Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = crocetin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 13626 KiB  
Article
Epigenomics Nutritional Insights of Crocus sativus L.: Computational Analysis of Bioactive Molecules Targeting DNA Methyltransferases and Histone Deacetylases
by Alessia Piergentili, Paolo Roberto Saraceni, Olivia Costantina Demurtas, Barbara Benassi and Caterina Arcangeli
Int. J. Mol. Sci. 2025, 26(15), 7575; https://doi.org/10.3390/ijms26157575 - 5 Aug 2025
Abstract
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA [...] Read more.
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA calculations to investigate the interactions between four saffron-derived molecules—crocetin, beta-D-glucosyl trans-crocetin, picrocrocin and safranal—and four epigenetic enzymes—DNMT1, DNMT3a, HDAC2, and SIRT1. Our in silico screening identifies beta-D-glucosyl trans-crocetin, one of the saffron’s crocins, as a potential DNMT1 inhibitor. Along with crocetin, it also shows the ability to inhibit HDAC2 and activate SIRT1. Picrocrocin displays a resveratrol-like ability to activate SIRT1. None of the saffron-derived compounds effectively bind or inhibit DNMT3a. Among the tested molecules, safranal shows no interaction with the selected epigenetic targets. These findings highlight saffron’s nutriepigenomic potential and emphasize the need for functional validation within relevant in vitro and in vivo experimental methodologies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 3026 KiB  
Article
Gallic, Aconitic, and Crocetin Acids as Potential TNF Modulators: An Integrated Study Combining Molecular Docking, Dynamics Simulations, ADMET Profiling, and Gene Expression Analysis
by Adolat Manakbayeva, Andrey Bogoyavlenskiy, Timur Kerimov, Igor Yershov, Pavel Alexyuk, Madina Alexyuk, Vladimir Berezin and Vyacheslav Dushenkov
Molecules 2025, 30(15), 3175; https://doi.org/10.3390/molecules30153175 - 29 Jul 2025
Viewed by 219
Abstract
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, [...] Read more.
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, followed by detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling and molecular dynamics (MD) simulations for three lead candidates: gallic, aconitic, and crocetin acids. Their effects on TNF gene expression were then assessed in vivo using a mouse leukocyte model. The in silico results indicated that crocetin had the highest TNF binding affinity (−5.6 to −4.6 kcal/mol), while gallic acid formed the most stable protein-ligand complex during MD simulations, and aconitic acid established hydrogen bond interactions. ADMET analysis suggested potential pharmacokinetic limitations, including low permeability. Contrasting its high predicted binding affinity, in vivo gene expression analysis revealed that crocetin stimulated TNF synthesis, whereas gallic and aconitic acids acted as inhibitors. This research explores organic acids as potential TNF modulators, highlighting their complex interactions and providing a foundation for developing these compounds as anti-inflammatory agents targeting TNF-mediated diseases. Full article
Show Figures

Figure 1

25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Viewed by 371
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

12 pages, 3338 KiB  
Article
Natural CCD2 Variants and RNA Interference for Boosting Crocin Biosynthesis in Tomato
by Elena Moreno-Giménez, Eduardo Parreño, Lucía Morote, Alberto José López Jiménez, Cristian Martínez Fajardo, Silvia Presa, Ángela Rubio-Moraga, Antonio Granell, Oussama Ahrazem and Lourdes Gómez-Gómez
Biology 2025, 14(7), 850; https://doi.org/10.3390/biology14070850 - 12 Jul 2025
Viewed by 475
Abstract
Crocin biosynthesis involves a complex network of enzymes with biosynthetic and modifier enzymes, and the manipulation of these pathways holds promise for improving human health through the broad exploitation of these bioactive metabolites. Crocins play a significant role in human nutrition and health, [...] Read more.
Crocin biosynthesis involves a complex network of enzymes with biosynthetic and modifier enzymes, and the manipulation of these pathways holds promise for improving human health through the broad exploitation of these bioactive metabolites. Crocins play a significant role in human nutrition and health, as they exhibit antioxidant and anti-inflammatory activity. Plants that naturally accumulate high levels of crocins are scarce, and the production of crocins is highly limited by the characteristics of the crops and their yield. The CCD2 enzyme, initially identified in saffron, is responsible for converting zeaxanthin into crocetin, which is further modified to crocins by aldehyde dehydrogenases and glucosyltransferase enzymes. Crops like tomato fruits, which naturally contain high levels of carotenoids, offer valuable genetic resources for expanding synthetic biology tools. In an effort to explore CCD2 enzymes with improved activity, two CCD2 alleles from saffron and Crocosmia were introduced into tomato, together with a UGT gene. Furthermore, in order to increase the zeaxanthin pool in the fruit, an RNA interference construct was introduced to limit the conversion of zeaxanthin to violaxanthin. The expression of saffron CCD2, CsCCDD2L, led to the creation of transgenic tomatoes with significantly high crocins levels, reaching concentrations of 4.7 mg/g dry weight. The Crocosmia allele, CroCCD2, also resulted in high crocins levels, reaching a concentration of 2.1 mg/g dry weight. These findings underscore the importance of enzyme variants in synthetic biology, as they enable the development of crops rich in beneficial apocarotenoids. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

12 pages, 1290 KiB  
Article
3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers
by Kazutoshi Shindo, Nozomi Iwamoto, Mayu Usami, Ayuna Saito, Miho Sato, Maho Sugaya, Nao Miyashita, Minoru Murahama, Yasuki Higashimura, Miho Takemura, Kazuo Furihata and Norihiko Misawa
Antioxidants 2025, 14(2), 158; https://doi.org/10.3390/antiox14020158 - 28 Jan 2025
Viewed by 1123
Abstract
The petals of flowering plants should retain unique antioxidants that have not been found in the fruits, as the petals need to stay open to attract pollinators against photooxidation and devise a solution to avoid eating attacks. We reported that the yellow petals [...] Read more.
The petals of flowering plants should retain unique antioxidants that have not been found in the fruits, as the petals need to stay open to attract pollinators against photooxidation and devise a solution to avoid eating attacks. We reported that the yellow petals of freesia cultivars (Freesia x hybrida) accumulated original apocarotenoids, mono- and di-neapolitanosyl crocetin. Here, in the yellow petals, we discovered eight novel flavonoids by their structural determination, including four 3′-caffeoylquercetin 3,7-glycosides, one 3′-caffeoylquercetin 3-glycoside, and three 4′-caffeoylkaempferol 3,7-glycosides. The 3-carbon sugar part was a minor hexose dimer [D-glucosyl-D-glucoside or D-glucosyl-L-rhamnoside] with the β1,2-linkage, while the 7-carbon was usually O-glycosylated with D-glucose, L-rhamnose, or D-glucuronic acid. Such caffeoyl-flavonol glycosides were also present in freesia white petals, regardless of the cultivars and wild species. When dihydroflavonols, the last common precursors between flavonols and anthocyanins, switch to the flavonol route, these caffeoyl-flavonol glycosides are likely to be synthesized via quercetin or kaempferol. All the eight flavonoids exerted in vitro antioxidant activities against both lipid peroxidation and radical generation. Specifically, 3′-caffeoylquercetin 3-sophoroside and its 7-glucuronide showed superior antioxidant activity. Freesia yellow and white flowers have been utilized as edible flowers, indicating the importance of evaluating the human benefits and risks of newly identified flavonoids. Full article
Show Figures

Figure 1

22 pages, 7552 KiB  
Article
Evaluation of Crocetin as a Protective Agent in High Altitude Hypoxia-Induced Organ Damage
by Jun Yang, Kai Luo, Ziliang Guo, Renjie Wang, Qingyuan Qian, Shuhe Ma, Maoxing Li and Yue Gao
Pharmaceuticals 2024, 17(8), 985; https://doi.org/10.3390/ph17080985 - 25 Jul 2024
Cited by 3 | Viewed by 1687
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia [...] Read more.
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia by the alkaline hydrolysis method, and its reducing ability and free radical scavenging ability were tested. The in vitro anti-hypoxia vitality was studied on PC12 cells. The anti-hypoxic survival time of mice was determined in several models. The acute hypoxic injury rat model was established by simulating the hypoxic environment of 8000 m-high altitude for 24 h, and the anti-hypoxia effect of crocetin was evaluated by intraperitoneal injection with the doses of 10, 20, and 40 mg/kg. The water contents of the brain and lung were determined, and the pathological sections in the brain, lung, heart, liver, and kidney were observed by HE staining. The levels of oxidative stress (SOD, CAT, H2O2, GSH, GSH-Px, MDA) and inflammatory factors (IL-1β, IL-6, TNF-α, VEGF) in rat brain, lung, heart, liver, and kidney tissues were detected by ELISA. The results indicated that crocetin exhibited strong reducing ability and free radical scavenging ability and could improve the activity of PC12 cells under hypoxia. After intraperitoneal injection with crocetin, the survival time of mice was prolonged, and the pathological damage, oxidative stress, and inflammation in rats’ tissue were ameliorated. The protective activity of crocetin on vital organs in high-altitude hypoxia rats may be related to reducing oxidative stress and inhibiting inflammatory response. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Graphical abstract

15 pages, 1612 KiB  
Article
Intestinal Metabolism of Crocin and a Pharmacokinetics and Pharmacodynamics Study in the Chronic Social Defeat Stress Mouse Model
by Fan Xiao, Yulong Song, Guangji Wang and Jiye Aa
Pharmaceuticals 2024, 17(7), 843; https://doi.org/10.3390/ph17070843 - 27 Jun 2024
Cited by 4 | Viewed by 2026
Abstract
Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites [...] Read more.
Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites and clarify the underlying mechanisms, the pharmacokinetics and metabolic effects of the gut flora and hepatic and intestinal microsomes on crocin were examined, and the pharmacodynamics of crocin and its major metabolite, crocetin, were also evaluated in both normal and pseudo germ-free mice subjected to chronic social defeat stress. The results showed that oral administration of 300 mg/kg crocin significantly improved the depression-like behaviors of chronic social defeat stress mice, although the levels of crocin in the circulatory system were rather low (Cmax = 43.5 ± 8.6 μg/L; AUC = 151 ± 20.8 μg·h/L). However, the primary metabolite of crocetin was much more abundant in vivo (Cmax = 4662.5 ± 586.1 μg/L; AUC = 33,451.9 ± 3323.6 μg·h/L). Orally administered crocin was primarily metabolized into crocetin by the gut flora instead of hepatic or intestinal microsomal enzymes, and less than 10% of crocin was transformed into crocetin in the liver or intestinal microsomes. Inhibition of the gut flora dramatically reduced the production of and in vivo exposure to crocetin, and the rapid antidepressant effect of crocin disappeared. Moreover, crocetin showed rapid antidepressant effects similar to those of crocin, and the effects were independent of the gut flora. In conclusion, the metabolic transformation of crocin to crocetin primarily contributes to the rapid antidepressant effects of crocin and is dependent on the gut flora. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 3351 KiB  
Review
The Multifaceted Therapeutic Potential of Saffron: An Overview Based on Research and Patents
by Yahya Ramadan Elfardi, Reda El Boukhari, Ahmed Fatimi and Latifa Bouissane
Drugs Drug Candidates 2024, 3(3), 437-454; https://doi.org/10.3390/ddc3030026 - 21 Jun 2024
Cited by 6 | Viewed by 5605
Abstract
Plants and plant extracts have long been acknowledged as valuable resources for the development of therapeutic formulations for various diseases. Among them, numerous plants and plant-derived products have demonstrated cytotoxic and/or anti-tumor properties. Saffron, particularly due to its major compounds, namely crocin, crocetin, [...] Read more.
Plants and plant extracts have long been acknowledged as valuable resources for the development of therapeutic formulations for various diseases. Among them, numerous plants and plant-derived products have demonstrated cytotoxic and/or anti-tumor properties. Saffron, particularly due to its major compounds, namely crocin, crocetin, and safranal, stands out as a promising candidate in this regard. Our research undertakes a literature review, reaffirming the antioxidant, anti-inflammatory, and, notably, anti-tumor properties of saffron and its major constituents. Additionally, this study examines relevant patent documents, highlighting innovative applications for saffron and its major compounds in cancer therapy. The review discusses the progress in purifying the compounds extracted from saffron and assesses their impact on cytotoxic trial outcomes, the potential synergies between certain saffron compounds and established cytotoxic molecules, and the limitations of the patents examined, particularly concerning reported clinical evidence. Researchers who focus on advances in oncology will know from our findings the evolution of the patent landscape regarding cytotoxic and/or anti-tumor therapeutic applications using saffron or its main compounds. Moreover, investigators can draw inspiration from patents leveraging traditional knowledge, particularly from Chinese medicine, to clarify specific active molecules and their mechanisms of action and can expedite the translation of these findings into clinically relevant interventions, potentially enhancing cancer therapy outcomes. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control
by Jorge F. Escobar-Talavera, María Esther Martínez-Navarro, Gonzalo L. Alonso and Rosario Sánchez-Gómez
Horticulturae 2024, 10(6), 593; https://doi.org/10.3390/horticulturae10060593 - 6 Jun 2024
Viewed by 2628
Abstract
Saffron, obtained by dehydrating the stigmas of the Crocus sativus flower, is a spice of great importance. In saffron, the flower emerges before leaf formation, thanks to the nutritional reserves of the corm. Early knowledge of metabolite levels such as crocins, picrocrocin, safranal, [...] Read more.
Saffron, obtained by dehydrating the stigmas of the Crocus sativus flower, is a spice of great importance. In saffron, the flower emerges before leaf formation, thanks to the nutritional reserves of the corm. Early knowledge of metabolite levels such as crocins, picrocrocin, safranal, anthocyanins, or kaempferols in flowers serves as a guide to evaluate the quality of the corm (coloring power, flavor, aroma, or antioxidant capacity, among others). In this study, near-infrared spectroscopy (NIR) was calibrated and validated to determine the main saffron metabolites, both in stigmas and in floral residue. To achieve this, saffron flowers from different locations of the Denomination of Origin (D.O.) “Azafrán de La Mancha” (Castilla-La Mancha, Spain) were analyzed using NIR spectroscopy. Prior to this, samples were analyzed by RP-HPLC-DAD, where the concentration of all cited metabolites was determined. The development of a predictive model through NIR calibration and validation was successful, achieving high R2 values, especially in the case of the sum of crocins and kaempferol-3-O-β-sophoroside. Using these predictive models, it is possible to determine the quality of saffron corm by analyzing the flower. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 1502 KiB  
Review
Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities
by Rakeeb Ahmad Mir, Anshika Tyagi, Sofi Javed Hussain, Mohammed A. Almalki, Mohammad Tarique Zeyad, Rupesh Deshmukh and Sajad Ali
Plants 2024, 13(11), 1467; https://doi.org/10.3390/plants13111467 - 25 May 2024
Cited by 6 | Viewed by 6592
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their [...] Read more.
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases. Full article
(This article belongs to the Special Issue Application and Chemical Characterization of Plant Natural Products)
Show Figures

Graphical abstract

21 pages, 8722 KiB  
Article
Preventive and Therapeutic Effects of Crocetin in Rats with Heart Failure
by Renqiang Ma, Sijia Li, Qingmei Mo, Xiaojuan Chen, Yan Liang, Tao Hu, Hui Hu, Bao He, Renshi Li, Junping Kou and Boyang Yu
Pharmaceuticals 2024, 17(4), 496; https://doi.org/10.3390/ph17040496 - 12 Apr 2024
Cited by 1 | Viewed by 1690
Abstract
Gardenia is both a food and medicine plant. It is widely used for cardiovascular protection, and its main bioactive ingredient is crocetin. This study aims to observe the therapeutic effects of crocetin on chronic heart failure in rats induced by various etiologies. It [...] Read more.
Gardenia is both a food and medicine plant. It is widely used for cardiovascular protection, and its main bioactive ingredient is crocetin. This study aims to observe the therapeutic effects of crocetin on chronic heart failure in rats induced by various etiologies. It further compares the efficacy differences between preventative and treatment administration, varying dosages, and treatment durations, to provide improved guidance for medication in heart failure rats and determine which categories of chronic heart failure rats might benefit most from crocetin. Chronic heart failure models induced by abdominal aorta constriction, renal hypertension, and coronary artery ligation were constructed. By examining cardiac function, blood biochemistry, and histopathology, the study assessed the preventive and therapeutic effects of crocetin on load-induced and myocardial ischemia-induced heart failure. The results showed that in all three models, both treatment and preventative administration of crocetin significantly improved chronic heart failure in rats, especially in preventative administration. The results indicate crocetin may be beneficial for improving symptoms and functional capacity in rats with heart failure. Furthermore, long-term administration was more effective than short-term administration across all three rat models, with therapeutic onset observed over 6 weeks. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 3790 KiB  
Article
Characterization of Crocetin Isomers in Serum Samples via UHPLC-DAD-MS/MS and NMR after Saffron Extract (Safr’Inside™) Consumption
by Adeline Vignault, Carole Vaysse, Karène Bertand, Stéphanie Krisa, Arnaud Courtois, Benjamin Moras, Tristan Richard, David Gaudout and Line Pourtau
Metabolites 2024, 14(4), 190; https://doi.org/10.3390/metabo14040190 - 28 Mar 2024
Viewed by 1861
Abstract
The therapeutic effects of saffron have been reported and described in relation to its major derivatives. Among them, in terms of saffron’s properties, crocin and crocetin absorption and bioavailability have been the most studied. Nevertheless, the metabolism of these major compounds of saffron [...] Read more.
The therapeutic effects of saffron have been reported and described in relation to its major derivatives. Among them, in terms of saffron’s properties, crocin and crocetin absorption and bioavailability have been the most studied. Nevertheless, the metabolism of these major compounds of saffron has not yet been entirely elucidated. Current data indicate that the phase 2 metabolism of crocetins go through conjugation reactions. Crocetins could also be present in isomeric forms such as other carotenoids. Nonetheless, there are still shadow areas in regard to the measurements of the different circulating forms of crocetins after oral saffron extract administration (Safr’Inside™). In using various approaches, we propose the identification of a new cis isomeric form of crocetin, the 6-cis-crocetin. This compound was found in human serum samples after an oral administration of saffron extract. The 6-cis-crocetin represents 19% of the total crocetin measured after 45 min of consumption. These data mark, for the first time, the presence of a cis isomeric form of crocetin in human serum samples. Moreover, this study led to the development of an analytical method that is able to identify and quantify both isomeric forms (trans and cis). Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 2784 KiB  
Article
Reduced Production of Pro-Inflammatory and Pro-Catabolic Factors by Human Serum Metabolites Derived from a Patented Saffron Extract Intake
by Line Pourtau, Fabien Wauquier, Line Boutin-Wittrant, David Gaudout, Benjamin Moras, Adeline Vignault, Carole Vaysse, Tristan Richard, Arnaud Courtois, Stéphanie Krisa, Véronique Roux, Nicolas Macian, Gisèle Pickering and Yohann Wittrant
Pharmaceutics 2024, 16(3), 336; https://doi.org/10.3390/pharmaceutics16030336 - 28 Feb 2024
Cited by 2 | Viewed by 2075
Abstract
Safe and anti-inflammatory plant-based natural products present an increasing focus in the treatment of chronic inflammatory diseases such as osteoarthritis or inflammatory bowel diseases. Among them, saffron, a spice derived from the stigma of Crocus sativus, could have anti-inflammatory properties and would be [...] Read more.
Safe and anti-inflammatory plant-based natural products present an increasing focus in the treatment of chronic inflammatory diseases such as osteoarthritis or inflammatory bowel diseases. Among them, saffron, a spice derived from the stigma of Crocus sativus, could have anti-inflammatory properties and would be therefore a promising therapeutic agent for the treatment of such conditions. However, the anti-inflammatory molecular mechanisms of saffron in humans are still understudied and unclear. In this study, combining human serum metabolites and cell cultures, we evaluated the effect of circulating metabolites from the consumption of a patented saffron extract (Safr’InsideTM) on the chondrocytes and colon epithelial cell responses to inflammatory stress. Parametric or non-parametric Analysis of Variance with post hoc tests was performed. We demonstrated that human serum containing metabolites from saffron intake attenuated IL-1β-stimulated production of PGE2 and MMP-13 in chondrocyte cells and limited the increase in ICAM-1, MCP-1, iNOS, and MMP-3 in human epithelial cells following combined IL-1β and TNF-α inflammatory stimulation. Altogether, these data provide new findings into the mechanisms underlying the beneficial effects of saffron on chondrocytes and enterocyte cells at the cellular level and in the context of chronic inflammatory disorders. Full article
Show Figures

Figure 1

18 pages, 3684 KiB  
Article
Preparation of trans-Crocetin with High Solubility, Stability, and Oral Bioavailability by Incorporation into Three Types of Cyclodextrins
by Nan Liu, Jie Xiao, Ling-He Zang, Peng Quan and Dong-Chun Liu
Pharmaceutics 2023, 15(12), 2790; https://doi.org/10.3390/pharmaceutics15122790 - 16 Dec 2023
Cited by 3 | Viewed by 2371
Abstract
Crocetin (CRT), an active compound isolated from saffron, exhibits several pharmacological activities, including anti-tumor and immune-regulatory activities, and is effective against myocardial ischemia and coronary heart disease; however, its low stability and solubility limit its clinical application. Therefore, we investigated CRT inclusion complexes [...] Read more.
Crocetin (CRT), an active compound isolated from saffron, exhibits several pharmacological activities, including anti-tumor and immune-regulatory activities, and is effective against myocardial ischemia and coronary heart disease; however, its low stability and solubility limit its clinical application. Therefore, we investigated CRT inclusion complexes (ICs) with three cyclodextrins—α-CD, HP-β-CD, and γ-CD—suitable for oral administration prepared using an ultrasonic method. Fourier transform infrared spectroscopy and powder X-ray diffraction indicated that the crystalline state of CRT in ICs disappeared, and intermolecular interactions were observed between CRT and CDs. 1H nuclear magnetic resonance and phase solubility studies confirmed CRT encapsulation in the CD cavity and the formation of ICs. In addition, we observed the morphology of ICs using scanning electron microscopy. All ICs showed a high drug encapsulation efficiency (approximately 90%) with 6500–10,000 times better solubilities than those of the pure drug. CRT showed rapid dissolution, whereas pure CRT was water-insoluble. The formation of ICs significantly improved the storage stability of CRT under heat, light, and moisture conditions. Further, the peak time of CRT in rats significantly decreased, and the relative bioavailability increased by approximately 3–4 times. In addition, the oral bioavailability of CRT IC was evaluated. Notably, the absorption rate and degree of the drug in rats were improved. This study illustrated the potential applications of CRT/CD ICs in the food, healthcare, and pharmaceutical industries, owing to their favorable dissolution, solubility, stability, and oral bioavailability. Full article
Show Figures

Figure 1

30 pages, 15797 KiB  
Article
Network Pharmacology Integrated Molecular Docking and Dynamics to Elucidate Saffron Compounds Targeting Human COX-2 Protein
by Aarif Ali, Amir Bashir Wani, Bashir Ahmad Malla, Jagadeesha Poyya, Nawab John Dar, Fasil Ali, Sheikh Bilal Ahmad, Muneeb U. Rehman and Ahmed Nadeem
Medicina 2023, 59(12), 2058; https://doi.org/10.3390/medicina59122058 - 22 Nov 2023
Cited by 8 | Viewed by 3509
Abstract
Background and Objectives: Cyclooxygenase-2 (COX-2) is mostly linked to inflammation and has been validated as a molecular target for treating inflammatory diseases. The present study aimed to identify novel compounds that could inhibit COX-2, which is associated with various diseases including inflammation, [...] Read more.
Background and Objectives: Cyclooxygenase-2 (COX-2) is mostly linked to inflammation and has been validated as a molecular target for treating inflammatory diseases. The present study aimed to identify novel compounds that could inhibit COX-2, which is associated with various diseases including inflammation, and in such a scenario, plant-derived biomolecules have been considered as attractive candidates. Materials and Methods: In the present study, physiochemical properties and toxicity of natural compounds/drugs were determined by SWISSADME and ProTox-II. In the present study, the molecular docking binding features of saffron derivatives (crocetin, picrocrocin, quercetin, safranal, crocin, rutin, and dimethylcrocetin) against human COX-2 protein were assessed. Moreover, protein-protein interactions, topographic properties, gene enrichment analysis and molecular dynamics simulation were also determined. Results: The present study revealed that picrocrocin showed the highest binding affinity of −8.1 kcal/mol when docked against the COX-2 protein. PROCHECK analysis revealed that 90.3% of the protein residues were found in the most favored region. Compartmentalized Protein–Protein Interaction identified 90 interactions with an average interaction score of 0.62, and the highest localization score of 0.99 found in secretory pathways. The Computed Atlas of Surface Topography of Proteins was used to identify binding pockets and important residues that could serve as drug targets. Use of WEBnmα revealed protein dynamics by using normal mode analysis. Ligand and Receptor Dynamics used the Molecular Generalized Born Surface Area approach to determine the binding free energy of the protein. Gene enrichment analysis revealed that ovarian steroidogenesis, was the most significant enrichment pathway. Molecular dynamic simulations were executed for the best docked (COX-2-picrocrocin) complex, and the results displayed conformational alterations with more pronounced surface residue fluctuations in COX-2 with loss of the intra-protein hydrogen bonding network. The direct interaction of picrocrocin with various crucial amino-acid residues like GLN203, TYR385, HIS386 and 388, ASN382, and TRP387 causes modifications in these residues, which ultimately attenuates the activity of COX-2 protein. Conclusions: The present study revealed that picrocrocin was the most effective biomolecule and could be repurposed via computational approaches. However, various in vivo and in vitro observations are still needed. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop