org/10.3390/membranes13090775 - 1 Sep 2023
Cited by 3 | Viewed by 2072
Abstract
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement [...] Read more.
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32–55 nm demonstrated a pure toluene permeance of 84.8–130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33–95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile–acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil. Full article
Show Figures

Figure 1

20 pages, 757 KiB  
Review
Modeling Strategies for Crude Oil-Induced Fouling in Heat Exchangers: A Review
by Obaid ur Rehman, Marappa Gounder Ramasamy, Nor Erniza Mohammad Rozali, Shuhaimi Mahadzir, Ali Shaan Manzoor Ghumman and Abdul Hannan Qureshi
Processes 2023, 11(4), 1036; https://doi.org/10.3390/pr11041036 - 29 Mar 2023
Cited by 6 | Viewed by 3494
Abstract
Semi-empirical fouling models have proven more effective in predicting the fouling behavior of crude oils in heat exchangers. These models have aided refineries in optimizing operating conditions to minimize or eliminate fouling in preheat exchangers. Despite their complexity, the models continue to improve [...] Read more.
Semi-empirical fouling models have proven more effective in predicting the fouling behavior of crude oils in heat exchangers. These models have aided refineries in optimizing operating conditions to minimize or eliminate fouling in preheat exchangers. Despite their complexity, the models continue to improve in approximating real behavior by taking into account previously neglected aspects. This paper summarizes these findings from various studies along with highlighting different factors which were considered to enhance the predictability of the models. A critical analysis is presented to emphasize that activation energy in the deposition term varies depending on the physical processes involved and may not conform to the precise definition of activation energy. Two primary modeling approaches for crude oil fouling have emerged, i.e., deterministic and threshold models. Threshold models have gained more attention due to their fewer adjustable parameters. The stability or compatibility of crude oils has a substantial impact on asphaltene deposition, which is a major contributor to fouling. However, incorporating this factor into fouling models has received little attention. The inclusion of parameters for inorganic fraction and ageing has increased predictability by accurately estimating the fouling thickness. The use of CFD to analyze fouling mechanisms is promising, particularly for complex geometries. The dynamic and moving boundary modeling approach has potential to broaden the applicability of fouling models. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer and Fluid Flow)
Show Figures

Graphical abstract

20 pages, 1960 KiB  
Article
Power Production from Produced Waters via Reverse Electrodialysis: A Preliminary Assessment
by Alessandro Cosenza, Giovanni Campisi, Francesco Giacalone, Serena Randazzo, Andrea Cipollina, Alessandro Tamburini and Giorgio Micale
Energies 2022, 15(11), 4177; https://doi.org/10.3390/en15114177 - 6 Jun 2022
Cited by 15 | Viewed by 3083
Abstract
Wastewaters generated by crude oil extraction processes, called “produced waters” (PWs), are complex solutions that contain organic compounds, mainly hydrocarbons, and often exhibit high salinity. The large amounts of PWs represent a global issue because of their environmental impact. An approach widely used [...] Read more.
Wastewaters generated by crude oil extraction processes, called “produced waters” (PWs), are complex solutions that contain organic compounds, mainly hydrocarbons, and often exhibit high salinity. The large amounts of PWs represent a global issue because of their environmental impact. An approach widely used in the oil industry is the reinjection of this wastewater into the extraction wells after a suitable treatment. The high salt concentration of such solutions may be used in salinity gradient technologies to produce green electricity. Among these technologies, reverse electrodialysis (RED) is one of the most promising. In this work, the application of RED for energy generation from two different real oil industry brines was investigated. An experimental campaign was performed by testing 10 × 10 cm2 units in long-run continuous operations, monitoring the performance for more than 25 days. Fouling phenomena, occurring during the continuous operation, decrease the unit performance and several anti-fouling strategies were adopted to tackle this issue. As a result, a positive net power density for up to 18 days of continuous operation was obtained. A maximum power density of about 2.5 W/m2 was observed, demonstrating how the RED technology could be an important strategy to harvest energy from an industrial waste. Full article
(This article belongs to the Special Issue Towards Zero-Waste Cities: Advancement in Waste-to-Energy)
Show Figures

Figure 1

21 pages, 25748 KiB  
Review
Membrane Bioreactors for Produced Water Treatment: A Mini-Review
by Dennis Asante-Sackey, Sudesh Rathilal, Emmanuel Kweinor Tetteh and Edward Kwaku Armah
Membranes 2022, 12(3), 275; https://doi.org/10.3390/membranes12030275 - 27 Feb 2022
Cited by 27 | Viewed by 7251
Abstract
Environmentalists are prioritizing reuse, recycling, and recovery systems to meet rising water demand. Diving into produced water treatment to enable compliance by the petroleum industry to meet discharge limits has increased research into advanced treatment technologies. The integration of biological degradation of pollutants [...] Read more.
Environmentalists are prioritizing reuse, recycling, and recovery systems to meet rising water demand. Diving into produced water treatment to enable compliance by the petroleum industry to meet discharge limits has increased research into advanced treatment technologies. The integration of biological degradation of pollutants and membrane separation has been recognized as a versatile technology in dealing with produced water with strength of salts, minerals, and oils being produced during crude refining operation. This review article presents highlights on produced water, fundamental principles of membrane bioreactors (MBRs), advantages of MBRs over conventional technologies, and research progress in the application of MBRs in treating produced water. Having limited literature that specifically addresses MBRs for PW treatment, this review also attempts to elucidate the treatment efficiency of MBRs PW treatment, integrated MBR systems, general fouling, and fouling mitigation strategies. Full article
(This article belongs to the Special Issue Advanced Research on Membrane Bioreactors 2021–2022)
Show Figures

Figure 1

18 pages, 9288 KiB  
Article
New Design and Optimization of a Jet Pump to Boost Heavy Oil Production
by Jens Toteff, Miguel Asuaje and Ricardo Noguera
Computation 2022, 10(1), 11; https://doi.org/10.3390/computation10010011 - 14 Jan 2022
Cited by 5 | Viewed by 5746
Abstract
In the Oil and Gas industry, installing pipe loops is a well-known hydraulic practice to increase oil pipeline capacities. Nevertheless, pipe loops could promote an unfavorable phenomenon known as fouling. That means that in a heavy oil-water mixture gathering system with low flow [...] Read more.
In the Oil and Gas industry, installing pipe loops is a well-known hydraulic practice to increase oil pipeline capacities. Nevertheless, pipe loops could promote an unfavorable phenomenon known as fouling. That means that in a heavy oil-water mixture gathering system with low flow velocities, an oil-water stratified flow pattern will appear. In consequence, due to high viscosity, the oil stick on the pipe, causing a reduction of the effective diameter, reducing handled fluids production, and increasing energy consumption. As jet pumps increase total handled flow, increase the fluid velocities, and promote the homogenous mixture of oil and water, this type of pump could result attractive compared to other multiphase pump systems in reactivating heavy crude oil transport lines. Jet pumps are highly reliable, robust equipment with modest maintenance, ideal for many applications, mainly in the oil and gas industry. Nevertheless, their design method and performance analysis are rarely known in the literature and keep a high experimental component similar to most pumping equipment. This paper proposes a numerical study and the optimization of a booster multiphase jet pump system installed in a heavy oil conventional loop of a gathering system. First, the optimization of a traditionally designed jet pump, combining CFD simulation and optimization algorithms using commercials software (ANSYS CFX® and PIPEIT® tool), has been carried out. This method allowed evaluating the effect of multiple geometrical and operational variables that influence the global performance of the pump to run more than 400 geometries automatically in a reduced time frame. The optimized pump offers a substantial improvement over the original concerning total flow capacity (+17%), energy, and flow distribution. Then, the effect of the three jet pump plugin configurations in a heavy oil conventional trunkline loop was analyzed. Simulations were carried out for different driving fluid pressures and compared against a traditional pipeline loop’s performance. Optimum plugin connection increases fluid production by 30%. Finally, a new eccentric jet pump geometry has been proposed to improve exit velocities and pressure fields. This eccentric jet pump with the best connection was analyzed over the same conditions as the concentric optimized one. An improvement of 2% on handled fluid was achieved consistently with the observed uniform velocity field at the exit of the pump. A better total fluid distribution between the main and the loop line is obtained, handling around half of the complete fluid each. Full article
(This article belongs to the Special Issue Computational Heat, Mass, and Momentum Transfer—III)
Show Figures

Figure 1

27 pages, 9287 KiB  
Article
The Effect of Ceramic Membranes’ Structure on the Oil and Ions Removal in Pre-Treatment of the Desalter Unit Wastewater
by Yaser Rasouli, Mohammad Mehdi Parivazh, Mohsen Abbasi and Mohammad Akrami
Membranes 2022, 12(1), 59; https://doi.org/10.3390/membranes12010059 - 31 Dec 2021
Cited by 7 | Viewed by 3468
Abstract
Salts, organic materials, and hazardous materials can be found regularly in the effluent from a desalter unit of crude oil. These materials should be separated from the wastewater. Four kinds of inexpensive and innovative ceramic microfiltration membranes (mullite, mullite-alumina (MA 50%), mullite-alumina-zeolite (MAZ [...] Read more.
Salts, organic materials, and hazardous materials can be found regularly in the effluent from a desalter unit of crude oil. These materials should be separated from the wastewater. Four kinds of inexpensive and innovative ceramic microfiltration membranes (mullite, mullite-alumina (MA 50%), mullite-alumina-zeolite (MAZ 20%), and mullite-zeolite (MZ 40%)) were synthesized in this research using locally available inexpensive raw materials such as kaolin clay, natural zeolite, and alpha-alumina powders. Analyses carried out on the membranes include XRD, SEM, void fraction, the average diameter of the pores, and the ability to withstand mechanical stress. Effluent from the desalter unit was synthesized in the laboratory using the salts most present in the desalter wastewater (NaCl, MgCl2, and CaCl2) and crude oil. This synthesized wastewater was treated with prepared ceramic membranes. It was discovered that different salt concentrations (0, 5000, 25,000, 50,000, 75,000, and 100,000 mg L−1) affected the permeate flux (PF), oil rejection, and ion rejection by the membrane. Results showed that in a lower concentration of salts (5000 and 25,000 mg L−1), PF of all types of ceramic membranes was increased significantly, while in the higher concentration, PF declined due to polarization concentration and high fouling effects. Oil and ion rejection was increased slightly by increasing salt dosage in wastewater due to higher ionic strength. Monovalent (Na+) and multivalent (Ca2+ and Mg2+) ion rejection was reported about 5 to 13%, and 23 to 40% respectively. Oil rejection varied from 96.2 to 99.2%. Full article
Show Figures

Figure 1

31 pages, 7237 KiB  
Review
The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review
by Sarah Mohammed Hailan, Deepalekshmi Ponnamma and Igor Krupa
Polymers 2021, 13(23), 4142; https://doi.org/10.3390/polym13234142 - 27 Nov 2021
Cited by 41 | Viewed by 6513
Abstract
Melamine (MA) and polyurethane (PU) foams, including both commercial sponges for daily use as well as newly synthesized foams are known for their high sorption ability of both polar and unipolar liquids. From this reason, commercial sponges are widely used for cleaning as [...] Read more.
Melamine (MA) and polyurethane (PU) foams, including both commercial sponges for daily use as well as newly synthesized foams are known for their high sorption ability of both polar and unipolar liquids. From this reason, commercial sponges are widely used for cleaning as they absorb a large amount of water, oil as well as their mixtures. These sponges do not preferentially absorb any of those components due to their balanced wettability. On the other hand, chemical and physical modifications of outer surfaces or in the bulk of the foams can significantly change their original wettability. These treatments ensure a suitable wettability of foams needed for an efficient water/oil or oil/water separation. MA and PU foams, dependently on the treatment, can be designed for both types of separations. The particular focus of this review is dealt with the separation of oil contaminants dispersed in water of various composition, however, an opposite case, namely a separation of water content from continuous oily phase is also discussed in some extent. In the former case, water is dominant, continuous phase and oil is dispersed within it at various concentrations, dependently on the source of polluted water. For example, waste waters associated with a crude oil, gas, shale gas extraction and oil refineries consist of oily impurities in the range from tens to thousands ppm [mg/L]. The efficient materials for preferential oil sorption should display significantly high hydrophobicity and oleophilicity and vice versa. This review is dealt with the various modifications of MA and PU foams for separating both oil in water and water in oil mixtures by identifying the chemical composition, porosity, morphology, and crosslinking parameters of the materials. Different functionalization strategies and modifications including the surface grafting with various functional species or by adding various nanomaterials in manipulating the surface properties and wettability are thoroughly reviewed. Despite the laboratory tests proved a multiply reuse of the foams, industrial applications are limited due to fouling problems, longer cleaning protocols and mechanical damages during performance cycles. Various strategies were proposed to resolve those bottlenecks, and they are also reviewed in this study. Full article
Show Figures

Figure 1

27 pages, 2316 KiB  
Review
Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water
by Feziwe B. Mamba, Bhekani S. Mbuli and James Ramontja
Membranes 2021, 11(11), 798; https://doi.org/10.3390/membranes11110798 - 20 Oct 2021
Cited by 39 | Viewed by 6205
Abstract
Herein, this paper details a comprehensive review on the biopolymeric membrane applications in micropollutants’ removal from wastewater. As such, the implications of utilising non-biodegradable membrane materials are outlined. In comparison, considerations on the concept of utilising nanostructured biodegradable polymeric membranes are also outlined. [...] Read more.
Herein, this paper details a comprehensive review on the biopolymeric membrane applications in micropollutants’ removal from wastewater. As such, the implications of utilising non-biodegradable membrane materials are outlined. In comparison, considerations on the concept of utilising nanostructured biodegradable polymeric membranes are also outlined. Such biodegradable polymers under considerations include biopolymers-derived cellulose and carrageenan. The advantages of these biopolymer materials include renewability, biocompatibility, biodegradability, and cost-effectiveness when compared to non-biodegradable polymers. The modifications of the biopolymeric membranes were also deliberated in detail. This included the utilisation of cellulose as matrix support for nanomaterials. Furthermore, attention towards the recent advances on using nanofillers towards the stabilisation and enhancement of biopolymeric membrane performances towards organic contaminants removal. It was noted that most of the biopolymeric membrane applications focused on organic dyes (methyl blue, Congo red, azo dyes), crude oil, hexane, and pharmaceutical chemicals such as tetracycline. However, more studies should be dedicated towards emerging pollutants such as micropollutants. The biopolymeric membrane performances such as rejection capabilities, fouling resistance, and water permeability properties were also outlined. Full article
Show Figures

Figure 1

Back to TopTop