Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = cross-tension strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4014 KB  
Article
Mechanical Performance of Fiber-Reinforced Shotcrete for Underground Mines
by Feng Zhou, Baisheng Zhang, Yuewen Pan and Yafei Zhou
Buildings 2025, 15(20), 3689; https://doi.org/10.3390/buildings15203689 - 13 Oct 2025
Cited by 1 | Viewed by 856
Abstract
In underground mine roadways, enlarged cross-sections have led to escalating surrounding rock stress, resulting in frequent support failures, elevated accident risk, and increased maintenance costs. However, the potential of fiber reinforcement to improve shotcrete under these high-stress conditions remains under-investigated. To address these [...] Read more.
In underground mine roadways, enlarged cross-sections have led to escalating surrounding rock stress, resulting in frequent support failures, elevated accident risk, and increased maintenance costs. However, the potential of fiber reinforcement to improve shotcrete under these high-stress conditions remains under-investigated. To address these issues, this study developed a novel fiber-reinforced cement-based composite using field construction-grade washed sand. The effects of binder-to-material ratios, fiber types (polyvinyl alcohol (PVA), polypropylene (PP), and basalt (BF)), and fiber dosages (1%, 2%, and 3%) were systematically investigated under uniaxial tension, uniaxial compression, and variable-angle shear. Based on the experimental results, an optimal mix formulation was determined via orthogonal experimental design to meet mining operational requirements. The findings demonstrate that fiber incorporation significantly enhances mechanical performance. Notably, PP fiber reinforcement increased the tensile strength by up to 675%, while BF fibers improved compressive strength by up to 198.5%, relative to unreinforced shotcrete. This study provides a theoretical foundation for optimizing fiber-reinforced shotcrete mix designs for mining and offers technical insights for field applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 4912 KB  
Article
Numerical Simulation and Prediction of Flexure Performance of PSC Girders with Long-Term Prestress Loss
by Jun-Hee Won, Woo-Ri Kwon and Jang-Ho Jay Kim
Materials 2025, 18(20), 4654; https://doi.org/10.3390/ma18204654 - 10 Oct 2025
Viewed by 649
Abstract
The purpose of this parametric study was to develop a numerical simulation model calibrated with experimental data to predict the flexural behavior of prestressed concrete (PSC) girders subjected to long-term prestress losses. The model is capable of accurately simulating the flexural behavior of [...] Read more.
The purpose of this parametric study was to develop a numerical simulation model calibrated with experimental data to predict the flexural behavior of prestressed concrete (PSC) girders subjected to long-term prestress losses. The model is capable of accurately simulating the flexural behavior of PSC girders using commercial finite-element (FE) software in the ABAQUS/Explicit program. The accuracy of the model was validated by comparing its results with flexural response test data from three post-tensioned girders, with the tendons ultimately having tensile strength capacities of 1860 MPa, 2160 MPa, and 2400 MPa. The comparison demonstrated generally excellent agreement between numerical and experimental results in terms of the load–deflection response and crack propagation behavior, from the onset of first cracking through the maximum load and into the ductile response range. Subsequently, a parametric study was conducted to evaluate the effects of tendon ultimate strength, amount of long-term prestress loss, grouting defects, degradation-induced reductions in concrete strength, and reductions in tendon cross-sectional area on girder flexural behavior. Through this parametric investigation, the study identified key factors with respect to long-term prestress loss that may influence the flexural behavior of aging PSC structures. Full article
Show Figures

Figure 1

20 pages, 9479 KB  
Article
Clinch-Bonding Process for Ultra-High-Strength Steel and A5052 Aluminum Alloy Sheets
by Yohei Abe, Yu Tatara, Takahiro Hosokawa and Ryoto Yamauchi
Materials 2025, 18(15), 3556; https://doi.org/10.3390/ma18153556 - 29 Jul 2025
Viewed by 632
Abstract
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of [...] Read more.
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of an adhesive on the amounts of the interlock and the minimum thickness in the upper sheet was not large, whereas the effect of the sheet combination was observed. Subsequently, for joining the upper 980 MPa ultra-high-strength steel and lower aluminum alloy sheets in the clinch-bonding process, the effects of the die shape, punch velocity, and sheet holding force on the joinability were investigated. As a result, defect-free conditions were narrowly constrained. Finally, a method that involved controlling material flow using an adhesive with fine particles to increase friction between the sheets was introduced. The upper 980 MPa steel and lower aluminum alloy sheets were successfully joined using this approach. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

20 pages, 5053 KB  
Article
Physics-Informed Neural Networks for Depth-Dependent Constitutive Relationships of Gradient Nanostructured 316L Stainless Steel
by Huashu Li, Yang Cheng, Zheheng Wang and Xiaogui Wang
Materials 2025, 18(15), 3532; https://doi.org/10.3390/ma18153532 - 28 Jul 2025
Cited by 1 | Viewed by 884
Abstract
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material [...] Read more.
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material unit in the GS surface layer can be measured directly by tension or compression tests on microspecimens. However, the experimental results based on microspecimens do not reflect either the extraordinary strengthening effect caused by non-uniform deformation or the intrinsic plasticity of nanoscale and ultrafine grains. In this paper, a method for constructing depth-dependent constitutive relationships of GS materials was proposed, which combines strain hardening parameter (hardness) with physics-informed neural networks (PINNs). First, the microhardness distribution on the specimen cross-sections was measured after stretching to different strains, and the hardness–strain–force test data were used to construct the depth-dependent PINNs model for the true strain–hardness relationship (PINNs_εH). Hardness–strain–force test data from specimens with uniform coarse grains were used to pre-train the PINNs model for hardness and true stress (PINNs_Hσ), on the basis of which the depth-dependent PINNs_Hσ model for GS materials was constructed by transfer learning. The PINNs_εσ model, which characterizes the depth-dependent constitutive relationships of GS materials, was then constructed using hardness as an intermediate variable. Finally, the accuracy and validation of the PINNs_εσ model were verified by a three-point flexure test and finite element simulation. The modeling method proposed in this study can be used to determine the position-dependent constitutive relationships of heterogeneous materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

20 pages, 4049 KB  
Article
Calculation of Shear-Bearing Capacity of Aluminum Alloy-Concrete Composite Beam
by Chenghua Li and Ziliang Lu
Buildings 2025, 15(14), 2393; https://doi.org/10.3390/buildings15142393 - 8 Jul 2025
Viewed by 893
Abstract
This study investigates the shear bearing capacity of aluminum alloy–concrete composite beams to address the limitations caused by the low elastic modulus of aluminum alloys. A finite element model was developed using the Concrete Damaged Plasticity (CDP) model for concrete and validated through [...] Read more.
This study investigates the shear bearing capacity of aluminum alloy–concrete composite beams to address the limitations caused by the low elastic modulus of aluminum alloys. A finite element model was developed using the Concrete Damaged Plasticity (CDP) model for concrete and validated through parametric analysis. Key factors such as concrete strength, stirrup spacing, and cross-sectional dimensions were examined. An improved shear capacity formula was derived based on the tension–compression bar model and the superposition method. The proposed formula achieved an average ratio of 1.018 to finite element results, with a standard deviation of 0.151, and the proposed formula was validated against 22 FEA models, demonstrating excellent agreement with numerical results and confirming its reliability for practical engineering applications. This work provides a practical analytical approach for the shear design of aluminum–concrete composite structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 20703 KB  
Article
Performance Evaluation of Reinforced Concrete Beams with Corroded Rebar Strengthened by Carbon Fiber-Reinforced Polymer
by Sangwoo Kim, Wonchang Choi and Jinsup Kim
Polymers 2025, 17(8), 1021; https://doi.org/10.3390/polym17081021 - 10 Apr 2025
Cited by 5 | Viewed by 1704
Abstract
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, [...] Read more.
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, structures constructed with RC face challenges such as reduced live load capacity, concrete deterioration, and the corrosion of reinforcement bars over time. To address this, ongoing research is exploring maintenance and retrofitting techniques using high-strength, lightweight fiber-reinforced polymer (FRP) composite materials such as carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP). In this study, the flexural performance of corroded RC beams was enhanced through retrofitting with CFRP plates and sheets. The corroded RC beams were fabricated using an applied-current method with a 5% NaCl solution to induce a 10% target corrosion level under controlled laboratory conditions. Flexural tests were conducted to evaluate the structural performance, failure modes, load–displacement relationships, and energy dissipation capacities. The results showed that CFRP reinforcement mitigates the adverse effects of corrosion-induced reduction in rebar cross-sectional areas, leading to increased stiffness and improved load-carrying capacity. In particular, CFRP reinforcement increased the yield load by up to 36.5% and the peak load by up to 90% in corroded specimens. The accumulated energy dissipation capacity also increased by 92%. These enhancements are attributed to the effective load-sharing behavior between the corroded rebar and the CFRP reinforcement. Full article
Show Figures

Figure 1

22 pages, 14931 KB  
Article
Inspection of PC Pre-Tensioned Girders Deteriorated by Actual Salt Damage via the Triaxial Magnetic Method
by Hisashi Kakinohana, Yuko Tanabe, Yoshiaki Tamaki and Tetsuhiro Shimozato
CivilEng 2025, 6(2), 18; https://doi.org/10.3390/civileng6020018 - 1 Apr 2025
Viewed by 1337
Abstract
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC [...] Read more.
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC steel material with a span length of 13 m or less were used until the early 1980s. Thus, it is essential to understand the fracture conditions of PC steel material and the factors affecting section loss due to corrosion, in order to properly assess the residual strength of salt-affected pre-tensioned girders. Hence, the current research clarifies the accuracy of techniques used for detecting deterioration in a pre-tensioned PC girder that had been out of service for about 40 years, caused by exposure to the severely saline environment of the Okinawa coast. Visual and hammer-tapping investigation of the actual bridge in addition to fracture investigation of the PC steel material using the triaxial magnetic method and destructive investigation of the concrete cover on the bottom of the girder were carried out and correlated. The final results confirmed that the triaxial magnetic method could detect PC steel material fractures accurately, and valuable information was obtained regarding fracture-detection technology for application in PC girders via non-destructive testing. Full article
Show Figures

Figure 1

14 pages, 4570 KB  
Article
Investigation on Laser Weldability of a 2.1 GPa-Grade Hot Stamping Steel with Medium Carbon Content
by Jiming Huang, Xuekun Shang, Liejun Li and Zhiyuan Liang
Metals 2025, 15(2), 198; https://doi.org/10.3390/met15020198 - 13 Feb 2025
Viewed by 1212
Abstract
This investigation aimed at evaluating the weldability of a 2.1 GPa-grade hot stamping steel (HSS) containing 0.40 wt.% carbon using laser butt welding. It is shown that the subject HSS can be properly joined by laser welding without welding defects, such as voids [...] Read more.
This investigation aimed at evaluating the weldability of a 2.1 GPa-grade hot stamping steel (HSS) containing 0.40 wt.% carbon using laser butt welding. It is shown that the subject HSS can be properly joined by laser welding without welding defects, such as voids and micro-cracks. The mechanical properties of joints before and after hot stamping were examined using cross-weld uniaxial tension and Vickers hardness, while microstructure was systematically characterized using optical microscopy and electron backscatter diffraction. The experimental results demonstrate that fresh martensite was formed in the weld nugget after welding, leading to a hardness much higher than that of the base metal. Nevertheless, such cross-weld microstructural heterogeneity was erased after hot stamping and low-temperature baking heat treatments, resulting in a uniform microstructure of lath martensite across the weld. As a result, the joint after hot stamping and baking exhibited an ultimate tensile strength of 2140 MPa and a total elongation of 12.03%, with the fracture occurring in the base metal. Such excellent mechanical properties of the joint demonstrate the great weldability of the present 2.1 GPa-grade HSS during laser welding. Full article
Show Figures

Figure 1

19 pages, 9261 KB  
Article
The Effect of Steel Reinforcement Diameter on the Behavior of Concrete Beams with Corrosion
by Joel Moreno-Herrera, Néstor Vega-Juarez, Jorge Varela-Rivera, Luis Fernandez-Baqueiro and Pedro Castro-Borges
Buildings 2025, 15(2), 266; https://doi.org/10.3390/buildings15020266 - 17 Jan 2025
Cited by 2 | Viewed by 1362
Abstract
Corrosion is one of the main problems affecting reinforced concrete (RC) structures, yet there remains a lack of studies in which the electrochemical and structural behavior of corroded RC elements are studied together. In this work, four RC beams with and without corrosion [...] Read more.
Corrosion is one of the main problems affecting reinforced concrete (RC) structures, yet there remains a lack of studies in which the electrochemical and structural behavior of corroded RC elements are studied together. In this work, four RC beams with and without corrosion were studied to evaluate their electrochemical and structural behavior via the variable of the diameter of the longitudinal tension steel reinforcement (LTR). The beams were initially tested to determine their initial structural behavior and then subjected to sustained loads and wetting and drying cycles by applying a NaCl solution. The beams were tested a second time to determine their final structural behavior. The variations in the corrosion potential and corrosion rate of the LTR with time, together with concrete resistivity, cracking patterns, and load–displacement curves of the RC beam, are presented. It was found that the electrochemical parameters of the beams with corrosion were similar regardless of the steel reinforcement diameter; these parameters indicated a high level of corrosion. The maximum flexural strength loss was observed for beams with an LTR of 10 mm compared to those with a 13 mm diameter. The maximum cross-sectional area loss associated with pitting corrosion was greater for the beam with an LTR of 10 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 241 KB  
Article
Research on the Genetic Improvement Effects of Lodging Resistance-Related Traits in Maize Core Germplasm
by Kaizhi Yang, Jian Tan, Qiyuan Zhang, Tianhang Bai, Shuna Zhou, Junheng Hao, Xinling Yu, Zhenyuan Zang and Dan Zhang
Agronomy 2025, 15(1), 17; https://doi.org/10.3390/agronomy15010017 - 26 Dec 2024
Cited by 4 | Viewed by 1440
Abstract
Lodging is a key factor affecting maize yield and harvestability. This study utilized Reid population baselines and their improved lines as female parents and No-Reid population baselines and their improved lines as male parents to form 48 incomplete diallel crosses. The genetic improvement [...] Read more.
Lodging is a key factor affecting maize yield and harvestability. This study utilized Reid population baselines and their improved lines as female parents and No-Reid population baselines and their improved lines as male parents to form 48 incomplete diallel crosses. The genetic improvement effects, combining ability, and heterosis of three lodging resistance-related traits (stem tension, puncture strength, and crushing strength at the third internode) were analyzed. Regarding genetic improvement, the results indicated that all three traits were significantly improved in the improved lines compared to the baselines, with improvements increasing in each round. Combining ability analysis showed positive general combining ability (GCA) effects for the improved lines J133A, JM25, JM115, and JM1895 in all three traits, with higher GCA values than the baselines and first-round improved lines. Heterosis analysis revealed the highest advantages for the combinations J133A × JM115 (stem tension), JM25 × JM115 (crushing strength), and J133A × J1865 (puncture strength). These findings suggest that the improved female lines J133A and JM25, along with male lines JM115 and JM1895, not only possess strong lodging resistance but also exhibit high yield potential in the cross J133A × JM115, offering new materials and varieties for maize mechanization. Full article
(This article belongs to the Special Issue Maize Germplasm Improvement and Innovation)
18 pages, 3963 KB  
Article
Flexural Strength of Structural Beams Cast Using Combined Normal-Weight and Lightweight Concrete Mixtures
by Ali Jahami, Lynn Dayaa, Joseph J. Assaad, Oussama Baalbaki and Jamal Khatib
Buildings 2024, 14(12), 3787; https://doi.org/10.3390/buildings14123787 - 27 Nov 2024
Cited by 7 | Viewed by 1937
Abstract
Limited investigations have evaluated the potential of using layered sections of normal-weight and lightweight concrete (NWC and LWC) mixtures in structural beams and slabs. The main objective of this paper is to assess the flexural strength properties of layered reinforced concrete (RC) beams, [...] Read more.
Limited investigations have evaluated the potential of using layered sections of normal-weight and lightweight concrete (NWC and LWC) mixtures in structural beams and slabs. The main objective of this paper is to assess the flexural strength properties of layered reinforced concrete (RC) beams, which help conserve natural resources and reduce construction weight. Six RC beams cast with different NWC/LWC combinations are tested to determine the damage patterns, concrete strains, ultimate load, displacements at failure, and ductility. The test results showed that the LWC cast in the tension zone (and up to the neutral axis) has a negligible effect on the beam’s stiffness and ultimate load since the overall behavior remains governed by the yielding of tensile steel reinforcement. Nevertheless, the deflection at failure and ductility seem to gradually curtail when the NWC is partially replaced by LWC at different elevations across the beam’s cross-section. A finite element analysis using ABAQUS software 6.14 is performed, and the results are compared with experimental data for model validation. Such data can be of interest to structural engineers and consultants aiming for optimized design of slabs and beams using layered concrete casting, which helps reduce the overall construction weight while maintaining the structural integrity of members. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 5149 KB  
Article
Obtaining Symmetrical Gradient Structure in Copper Wire by Combined Processing
by Andrey Volokitin, Irina Volokitina, Mehmet Seref Sonmez, Anastassiya Denissova and Zoya Gelmanova
Symmetry 2024, 16(11), 1515; https://doi.org/10.3390/sym16111515 - 12 Nov 2024
Cited by 6 | Viewed by 2092
Abstract
Traditionally, structural wire is characterized by a homogeneous microstructure, where the average grain size in different parts of the wire is uniform. According to the classical Hall–Petch relationship, a homogeneous polycrystalline metal can be strengthened by decreasing the average grain size since an [...] Read more.
Traditionally, structural wire is characterized by a homogeneous microstructure, where the average grain size in different parts of the wire is uniform. According to the classical Hall–Petch relationship, a homogeneous polycrystalline metal can be strengthened by decreasing the average grain size since an increase in the volume fraction of grain boundaries will further impede the motion of dislocations. However, a decrease in the grain size inevitably leads to a decrease in the ductility and deformability of the material due to limited dislocation mobility. Putting a gradient microstructure into the wire has promising potential for overcoming the compromise between strength and ductility. This is proposed a new combined technology in this paper in order to obtain a gradient microstructure. This technology consists of deforming the wire in a rotating equal-channel step die and subsequent traditional drawing. Deformation of copper wire with a diameter of 6.5 mm to a diameter of 5.0 mm was carried out in three passes at room temperature. As a result of such processing, a gradient microstructure with a surface nanostructured layer (grain size ~400 nm) with a gradual increase in grain size towards the center of the wire was obtained. As a result, the microhardness in the surface zone was 1150 MPa, 770 Mpa in the neutral zone, and 685 MPa in the central zone of the wire. Such a symmetrical spread of microhardness, observed over the entire cross-section of the rod, is a direct confirmation of the presence of a gradient microstructure in deformed materials. The strength characteristics of the wire were doubled: the tensile strength increased from 335 MPa to 675 MPa, and the yield strength from 230 MPa to 445 MPa. At the same time, the relative elongation decreased from 20% to 16%, and the relative contraction from 28% to 23%. Despite the fact that the ductility of copper is decreased after cyclic deformation, its values remain at a fairly high level. The validity of all results is confirmed by numerous experiments using a complex of traditional and modern research methods, which include optical, scanning, and transmission microscopy; determination of mechanical properties under tension; and measurement of hardness and electrical resistance. These methods allow reliable interpretation of the fine microstructure of the wire and provide information on its strength, plastic, and electrical properties. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 4639 KB  
Article
Preparation and Stability Study of an Injectable Hydrogel for Artificial Intraocular Lenses
by Haifeng Cui, Pengfei Li, Zekun Su, Shiqiang Guan, He Dong and Xufeng Dong
Polymers 2024, 16(18), 2562; https://doi.org/10.3390/polym16182562 - 10 Sep 2024
Cited by 3 | Viewed by 2709
Abstract
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we [...] Read more.
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we synthesized a polyacrylamide–sodium acrylate hydrogel (PAH) through the cross-linking polymerization of acrylamide and sodium acrylate. This hydrogel possesses excellent biocompatibility and exhibits several favorable properties. Notably, the hydrogel demonstrates high transparency (94%) and a refractive index (1.41 ± 0.07) that closely matches that of the human lens (1.42). Additionally, it shows strong compressive strength (14.00 kPa), good extensibility (1400%), and an appropriate swelling ratio (50 ± 2.5%). Crucially, the tensile modulus of the hydrogel is 2.07 kPa, which closely aligns with the elastic modulus of the human lens (1.70–2.10 kPa), enabling continuous focal adjustment under the tension exerted by the ciliary muscles. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

24 pages, 5684 KB  
Article
Experimental Analysis and Design of 3D-Printed Polymer Elliptical Tubes in Compression
by Finian McCann, Federico Rossi and Shahzada Danyal Sultan
Appl. Sci. 2024, 14(17), 7673; https://doi.org/10.3390/app14177673 - 30 Aug 2024
Cited by 1 | Viewed by 1969
Abstract
Local failure modes occurring in 3D-printed polymer elliptical section tubes in compression are investigated in the present study via a series of experiments, with the results compared to existing design proposals for slender steel analogues. Polylactic acid (PLA) and acrylonitrile butadiene styrene material [...] Read more.
Local failure modes occurring in 3D-printed polymer elliptical section tubes in compression are investigated in the present study via a series of experiments, with the results compared to existing design proposals for slender steel analogues. Polylactic acid (PLA) and acrylonitrile butadiene styrene material specimens (ABS) have been printed in three orthogonal layering orientations, and tested in tension and compression to determine orthotropic material properties including strength, elastic modulus, failure strains and Poisson’s ratio. Next, twenty-four 3D-printed elliptical cross-section tubes are tested in compression, with the polymer material, cross-sectional aspect ratio and tube wall thickness varied across the set. Results including the load-deflection behaviour, longitudinal strains, failure modes and ultimate loads are discussed. A design method formulated previously for slender steel elliptical hollow sections in compression is adapted for use with the 3D-printed polymer specimens. Upon appropriate rescaling of the design parameters, safe-sided and accurate predictions are provided by the design method for the compressive resistance of the PLA and ABS elliptical specimens, thus validating its application to cross-sections in materials other than carbon steel. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

13 pages, 3573 KB  
Article
Deformation Behavior of AZ31 Magnesium Alloy with Pre-Twins under Biaxial Tension
by Hanshu Dai, Mengmeng Sun and Yao Cheng
Materials 2024, 17(13), 3377; https://doi.org/10.3390/ma17133377 - 8 Jul 2024
Cited by 2 | Viewed by 1377
Abstract
In the present study, the mechanical response and deformation behavior of a Mg AZ31 plate with different types of pre-twins was systematically investigated under biaxial tension along the normal direction (ND) and transverse direction (TD) with different stress ratios. The results show that [...] Read more.
In the present study, the mechanical response and deformation behavior of a Mg AZ31 plate with different types of pre-twins was systematically investigated under biaxial tension along the normal direction (ND) and transverse direction (TD) with different stress ratios. The results show that significant hardening was observed under biaxial tension. The yield values in the direction of larger stress values were higher than those under uniaxial loading conditions, and the solute atom segregation at twin boundaries generates more obvious strengthening effect. Noting that, for TRH (with cross compression along the rolling direction (RD) and TD and annealing at 180 °C for about 0.5 h) sample, the strength effect of the RD yield stress σRD:σND = 2:1 was higher than that of the ND yield stress under stress ratio σRD:σND = 1:2. There is a complex competition between twinning and detwinning under biaxal tension along the ND and TD of the pre-twinned samples with the variation in the stress ratio along the TD and RD. The variation in the twin volume fractions for all samples under biaxial firstly decreases and then increases with a higher stress ratio along the ND. As for the TDH sample (precompression along the TD and annealing), the changes of the twin volume fraction were lower than that of the TR sample (cross compression along the TD and RD). However, the amplitude of variation in twin volume fraction of the TRH sample is higher than that of the TR sample. This is because the relative activity of detwinning decreases and that of twinning increases, as the ND stress mainly leads to the growth of pre-twins and the TD stress often promotes detwinning of primary twins. With a higher stress ratio along the ND, the activity of twinning deformation increases and that of detwinning decreases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop