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Abstract: Environmentalists are prioritizing reuse, recycling, and recovery systems to meet rising
water demand. Diving into produced water treatment to enable compliance by the petroleum
industry to meet discharge limits has increased research into advanced treatment technologies. The
integration of biological degradation of pollutants and membrane separation has been recognized as
a versatile technology in dealing with produced water with strength of salts, minerals, and oils being
produced during crude refining operation. This review article presents highlights on produced water,
fundamental principles of membrane bioreactors (MBRs), advantages of MBRs over conventional
technologies, and research progress in the application of MBRs in treating produced water. Having
limited literature that specifically addresses MBRs for PW treatment, this review also attempts to
elucidate the treatment efficiency of MBRs PW treatment, integrated MBR systems, general fouling,
and fouling mitigation strategies.

Keywords: fouling; membrane bioreactors; oil and gas wastewater; produced water

1. Introduction

The petroleum refinery industry plays a major role in providing energy to meet the
world’s energy demand and industrial activities; its exploration comes with huge envi-
ronmental risks. Despite the rate of renewable energy growth due to fossil fuel depletion,
the oil and gas industry is anticipated to contribute 40–50% of the total global energy mix
between 2040–2050 [1,2]. The value chain of crude oil and gas can be categorized into the
upstream (exploration, drilling, and extraction), midstream (processing, transportation, and
storage) and downstream (conversion, refinery, marketing and distribution) [3,4], where
the transportation in the midstream is mostly via pipeline, rail, and shipments.

Consequentially, refining crude oil into useful products demands huge amounts of
water for processes such as distillation, cracking, polymerization, alkylation, hydrotreating,
desalting, treatment, and finishing of petroleum products [3,5,6]. In this case, it is estimated
that one barrel of refined oil produces nearly 10 barrels of wastewater [5]. This wastewater
is highly complex, containing high concentrations of residual free and emulsified oils,
hydrocarbons (representing the majority of the organic load), dissolved salts (halides,
phosphates, sulfates, and sulfides), and carcinogenic and mutagenic substances that require
rigorous intervention to be eliminated [5–8]. During oil and gas processes, about 80% liquid
waste, often at temperatures >50 ◦C is commonly referred to as produced water (PW) [7].
The ratio of PW to oil extracted from the reservoirs are estimated at 3:1 [6,7]. Basically,
the total water consists of water in the cavities of the subsurface formations and injected
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water which has a dual purpose of enhancing the recovery of oil and gas and maintaining
pressure in the reservoir [9–11]. For gas production wells, PW also consists of condensed
water [12,13]. Inclusive of water, PW is also a complex mixture of soluble and insoluble high
molecular weight hydrocarbons (aromatic and saturated), heavy metals, anions, and other
impurities [14]. Their varying quantity, constituents, and characteristics are dependent
on the geographic location of the field, geo-structure of the well, age of well, reservoir
drive mechanism, mechanical integrity, well drilling and production technology, refinery
technology, and the type of hydrocarbon products [15,16].

Water demand and issues of scarcity cannot be overlooked as water is essential to
life and the functioning of ecosystems on earth. The demand and withdrawal concerns
does not pertain to only volume, but rather, to volume and quality [17]. A fundamental
proceeding in the protection of quality water involves investigating and developing efficient
technologies for the treatment and conversion of these complex toxic compounds into
harmless ones. A viable route to water sustainability and fresh water scarcity is the
recycling and reuse of reclaimed wastewater for non-potable and potable use [18,19].
This environmentally and financially sustainable approach also involves the recovery of
resources such as nitrogen, organic matter, phosphorus, heavy metals, and value addition
of sludge through its beneficial usage as fertilizers, green energy, and biosolids [20].

For the beneficial reuse of PW for agricultural irrigation, a much-supported application
that is aimed at transforming waste streams into a valuable resource requires a level
of treatment before using to avoid operational challenges [21,22]. In the treatment of
PW, the general objectives are to achieve the removal of both free and dispersed oil (de-
oiling), disinfection, the removal of suspended particles, removal of various dissolved
gases, desalination, and demineralization, softening and deionization, and sodicity level
adjustment. Comparing membrane bioreactors (MBRs) to Physico-chemical processes,
trickling bed, and activated sludge, MBRs have shown quite high treatment performances
in removing both organic and inorganic contaminants [23–25]. While most of the reviews
available consider generalized performances of membrane bioreactors on generalized
wastewater, less attention has been paid to MBRs for PW treatment. This review, based
on a systematic literature survey approach, considers the application of MBRs specifically
to PW treatment. Sections of this succinct, easy to refer review expounds on PWs, MBRs,
and the output of the investigations on MBRs in PW treatment, which includes the system
configuration, integration of MBR, and other processes to treat PWs and modeling of MBR
in PW treatment. The remaining phase is an overview of fouling in MBRs in PW treatment
and fouling control in MBRs with its adaptability in PW treatment. Finally, the authors
provide their perspective on the future of MBR research in PW treatment, which is expected
to provide research gaps to scientists and engineers engaged in this field.

2. Produced Water
2.1. Production and Mangement of PW

Globally, PW generation is estimated at 250 million barrels per day with a foreseeable
increase that is aligned to the increased oil and gas production and ageing of wells [16].
PW from oil and gas exploration fields contribute to 60% of annual generation. About
30% of the global oil production is contributed by offshore production [26]. In the United
States of America (USA) alone, an estimated 21.6 billion barrels of PW is generated every
year with onshore production contributing to about 97% and the remainder attributed to
offshore sites [27]. PW from offshore exploration is mostly discharged to the immediate
aquatic environment. Figure 1 shows the water life cycle of PW. However due to the
hazardous constituents of PW, its management has been met with stricter oil and gas
policies and legislation to avoid interference with environmental sustainability. These
regulatory policies and standards vary from country to country and non-compliance
could result in civil penalties, large fines, international criminal prosecution, and lost
or deferred production [28]. One major concern of relevance that has led to these legal
considerations is the biological effect of PW. Adopted management practices include the
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reuse of PW for drilling and operational purposes and deep well injection with no intent of
accessibility [29]. The most adopted energy demanding, carbon-intensive, and expensive
injection technique costs between $0.3–10 USD per barrel with associated environmental
effects such as underground water contamination and induced seismicity [30–32].
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2.2. Characteristics of Produced Water

PW is hypersaline in nature and it is, therefore, denser than seawater. Compared
to the 30 g/L of total dissolved solids (TDS) of sea water, as high as 300–400 g/L has
been recorded for PW from some oil and gas fields [33–35]. Hypersaline concentration
up to 800 g/L has previously been reported [36]. The dissolved Na+ and Cl− contributes
more to salinity than the chloride salts of calcium, magnesium, and potassium. Findings
show that the higher the temperature of the reservoir, the higher the TDS concentration
in PW [37]. Aside chloride ions, other anions present in PW includes sulfate, carbonate,
and biocarbonate. As such, much of this environmental concern arises when the PW is
discharged into land surface and fresh water rather than the ocean [38,39].

The range of chemical additives used in drilling exploitation and production are not
limited to corrosion and scaling inhibitors, emulsion breakers, fracturing fluids, clarifiers,
solvents, coagulants, surfactants, biocides, and flocculants [40–42]. These treatment chemi-
cals at a lower concentration of 0.1 ppm are considered highly toxic. This array forms part
of the molecular composition of the PW. During the oil and gas extraction process, tech-
nologically enhanced naturally occurring radioactive materials (TERNOMS) or naturally
occurring radioactive materials (NORM) are found in drill cuttings, flowback water, pipe
scale, sludges, sediments, and filters captured as liquid or gases [43].

A quick comparison on the bases of extraction fields reveal that PW from gas fields
is lower in volume but has high acidity and higher concentration of volatile components.
The pH of PW from oil fields fall on a wide scale of 4.3–10 while that of gas fields range
between pH 3.10–4.4. Additionally, benzene, toluene, ethyl benzene, xylene (BTEX), and
naphthalene are found in higher concentrations in PW from gas fields than PW from
the oil fields [44]. Straight chain alkanes (C10–C30) are the most dominant hydrocarbons,
approximated at 90% in detection of which 25% is higher molecular weight n-alkanes
ranging from C21 to C34. Table 1 shows a list of other constituents in PW. With petroleum
compounds making up PW constituents, total organic carbon (TOC) of PW is also expected
to be high.
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Table 1. Produced water composition.

Category Type Comments References

Suspended solids
Formation solids, sand, silt, carbonate,
bacteria, waxes, asphaltenes, scale, and

corrosion products

High molecular weight PAH are
sorbed onto suspended solids. [45,46]

Petroleum hydrocarbons
(dissolved and dispersed oils)

Aliphatic hydrocarbons, BTEX phenols,
carboxylic acid, mono aromatic

hydrocarbons (MAH), dispersed poly
aromatic hydrocarbons (PAH)

Aliphatic hydrocarbons, phenols, low
molecular weight PAH are soluble.
PAH such as pyrene is mutagenic

while benz[a]anthracene and
benzo[a]pyrene are considered
moderate-to-weak and potent

carcinogens, respectively.

[47–51]

Heavy metals
Iron, cadmium, chromium, zinc, lead,

strontium, mercury, nickel, silver,
barium, copper, cobalt, selenium

Found in trace concentration.
Exposure to these heavy

metals causes
central nervous system disorder,

fertility problems, sinus node
dysfunction, liver

necrosis, rheumatoid arthritis, and
cardiovascular diseases.

Adverse effect on aquatic life

[52–55]

Bacteria
Bacillales, Halanaerobiales,

Halanaerobrium, Fusobacteria,
Pseudomonadales,

Potential for souring, causes
corrosion and fouling of pipelines,

biogenic gases.
PW with sulfate reducing

bacteria count
between 100–1000/mL

requires treatment.

[56–58]

TERNOM Radium (224Ra, 226Ra and 228Ra),
uranium (238U), thorium (232Th).

Radium isotopes are mostly
present and

decay into radon (Rn232). Continuous
exposure leads to bone and

sinus cancer.
Accumulated solids with NORM are
mostly cleaned out and disposed in a

controlled process.

[59–61]

Inorganic salts CaCl2, MgCl2, and NaCl
Affects conductivity, clogs pipes on
accumulation and can cause severe

soil erosion.
[39,62]

Dissolved gasses CO2, O2, H2S, N2

Dissolved gases also include the
alkane gases which is mostly

dominated by methane.
H2S is highly toxic and corrosive.

CO2 is corrosive and results in
CaCO3 scaling.

[63,64]

2.3. PW Treatment Technologies

In general, wastewater treatment technologies can be categorized into preliminary,
primary, secondary, and tertiary treatments. Preliminary treatment involves separating of
entrained coarse solids such as sticks, grits, rags, and other floatable suspended solids. The
primary process uses filtration and sedimentation to remove portions of suspended and
organic matter, thereby accomplishing about 50–70% suspended solids and 35–40% bio-
chemical oxygen demand [65–67]. Secondary treatment incorporates biological processes
such as activated sludge and trickling filtration together with chemical precipitation in
achieving high effluent. An estimated 85–95% biological oxygen demand (BOD) and sus-
pended solids removal can be accomplished for a well operated and designed secondary
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treatment plant [68,69]. Also referred to as the polishing stage, tertiary treatment is required
as an add-up when effluent characteristics from the secondary treatment process does not
meet regulatory requirement. An estimated 99% removal is achieved in this process and it
may involve physico-chemical techniques [70,71].

Various physico-chemical and biological treatments widely known in wastewater treat-
ment have been applied to produce water are alkaline chemical precipitation, adsorption, ion
exchange, membrane separation, and coagulation-flocculation [72,73]. Technologies—such as
hydrocyclone, gas flotation, and gravity-based separators have also been used in the oil and
gas sector for water purification and the reduction of oil–water concentration [74]. Table 2
accounts for the advantages and disadvantages of some available PW treatment technologies.

Table 2. Advantages and disadvantages of selected PW treatment technologies [57,75–81].

Category Technology Advantage Disadvantages

Physical

Evaporation

Eliminates chemical application and
physical treatment, no

chemical sludge produced, less
maintenance involved.

High energy cost, concentrated, brine sludge
might require

secondary treatment prior to disposal.

Adsorption (zeolites,
activated carbon,

activated alumina,
organoclays)

Simple technology, low-cost
materials, low energy requirement. High

heavy metals efficiency for
soluble BTEX (benzene, toulene, ethyl

benzene, xylene) and insoluble
free hydrocarbons.

Chemical sludge generation, plugging of
sorbent active sites by organics,

frequent regeneration of adsorbents.
Performance of absorbent is a function of

temperature, pH, suspended solids, salinity,
and dissolved organic contaminants.

Gravity Settling (skim vessels,
API tanks and parallel and

corrugated plate separators-PCPS)

Simple equipment, high separation for large
oil droplets (>150 µm, PCPS- 40 µm),

minimum operational and maintenance cost,
>60% free water removal.

Large footprint, ineffective on dissolved
contaminants, longer settling time for
smaller droplets, PCPS not suitable for

heavy oil separation and also
susceptible to plate clogging.

Hydrocyclones (static
and dynamic)

Easily accessible, compact in design with
low retention time, low capital cost and low

maintenance cost,
functions best as a pre-treatment

device, high oil/water separation >75% with
droplet size above 50 µm.

Generally low contaminant removal
efficiency, oil/water separation is affected by
oil droplet size (minimum = 10–15 microns),

pressure drop ratio and inlet solid
concentration, high maintenance, and does

not remove dissolved components, high
susceptibility to blockages and fouling,

higher pressure drops, pump required for
oils are low pressure which can also reduce

oil droplet size

Gas Floatation
(Dissolved gas,

dispersed gas and
hydraulic induced)

Simplicity of design and operation
compared to gravity settlers, high oil

recovery (>80%) for inlet oil concentration
between 250–500 mg/L, effective removal of
less dense particles, low to moderate energy

demand, overall footprint can be small,
hydraulic induced units capable of

operating above atmospheric pressure.

Scaling of units when PW has high
dissolved solid content, pressure, and liquid

level control is required;
surfactants, flocculants, and

demulsifiers; chemical requirement
increases cost of treatment; bubble size

decreases with increasing salinity.

Chemical

Precipitation
High removal (<90%) for insoluble

contaminants, removal of large oil droplets,
solid and organic carbons

High chemical demand, large sludge
production, sludge matrix consists of
precipitant, not effective for dissolved
contaminants, hydrophilic compounds

and nitrogen.

Oxidation (advanced process)

Can achieve 100% water recovery rate,
smaller footprint, high degradation rate
(>70%), minimum to no solid residual

production, photocatalysis has lower TOC
removal (<20%)

High chemical cost and production of
unknown transformational products.

Complex system that requires
skilled operators.

3. Membrane Bioreactors (MBRs)

MBRs, a combination of selective membrane process such as microfiltration or ultra-
filtration and a biological process in a simplified single unit has become an alternative
technology for wastewater treatment. Being an alternative to the conventional activated
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sludge (CAS), MBRs have attracted much attention as a cost competitive and effective alter-
native. Whilst the biological process of the MBR degrades organic pollutants by adapted
microorganisms, the membrane establishes a physical barrier that separates the biomass
from the treated wastewater [82], hence, the possibility of recycling the activated sludge as
recycled activated sludge (RAS).

The introduction of membrane bioreactors (MBRs) as a treatment technology has given
rise to reduced plant foot print through the elimination of processes such as secondary clar-
ification, tertiary filtration and UV disinfection and works with low feed to microorganism
ratio [83,84]. Other advantages of MBRs include good disinfection capability, high quality
effluent, good organic and inorganic separation ability, high organic loading resisting
capability, absolute control for a longer sludge retention time (SRT) and shorter hydraulic
retention time (HRT), and low sludge production rate due to negligible settleability [85–87].
Having a longer SRT allows slow-growing microorganisms responsible for the degradation
of most nitrogen-based compounds to develop. Over the years, MBRs have been used to
effectively treat industrial and municipal wastewater at mixed liquor suspended solids
(MLSS) levels up to 12 mg/L, a level that CAS can only handle a minor fraction [88]. Despite
treatment reliability of MBRs, they are associated with high operational and capital costs,
membrane fouling phenomena, and high energy demand [89]. A visual comparison of CAS
and MBR is shown in Figure 2.

Figure 2. Difference between CAS and MBR. Adapted from [87].

Over 50 years from the first CAS patent [90], history has it that, Smith et al. [91]
in 1969, under the Dorr-Oliver research program introduced the MBR technology. In
place of a sedimentation tank used in a typical CAS system, Smith et al. [91] installed an
ultrafiltration membrane outside the bioreactor. Despite high-quality effluent produced out
of the treatment of sewage, energy consumption from the recirculating pump, membrane
fouling, and specific applicability restricted its wide usage in North America. However,
a configurational improvement and innovation from the pioneering work of Yamamoto
et al. in 1989 included the placement of membranes into the bioreactor unit, installation
of pressured pumps to circulate mixed liquor and application of suction pressure into the
unit [92]. These earlier designed configurations now exist as first generation side-stream
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MBRs where the activated sludge flows at high velocities through a tubular or flat sheet
membrane module in a typical cross flow filtration mode and the second generation MBRs
where the membranes are submerged in the aerated tank in a more dead end filtration
mode [93]. The energy consumption in the side stream is therefore usually higher due
to the recycle flow velocity. Figure 3 shows the two configurations for (a) side stream
and (b) submerged configurations. Over the years, modifications have resulted in the
airlift external circulation (AEC) MBR with a combined advantage of the side-stream and
submerged MBRs. Additionally, air sparging control for hollow tube membranes used in
side streams and a solid retention control (SRC) system has been developed as improvement
to the conventional MBRs.

Figure 3. Schematic diagram of (a) side stream MBR and (b) submerged MBR.

In MBRs, the microfiltration (MF) and ultrafiltration (UF) membranes are primarily
used with UF being the most effective for oily wastewater treatment when compared to
the low efficiency and high operational cost of conventional methods [94]. The MF and
UF membranes utilize a separation mechanism to retain micron and macromolecular or
particles specifically in the range of 0.1–10 µm for MFs and 5 to 100 nm for UFs. Therefore,
considering the functionality of the membrane in the MBR system, the general mass balance
for solute separation in the process can simply be presented as

Q f C f = QpCp + QCCc (1)

where Q = flowrate, C = solute concentration, and subscripts f, p, and c denote the feed
stream, permeate stream, and concentrate stream, respectively.

The materials used in making these membranes can be grouped into ceramic, poly-
meric, and composite or modified membranes. Although ceramic membranes have excel-
lent fouling resistance, chemical and mechanical stability, and low operating costs, their
high manufacturing and brittle nature makes polymeric membranes a popular choice
for MBRs [95,96]. However, due to the hydrophobic nature, polymeric membranes are
easily fouled. Polymeric membrane materials include polytetrafluoroethylene (PTFE),
polyvinylidene fluoride (PVDF), polysulfone (PSO), polyacrylonitrile (PAN), polyethylene
(PE), polypropylene (PF), polyvinyl butyral (PVB), and polyethersulfone (PESO) [66]. A
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composite or modified membrane is a combination of different materials; one as active
surface and the other as a layer support to provide a synergic effect. Typical to surface
modification is using plasma treatment and incorporation of photocatalytic nanomaterials.

Based on the purpose of the membrane usage, MBRs are divided into four categories
namely, (1) biomass separation membrane bioreactor (BSMBRs), (2) membrane aeration
bioreactors (MABRs), (3) extractive membrane bioreactor (EMBR) and (4) ion exchange
membrane bioreactors (IEMBRs) [97]. The BSMBRs serve as biomass separators in wastew-
ater settings. In MABRs, the membrane cavity is supplied with pressurized oxygen or
air which diffuses though the membrane pores [98]. The biofilm on the membrane side
receives the oxygen, creating a nutrient rich profile for better removal of the pollutants
as the counter diffusion of the bubbleless aerating oxygen and substrate occurs [99,100].
On the side of EMBRs, hydrophobic-organophilic membranes are used to provide selec-
tive transport of specific toxic recalcitrant organic compounds such as dichloroaniline,
chloronitrobenzene, phenol, nitrates, and many more through the solution-diffusion mech-
anism into biofilms for biodegradation as the wastewater passes through the membrane
lumen [101–104]. The IEMBR was patented two decades ago and it incorporates Donnan
dialysis, a concentration gradient driven counter transport process where the feed stream
with targeted ionic pollutants pass through a non-porous anion exchange membrane into
a receiving bio-compartment, which bio reduces under anoxic conditions [105–108]. This
includes the electrodialysis ion exchange membrane bioreactor (EDIMB) and the innovative
osmotic membrane bioreactor (OsMBR) which has also been investigated independently
on a laboratory scale [109,110]. Schematic diagrams of an EMBR, EDIMB, and OsMBR are
presented in Figure 4.

Figure 4. (a) Extractive membrane reactor; (b) Electro-dialysis ion exchange membrane bioreactor;
(c) Osmotic bioreactor adapted from [109,110].

3.1. MBR in PW Treatment

This subsection tabulates the various experimental works performed using MBRs
in PW treatment which takes into account the MBR performances. A summary of the
mechanism of action is shown in Figure 5 while the treatment performance of MBRs, mostly
dominated by the submerged MBR is shown in Table 3. From Table 3, it is established that
MBRs are efficient in treating PW pollutants having observed an 80 to >90% oil and grease
removal, COD (>90%), TOC (>90%), and 30 to > 60% for phosphate.
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Figure 5. Treatment mechanism of an MBR.

Table 3. Performance of MBR in produced water treatment.

MBR
Influent

Effluent Ref.Membrane
System Operational Conditions

Material Brand Model Feed Type Composition

Chlorinated
PE Commercial Flat sheet

SMBR
anoxic-aeration

system

HRT = 13–19 h,
SRT = 600 h,

Flux = 9–15 LMH,
DO = 0.3–4 mg/L

Real

pH = 6.4–10.4,
COD = 720–159 mg/L,
PO4 = 8.5–10.1 mg/L,

NH4-N = 56–132 mg/L,
Oil and grease = 14–20 mg/L

pH = 7.6–8.6,
COD = < 5.2%,
PO4 = < 35%,

NH4-N = < 0.72%,
oil and grease

= < 20%

[111]

PVDF Commercial Tubular
asymmetric

SMBR and
hybrid with

airlift

HRT = 12–24 h,
SRT = 720 h,

Flux = 8–18 LMH,
DO > 2.5 mg/L

synthetic

COD = 1575–2000 mg/L,
Benzene = 30–70 mg/L,
Toulene = 19–40 mg/L,

Ethylbenzene = 4–8 mg/L,
Xylene = 10–20 mg/L

COD = < 10%,
TOC = < 3%,
BTEX = < 1%

[112]

PVDF Commercial Hollow
fiber SMBR HRT = 24 h,

SRT = 20 days, synthetic
TSS = 985–1381 mg/L, VSS

= 937–1213 mg/L,
COD = 353–427 mg/L

TSS = < 23% and
VSS = < 26%,
COD = < 9%

[113]

- Commercial Tubular SMBR
HRT = 24 h,

SRT = 30 days,
Flow: 0.125 L/h

synthetic COD = 1475–1575 mg/L,
BTEX = 4000–35,000 ug/L,

COD = < 0.5%,
BTEX = < 0.2% [114]

PP Commercial Hollow fiber Continuous
flow SMBR

HRT/SRT = 30–250 days,
Flux = 10 LMH, F/M

ratio: 0.25–0.55
Real

Oil and grease = 31–47 mg/L,
TPH = 1030–2210 ppm,

COD = 1500–3000 mg/L

Oil and
grease = < 31%,

TPH = < 6%,
COD = < 21%

[115]

PVDF Commercial Flat sheet SMBR with
Homogenizer

HRT = 2.67 Days,
SRT = 80 days,
DO = 3 mg/L,

Flux = 1.99 LMH,
OLR = 0.975

gCOD L−1 d−1

Synthetic COD = < 2600 mg/L,
Oil and grease = 1750 mg/L

COD = < 10.07%,
Oil and

grease = < 4.04%,
NH3N = 6.55%,

PO4
3− = 38–53.51%

[116]

COD = Chemical oxygen demand; DO = Dissolved oxygen; HR = Hydraulic retention time; TPH = Total petroleum
hydrocarbon; TP = Total phosphorus; TSS = Total suspended solids; SRT = Solid retention time; OLR = Organic
loading rate; VSS = Volatile suspended solids.

3.1.1. Integrated Treatment Processes

Integrated treatment processes in the wastewater treatment industry have been widely
practiced to obtain treatment wastewater that meets the legislated quality standards. This
involves the combination of conventional and hybrid systems which can be categorized as
the fusion of physical, biological and chemical processes. The synergic goals are not limited
to overcoming the limitations in a stand-alone process. Notable among integrated processes
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for treating PW are connected process streams of sedimentation, hydrocyclone, electroco-
agulation, reverse osmosis [117], aeration skimmer, and activated sludge-filtration [44], a
PW zero discharge system consisting of coagulation, flocculation, filtration (sand), adsorp-
tion (granulated activated carbon), RO and crystallization [118], Ti/IrO2–Ta2O5, and BDD
electrodes for a flotation and photo-Fenton technique [119], an integrated biochemical and
capacitive deionization system called microbial capacitive desalination cell (MCDC) [120],
gravity separation-hydrocyclone-sand filtration for non-H2S PW and gravity separation-
induced gas flotation-nutsell filtration for PW containing H2S [121] and an infused pre-
treatment process consisting of gravity driven ultrafiltration, solar aeration, and GAC
adsorption [122]. The gravity separation-hydrocyclone-nutshell filtration-mechanical vapor
compression-storage chain process was also considered for the treatment of PW for internal
reuse. Additionally, integrated pressure systems for desalination that combines reverse
osmosis and chemical or slurry precipitation has been used in the treatment of produced
water due to the salt concentration range [123].

Although there is limited literature on integrated systems involving MBRs, the organic
removal and total membrane resistance of an SMBR and an integrated system consisting
of ozonation and a moving bed biofilm SMBR has recently been compared. Lui et al. [124]
reported that the total membrane resistance was 40.1% lesser in the integrated system with
removal rates of DOC and total nitrogen reported as 3.9% and 18.4% higher, respectively [124].

3.1.2. Modeling MBR Systems

The simplicity of the complex process in modeling and simulation is an answer to ‘what
ifs’ and this leads to the consideration and varying of factors for optimum response, trou-
bleshooting, and data collection for designing new systems using virtual applications [125].
In terms of simulating and predicting the PW concentration, discharge, dispersion, and
environmental risks, four mathematical modeling techniques which are empirical and
analytical solutions aimed to develop expressions of the plume parameters; numerical
methods for directly solving the advection-diffusion equation on fluxes of pollutants; ran-
dom walk particle tracking (RWPT) model for tracking individual particle transport; and
jet-type integral methods based on the mass, momentum, and concentration and buoyancy
conservation are widely used [11,126]. Others include the integration of the Princeton
hydrodynamic ocean model and random walk model [127]. Statistical modeling has also
been used to achieve similar objectives by using an analytical technique in assessing the
PW contaminant levels and its ecological impact [128,129].

Modeling and simulation techniques have also been used in PW treatment, specifically
the treatment of PW using MBRs. The Box–Behnken statistical experimental design was
used to study the effect of HRT (16–32 h), SRT (60–120 days) and Temperature (22–38 ◦C)
on COD, TOC and oxygen uptake rate (OUR) [130]. Using a hollow fiber submerged UF
membrane continuous MBR, Janson et al. [130] reported that the average COD, TOC, and
OUR removals were 60%, 59%, and 0.13 mg with high removals occurring at low HRT.
Furthermore, no specific trend was observed as it would have been expected that the mixed
liquor volatile suspended solids (MLVSS) would increase with increasing HRT.

A one-way ANOVA acclimatization of the aerobic non-halophilic bacteria of two MBR
systems with MLSS adjusted at 5834 ± 877 mg/L and 6655 ± 643 mg/L, respectively was
conducted at a varied C/N/P ratio of 100/10/1 and 100/2/1. The reduction in nitrogen
in the C/N/P ratio from 10 to 2 inhibited the growth and metabolism of bacteria, thereby
causing the reduction in average MLSS for each system. Steady state conditions with
statistical significance (p-value less than 0.05) was achieved after 21 days [116].

Optimum range of values of the functional dimensions and designed parameters of
a submerged CSTR MBR was obtained by simulating the MBR’s performance on COD,
TSS, TOC, TDS, and oil and grease removal [131]. The performance equations based
on the law of conservation of mass were developed with assumptions such as constant
flowrate, no concentration gradient, no contaminant diffusion/dispersion and operation
under isothermal, isobaric, and steady state conditions. From Dagde et al.’s [131] model,
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different volume, height, and hydraulic retention time are required to obtain 95% and 99%
conversion with an SRT of 82.7 days. The fundamental fact therefore, still remains that the
MBR plant is more complicated in both design and operation and there is greater risk of
failure [132].

4. Fouling and Fouling Controls in MBRs

The performance and life span of membranes are affected by membrane fouling, which
is a major setback in the application of membrane-based technologies in wastewater treat-
ment. Massive global attention has been given to fouling in membrane integrated systems
attributable to the deposit of foulants such as colloids, hydrophilic dissolved organic matter,
salts, sludge flocs, and suspended particulates. This results in reduced permeate flux,
increased feed stream pressure, an increase in operational and maintenance costs, and
an increased system downtime especially during the treatment of high strength organic
matter [133]. The tendency, behavior, and extent of fouling varying is highly dependent on
the nature of foulants, mode of operation, and the physico-chemical interaction occurring
between the foulants and the properties of the membrane material. Membrane fouling is
inevitable in MBR application in PW treatment due to the heterogeneous nature of PWs.
As such, it is possible to have all the classification of fouling with respect to the type of
foulants—namely, organic, inorganic, or scaling, particulate and biofouling, occurring in
MBRs during PW treatment. During treatment, the significant challenges occurs for high
bacteria population of 42 × 106 colony-forming units (cfu)/L [134]. The characteristics of
the various fouling types are presented in Table 4 [135].

Table 4. Different foulants and their characteristics [135].

Characteristics
Fouling Type

Particulate Biofouling Inorganic Organic

Foulants Suspended solids Extracellular polymeric
substances (EPS)

Mineral salts,
metal cations

NOM, proteins,
polysaccharides, fatty acids

Affecting Factors
Concentration, charge, shape,

ion interaction, size,
compressibility

Temperature and nutrients Concentration,
temperature, and pH

pH, concentration,
hydrophobicity,
ionic strength

Prediction Indicators
Modified fouling index,

specific fouling
resistance, silt density index

Assimilable organic
carbon, rate of

biofilm formation
Solubility Specific ultraviolet adsorption,

DOC, ultraviolet254

Mechanism Organic and inorganic
fouling mechanism

Induction accumulation,
logarithmical growth,

biofilm layer

Crystallization on
membrane surface

Pore blocking and
cake formation

Generally, fouling mechanism in MBRs involve adsorption and accumulative deposi-
tion of foulants on the surface of the membrane, and precipitation in pore blocking. The
surface adsorption, mechanism and accumulative deposition results in reversible fouling
while irreversible fouling is attributed to the deposition in the membrane micro pores.
Clogging of the pores is dependent on the size and shape of the particle, and the pore and
pore size distribution of the membrane. Figure 6 is a schematic view of the different pore
blocking mechanisms. The blocking index (n) of intermediate blocking, standard blocking,
complete blocking, and cake formation are 1, 1.5, 2, and 0, respectively. The rate of fouling
is higher in anaerobic MBRs than under aerobic conditions.
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Figure 6. Schematic view of the different pore blocking mechanisms.

4.1. Monitoring Fouling

Fouling over the years has been monitored in membrane-based processes through
transmembrane pressure (TMP) and change in flux. The change in flux is directly propor-
tional to the change in TMP. In effect, membrane fouling and damaging is reflected through
the decline in flux and TMP.

The propensity of fouling by PW was determined by the flux step method and long-
term operation. For PW with an MLSS concentration of 6 g/L, the critical flux was found
to be 6 LMH with a corresponding TMP of 12 mbar [114]. Permeability was found to
decrease by 50–65% for each 3 LMH flux step between 3–15 LMH and a further decreasing
of permeability at an imposed flux of 18 LMH. Similarly, the average flux and TMP of
PW with an MLSS of 9.1 g/L increased from 9 LMH and 0.4 kPa to 15 LMH and 2.7 kPa,
respectively after 45 days was observed. This prompted the need for a 24 h fouling
treatment [111].

The transitional flux for PW with biomass concentration of 6–18 g/L was reportedly
between 8–14 LMH. The 6 g/L increments in biomass concentration did not have a direct
effect on fouling rates as the fouling rate for high biomass concentration was 36% less than
PW with lower concentration [112]. Complexity and variability in the biomass component
would be the reason behind the observation, however, PW with high EPS may contribute
to severe flux decline due to their large molecular size over membrane pore size [136].
Kose et al. [115] identified the sustainable TMP as 80 kPa and attributed the fouling to
physical reversible cake layer and chemical reversible fouling.

4.2. General Mitigation Strategies

Strategies to control membrane fouling includes the pretreatment of the feed, optimiza-
tion of operational conditions, activated sludge modification, membrane design and surface
modification, and membrane cleaning. Generally, the antifouling and cleaning activities
undertaken to recover the initial permeate flux is determined by the fouling and membrane
type used. These strategies are equally major energy enhancing strategies as attempts are
made to reduce the overall energy consumption in MBRs. The cost of these activities is
also inevitable as membrane permeability maintenance has the most significant impact on
operational expenditure [132]. As such, one antifouling technique is the introduction of air
flow directly to the membrane surface through additional diffusers below the membrane
module. Aeration as a control strategy is a main energy consumer of MBR systems with a
percentage of 36–68% [137]. An overview of existing and innovative antifouling strategies
for MBRs are illustrated in Figure 7.
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Figure 7. Antifouling strategies adapted from [136].

Cleaning by ultrasonication has been effective in breaking down thick foulant layers
from the membrane surface, however, its effect on anaerobic bacterial activity remains a
concern [138,139]. Although research on MBR fouling management in PW treatment is
sparse, generic parts such as membrane fouling during MBR wastewater treatment and
reclamation [140], membrane fouling from a process control viewpoint [73], and membrane
fouling mechanism in anaerobic MBRs [140] exist. Mechanism and limitation of new
physical and chemical biofouling control in MBRs are provided in Table 5 [141].

Table 5. Mechanism and limitation of selection physical and chemical biofouling control processes.

Method Mechanism Limitation

Ultrasonic cleaning
Shear force, drag force, difference in pressure

and high-pressure shock wave,
agglomeration of small particles

Decompose sludge into small particles,
increases extracellular polymeric

substance adhesion,
membrane damage

Electric field assistance

Deposition of sludge and colloids on the
membrane surface are prevented;

promote the metabolism in microorganism;
H2O oxidization

Complex operational process,
high cost

(Chemical)
Ferric oxide,

Peroxymonosulfate

Biomass floc size is increased,
Enhancement of microorganism activity,

Oxidize and degrade dirt

limited ability of the chemical process to
remove membrane biofouling,

High chemical demand,
High cost of chemicals.

Associated ecological, environmental, and
high risk

Ozone
Mainly expands the sludge flocs by reducing

the zeta potential value,
surface hydrophobicity of floc increases

-

In the area of system design in fouling control, the EMBR, IEMBR, EDIMB, and OsMBR
novel systems provide low fouling, high treatment performance, and energy saving charac-
teristics. A number of MBR systems use rotation, vibration (longitudinally, transversely, tor-
sionally, magnetically, or the combination) movement to increase shear-enhanced filtration.
To improve cleaning efficiency, eliminate membrane fouling, and stabilize transmembrane
pressure, the membrane cassette can also be reciprocated [142–144]. Alternative designs
have employed the usage of baffles to divide the bioreactor compartment into zones in
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creating an anoxic–aerobic condition in the reactor vessel for efficient nitrogen removal
through simultaneous nitrification and denitrification [145,146].

Current practices in improving membrane functionality, high flux and mitigating
membrane fouling in MBRs is by embedding nanomaterials into the polymer support struc-
ture or deposition on the surface of the membrane to achieve such characteristics such as
hydrophilicity, hydraulic stability, antimicrobial ability (inhibition of metabolism), thermal
stability, and photocatalytic self-cleaning. The different nanomaterial membrane bioreactors
(NMsMBRs) therefore classified by the nanomaterials as nanofibers membrane bioreactor
(NFs-MBR), nanotubes membrane bioreactor (NTs-MBR), nano particle membrane biore-
actor (NPs-MBR), nanosheets membrane bioreactor (NSs-MBR), nanowires membrane
bioreactor (NWs-MBR) and nanocrystals membrane bioreactor (NCs-MBR) [147,148] as
illustrated in Figure 8.

Figure 8. Types of nanomaterials of hybrid NMs-MBR systems adapted and modified from [146,147].

A thorough search on the use of NMs-MBR systems for PW treatment revealed recent
work by Fonouni et al. [149] and Etemadi et al. [150] by comparing a commercial PP
membrane and TiO2/PP. While achieving a nanocomposite membrane with porosity and
tensile strength of 19.26% and 0.6 MPa higher than commercial PP, respectively. The
nanocomposite NM-MBR had higher flux recovery ratio (FRR) and lower irreversible
fouling ratio (IFR) to demonstrate its better flux recovery and total fouling control over
commercial PP membranes. The analysis of the impact of aeration on fouling, using the
Hermia’s model, predicted that at a lower aeration rate, the fouling mechanism was by
cake formation [150].

These NMs-MBRs have shown various membrane functional limitations and a few
generalized to specific drawbacks are listed below:

(1) NFs, such as Ag/polyamine, decay as a result of irreversible fouling [151,152].
(2) Recovery of NP to encourage reusability concerns, accumulation of NP in MBR and

the leaching of NPs. Additionally, the stability of TiO2 on PES, PVDF, and PAN in
ensuring fouling mitigation is affected by the immobilization technique [153,154].

(3) Be it single walled carbon nanotubes (SWCNT) or multiwalled carbon nanotubes
(MWCNT), graphene oxide or reduced graphene oxide application in NTs-MBR, the
functionality and properties are specific to the surface modification technique. This
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mostly contributes to specific affinity and long term stability is not assured due to
poor dispersion over time [155,156].

(4) Pristine cellulose NC-MBR and modified cellulose NCs have limited membrane
lifetime due to biodegradability of cellulose [157].

5. Future Perspective

In spite of the progress in the usage of MBRs in treating different wastewater and
the continuous evolution of membrane technology, there are limited applications of MBR
technology in PW treatment. There are challenges to be addressed from a laboratory scale
before an acceleration into large-commercial scale application.

• Very useful data is available from peer-reviewed literature on the treatment of PW
using biological and membrane technology. However, the use of MBR systems (includ-
ing hybrid structures) and its integration with other treatment systems such as RO,
NMs (NPs-MBR, NTs-MBR, NCs-MBR, NWs-MBR, and NSs-MBR) and AOP is limited,
and much focus must be channeled to establish the independent process efficiency
and synergic output.

• With PW being comprised of more different components than just oil–water emulsion,
the individual interactive influence of PW components on properties and parameters
of a conventional MBR and modified system can be studied systematically to give
new insights. For instance, the degradation chemistry of initial pollutants should be
understood. Additionally, dynamic models could be developed which should focus
on individual characteristic treatment and hydrodynamic flow behavior of synthetic
and real feeds in the reactor.

• The impact of chemical, physical, biological fouling, and constructive control strate-
gies on the performance of MBRs on laboratory and pilot scale must be conducted in
relation to duration, dosage, metabolic activity, process stability, membrane improve-
ment, behavior in active layer transport of membrane and sustainability, effectiveness,
and environmental safety. The development of modified multi-functional low-cost
membranes with superior antifouling characteristics can be pursued.

• The high salinity and hydrocarbon content of PW makes PW treatment very energy
demanding. Owing to on-site MBR systems, another research direction focusing on
powering MBR systems with renewable energies coupled with intelligent process
monitoring control systems in achieving an autonomous MBR system should be
carried out.

6. Conclusions

The implementation of ecofriendly wastewater technologies is important in achieving
management policies of meeting discharge limits and increasing reusability of treated
wastewater as a source water. MBR technology offers process advantages over conven-
tional activated sludge processes, adsorption technology, hydrocyclones, gravity settling,
precipitation, and many more. This article reviews the treatment of PW using membrane
bioreactors which included the treatment schemes, models, and integrated processes. Other
aspects addressed includes general fouling and fouling control associated with MBRs for
PW treatment. The use of MBRs have demonstrated good performances in the removal
of pollutants; however, there are several research gaps to be filled in that area. The scopes
should include the MBR configuration and hybrid systems for improved treatment. The
cost of large-scale manufacturing of membranes, a key component of MBR and the chem-
istry of degradation of pollutants in conventional and control of fouling using modified
membranes should also be considered. The continuous advancements, especially in mem-
brane design and technology, is key in achieving a process and energy efficient MBR for
PW treatment.
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