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Abstract: Crocetin (CRT), an active compound isolated from saffron, exhibits several pharmacological
activities, including anti-tumor and immune-regulatory activities, and is effective against myocardial
ischemia and coronary heart disease; however, its low stability and solubility limit its clinical appli-
cation. Therefore, we investigated CRT inclusion complexes (ICs) with three cyclodextrins—α-CD,
HP-β-CD, and γ-CD—suitable for oral administration prepared using an ultrasonic method. Fourier
transform infrared spectroscopy and powder X-ray diffraction indicated that the crystalline state of
CRT in ICs disappeared, and intermolecular interactions were observed between CRT and CDs. 1H
nuclear magnetic resonance and phase solubility studies confirmed CRT encapsulation in the CD
cavity and the formation of ICs. In addition, we observed the morphology of ICs using scanning
electron microscopy. All ICs showed a high drug encapsulation efficiency (approximately 90%) with
6500–10,000 times better solubilities than those of the pure drug. CRT showed rapid dissolution,
whereas pure CRT was water-insoluble. The formation of ICs significantly improved the storage
stability of CRT under heat, light, and moisture conditions. Further, the peak time of CRT in rats
significantly decreased, and the relative bioavailability increased by approximately 3–4 times. In
addition, the oral bioavailability of CRT IC was evaluated. Notably, the absorption rate and degree of
the drug in rats were improved. This study illustrated the potential applications of CRT/CD ICs in
the food, healthcare, and pharmaceutical industries, owing to their favorable dissolution, solubility,
stability, and oral bioavailability.

Keywords: crocetin; inclusion complex; solubility; dissolution; stability; oral bioavailability

1. Introduction

Saffron, which is widely used in foods, cosmetic ingredients, and phytopharmaceuti-
cals, is extracted from the dried stigmas of Crocus sativus L., which belongs to the family
Iridaceae [1–4]. Saffron is used in both folk and modern medicines [5–8]. Crocin is one of
the major bioactive constituents of saffron that is favored for oral administration owing to
its water-solubility, safety, and lack of toxicity or side effects [9–11]. Crocin is converted
into its active metabolite, crocetin (CRT), in the intestine after oral administration to ex-
ert pharmacological effects [12]. The direct administration of CRT can potentially yield
improved pharmacological effects.

CRT, extracted and separated from the stigmas of C. sastivus [13,14], exhibits several
pharmacological activities, such as anti-tumor, heart protection, memory enhancement,
anti-anxiety, and anti-depression activities, and is effective against Alzheimer’s disease,
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myocardial ischemia, and coronary heart diseases [15–17]. CRT has two isomers—cis and
trans—and its pharmacological efficacy is attributed primarily to the trans-isomer [18].
However, CRT is sensitive to heat, light, and pH and is insoluble in water and most organic
solvents [19]. It partially dissolves in pyridine, dimethyl sulfoxide, and alkaline aqueous
solutions above pH 9.0 [20]. Poor stability and solubility are major obstacles in its for-
mulation and limit the pharmaceutical applications of CRT. Most formulation methods
use solvents to encapsulate drugs; however, for CRT, suitable encapsulation formulations
and preparation methods are extremely limited. In addition, improving the water solubil-
ity and bioavailability of CRT is crucial for maximum pharmacological efficacy. Several
reports have evaluated various delivery approaches for CRT, including nanoliposomes,
microencapsulation, and lipid nanoparticles; however, few studies have focused on im-
proving the stability, water solubility, and bioavailability of CRT [21–23]. Li et al. used
β-cyclodextrin-based nanosponges to improve the solubility of CRT, obtaining an elevated
aqueous solubility of 7.27 ± 1.11 µg/mL [24]. Wong et al. developed an effective method to
prepare CRT–γ-CD inclusion complexes (ICs) with enhanced CRT bioavailability and phar-
macological effects against Alzheimer’s disease after intravenous injection; however, the
authors did not describe the oral bioavailability of CRT [25]. Research aimed at improving
the storage stability and oral bioavailability of CRT remains lacking.

Cyclodextrin (CD) is an effective drug carrier for CRT [24,25] with a wide range of
applications in the agrochemical, pharmaceutical, fragrance, and food industries owing to
its complexation ability and other versatile characteristics [26,27]. In addition to naturally
occurring CDs (α, β, and γ-CD), modified CDs, including HP-β-CD, RM-β-CD, and
SBE-β-CD, have attracted substantial attention in the pharmaceutical industry [28,29].
CDs are commonly used to enhance the water solubility, bioavailability, and stability of
guest molecules while maintaining their pharmacological properties after forming ICs [30].
Moreover, CDs can mask the pungent odor and bitterness of drugs, making them ideal for
the development of pharmaceutics and healthy food products.

Oral administration has several advantages over other routes, including the lack of
damage to the skin or mucous membranes, low cost, and convenient storage. In addition,
orally administered drugs are better tolerated by patients. Aiming to increase the oral
bioavailability of CRT, this study used a trans-isomer of CRT along with two natural CDs
(α and γ-CD) and a modified CD (HP-β-CD) to prepare three solid CRT/CD ICs using
sonication and freeze-drying. The ICs were characterized based on the molecular states of
each component. In addition, the water solubility, storage stability, and oral bioavailability
of the CRT inclusion complex were investigated.

2. Materials and Methods
2.1. Materials

The trans-isomer of CRT (≥98%) was obtained from saffron and purified in our lab-
oratory using an alkaline hydrolysis via response surface methodology, as previously
described [31]. α-CD, HP-β-CD, and γ-CD were purchased from Shanghai Macklin Bio-
chemical Co., Ltd. (Shanghai, China). All chemicals and solvents used in this study were of
analytical grade. The chemical structure of CRT is presented in Figure 1a.

2.2. Animals

Male Sprague–Dawley (SD) rats (weighing 180–220 g) were purchased from the Labo-
ratory Animal Center of Shenyang Pharmaceutical University (Shenyang, China).
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Figure 1. (a) Chemical structure of crocetin (CRT). (b) Schematic processes for preparing CRT/CD
inclusion complex (IC).

2.3. Preparation of CRT/CD Inclusion Complexes

An outline of sample preparation processes is illustrated in Figure 1b. CRT was
dissolved into 0.1 M NaOH to make the CRT solution. Each CD sample was suspended in
distilled water. Next, the CRT solution was added dropwise to each aqueous CD solution
with a molar ratio of CRT to CD of 1:3 for all CDs (α-, HP-β-, and γ-CD). All mixed solutions
were sonicated for 3 h and supplemented with 0.1 M HCl to adjust the pH to 4.5. The mixed
solutions were filtered through a 0.22 µM microporous filter membrane. The filtrate was
freeze-dried to obtain solid CRT/CD ICs. CRT concentrations in ICs were assayed using
high-performance liquid chromatography (HPLC) at a detection wavelength of 424 nm.
The encapsulation efficiency (EE) of CRT was calculated using the following equation:

Encapsulation efficiency (%) = (Encapsulated CRT in IC/Total CRT added) × 100.

The EEs for CRT/α-CD IC, CRT/HP-β-CD, and CRT/γ-CD IC were 89.20 ± 0.43%,
89.93 ± 0.57%, and 91.90 ± 0.39%, respectively (Table S1).

CRT was mixed with each CD (α-CD, HP-β-CD, and γ-CD) for 3 min using a vortex
mixer with molar ratios of 1:3 to obtain the CRT/CD physical mixtures (PMs).

2.4. Characterization of CRT/CD ICs
2.4.1. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopy was used to evaluate all formulation powders (CRT, α-CD, CRT/α-
CD PM, CRT/α-CD IC, HP-β-CD, CRT/HP-β-CD PM, CRT/HP-β-CD IC, γ-CD, CRT/γ-
CD PM, and CRT/γ-CD IC). Spectra were recorded in the range of 4000–500 cm−1 using
an FTIR-650 spectrometer (TIANJIN GANGDONG, Tianjin, China) with 32 scans at a
resolution of 4 cm−1. Samples were prepared using KBr disks containing 1 mg of the
complex in 200 mg of KBr. FTIR spectra were analyzed using OPUS 6.0.
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2.4.2. Powder X-ray Diffraction (PXRD)

PXRD was performed using a Bruker D8 Advance powder diffraction system (Bremen,
Germany). The X-ray source was CuKa radiation under 40 kV and 30 mA. The scanning
range (2θ) was 3–30, and the scan speed was 10/min.

2.4.3. Scanning Electron Microscopy (SEM)

Surface morphologies of all formulation powders were obtained using a Regulus8100
scanning electron microscope (Hitachi, Tokyo, Japan) with an accelerating voltage of 5 kV.
All samples were electrically conductive because of the addition of a thin coat of gold for
200 s before being examined.

2.4.4. Solution-State 1H Nuclear Magnetic Resonance (NMR) Spectroscopy
1H NMR experiments were performed using a Bruker 600 NMR spectrometer (Zurich,

Switzerland) with tetramethylsilane as the internal standard and DMSO-d6 and D2O as
solvents. The chemical shifts are reported in δ (ppm) and standard 5 mm NMR tubes were
used. Measurement conditions were as follows: temperature, 25 ◦C; relaxation delay, 1 s;
number of scans, 4.

2.5. Phase Solubility Study

The phase solubility of CRT was evaluated according to the method reported by
Higuchi and Connors [32]. An excess of the drug (5 mg) was added to 10 mL of phosphate
buffer (pH 6.8) with various concentrations of α-CD, HP-β-CD, and γ-CD (0–500 mM)
in 25 mL stoppered conical flasks, which were shaken at 37 ± 0.5 ◦C for 72 h to reach
equilibrium. The excess drug was removed via filtration using a 0.22 µM microporous
filter membrane, and the drug concentrations were analyzed using HPLC. The assay was
performed in triplicate for each CRT/CD system. The amount of CRT dissolved was plotted
against the molar concentration of CDs, and assuming 1:1 complex formation, the apparent
stability constant Kc was calculated from phase solubility diagrams using the following
equation:

Kc = slope/S0(1 − slope) (1)

where S0 is the solubility of CRT in the absence of CDs.

2.6. HPLC Analysis (Excluding Pharmacokinetics Study)

Each sample was analyzed using a Waters HPLC system consisting of a 2695–2487 UV
detector (Milford, MA, USA). The analysis was carried out on a COSMOSIL-C18
(150 mm × 4.6 mm, 5 µm) column. The mobile phase was a 15:85 (v/v%) mixture of
3.33% glacial acetic acid aqueous solution and methanol. The flow rate was 1.0 mL/min,
the detection wavelength was 424 nm, and the injection volume was 10 µL.

2.7. Dissolution Test

The dissolution of CRT, PMs, and ICs was evaluated using the USP (version 26) paddle
method with a dissolution tester (Tianjin University Electronics Co., Ltd., Tianjin, China).
The dissolution medium was phosphate buffer (pH 6.8, 900 mL); the paddles were rotated
at 100 rpm at 37.0 ± 0.5 ◦C. A sample volume of 5 mL was withdrawn from the dissolution
medium at predetermined sampling points, filtered using a 0.22 µM microporous filter
membrane, and analyzed via HPLC. All dissolution tests were performed in triplicate.

2.8. Solubility Determination

Drug solubility at 25 ± 0.5 ◦C was determined in water and phosphate buffer (pH 6.8).
Excesses of CRT and each IC were added to each fluid and placed in a thermostatic water
bath in the dark at 25 ± 0.5 ◦C with a constant shaking rate of 100 rpm for 72 h. After the
equilibrium state was reached, the solutions were centrifuged for 15 min, and 2 mL of the
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supernatant was diluted with an appropriate amount of methanol. Drug concentrations
were determined using HPLC.

2.9. Effect of Storage on Stability

All samples were sealed in transparent glass bottles and divided into three groups,
each containing CRT/α-CD IC (500 mg), CRT/HP-β-CD IC (500 mg), CRT/γ-CD IC
(500 mg), and intact CRT (500 mg). The first group was stored at 60 ± 0.5 ◦C for 10 days.
The second group was stored at 25 ± 0.5 ◦C with a light intensity of 4500 ± 500 lx for
10 days. The third group was stored at 25 ± 0.5 ◦C with 75% relative humidity for 10 days.
The CRT contents were sampled and measured on days 0, 5, and 10. Each test was repeated
at least three times.

2.10. Pharmacokinetics Study

Twenty-four SD rats were randomly divided into four groups and administered
CRT/α-CD IC, CRT/HP-β-CD IC, CRT/γ-CD IC, or intact CRT. All rats were fasted for
12 h and only provided water before experiments. All samples at a dose of 20 mg/kg body
weight were administered intragastrically. Blood samples (0.4 mL) were collected from
the orbital venous plexus at predetermined time points (0.083, 0.167, 0.25, 0.5, 1, 2, 4, 6, 8,
12, and 24 h) into tubes containing heparin sodium. The blood samples were centrifuged
immediately at 4000 rpm for 15 min; the supernatant layer of plasma was separated and
stored at 4 ◦C for 24 h. CRT in plasma was extracted with 600 µL methanol with an internal
standard of 10 µL ATRA from 200 µL plasma samples and centrifuged at 10,000 rpm for
15 min at 4 ◦C. The supernatant layer was transferred to a new tube, concentrated to remove
solvents under the LSE-1K vacuum centrifuge concentrator (JTLIANGYOU, Changzhou,
China), and redissolved in 200 µL of methanol for analysis. The concentration of CRT was
determined using an HPLC (Waters HPLC system consisting of a 2695–2487 UV detector,
Milford, MA, USA) using a COSMOSIL-C18 (150 mm × 4.6 mm, 5 µm) column with a
detection wavelength of 424 nm. The injection volume was 20 µL, the column temperature
was 35 ◦C, the mobile phase was methanol with water and glacial acetic acid in a ratio
(v:v:v) of 92:7.7:0.3, and the flow rate was 1 mL/min. The pharmacokinetic parameters were
calculated using DAS 2.0. Relative bioavailability percentage was calculated as follows [33]:

Relative bioavailability (%) = (AUC0-∞ IC/AUC0-∞ CRT) × 100 (2)

2.11. Statistical Analysis

All results are presented as means ± standard deviation. Student’s t-test or one-way
analysis of variance was used to evaluate significance.

3. Results and Discussion
3.1. Characterization of CRT/CD IC
3.1.1. FTIR Spectroscopy

Various methods were applied to evaluate the formation of ICs. The FTIR spectra of
the CRT/α-CD, CRT/HP-β-CD, and CRT/γ-CD systems are represented in Figure 2A–C,
respectively. The a, b, c, and d in each spectrum represent pure CRT, natural CD, CRT/CD
PM, and CRT/CD IC, respectively. Pure CRT is characterized by the C=O and C=C
stretching vibrations at 1660.98 and 1575.44 cm−1, respectively [25]. Additionally, several
characteristic peaks were observed for the three types of CDs (α-CD, HP-β-CD, and γ-
CD), including broad absorption bands due to O-H bonds at 3500–3300 cm−1, the C-
H stretching vibration at approximately 2930 cm−1 on the aromatic ring, and the H-O-
H stretching vibration at approximately 1640 cm−1. In the CRT/α-CD system, FTIR
spectra of CRT, α-CD, CRT/α-CD PM, and CRT/α-CD IC were compared (Figure 2A).
The spectrum of PM was a simple superimposition of individual patterns of CRT and
α-CD, indicating no interaction between the drug and α-CD [34]. Compared with those for
PM, the wavenumbers of C=O and C=C stretching of CRT in IC were shifted to 1631 and
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1543 cm−1, respectively. Such behaviors could be attributed to the interaction between CRT
and α-CD in IC. Moreover, the peak patterns of IC were broader than those of pure CRT
and PM due to the interaction between the drug and CD (Figure S1A). Similar changes were
observed in the CRT/HP-β-CD and CRT/γ-CD systems, indicating interactions between
CRT and both HP-β-CD and γ-CD in the ICs (Figure 2B,C). The characteristic peaks of CRT
significantly shifted to lower frequencies in the three ICs, and the peak patterns became
broad, possibly due to the interactions between CRT and CDs, such as hydrogen bonding
and van der Waals forces [35–37]. These findings confirmed the successful formation of
CRT/CD ICs.
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3.1.2. PXRD Patterns

To determine the solid state of ICs, a PXRD analysis was also performed. PXRD patterns
of CRT/α-CD, CRT/HP-β-CD, and CRT/γ-CD systems are represented in Figure 3A–C,
respectively. The a, b, c, and d in each pattern represent pure CRT, natural CD, CRT/CD PM,
and CRT/CD IC, respectively. Characteristic peaks of crystalline CRT were observed at
14.17, 14.84, 17.83, and 26.31◦ (2θ), as shown in Figure 3. α-CD and γ-CD exhibited a series
of strong and sharp diffraction peaks, indicating that these two natural CDs existed in
crystalline form (Figure 3A,C). In contrast, HP-β-CD was amorphous, displaying a diffuse
halo pattern, as shown in Figure 3B [38]. In the diffraction patterns of three CRT/CD PMs,
peaks derived from the CRT crystal and three natural CDs were observed, which could
be a simple superposition of the drug and each CD. Meanwhile, in the case of CRT/CD
ICs, CRT/α-CD and CRT/γ-CD ICs mainly exhibited halo patterns, CRT/HP-β-CD ICs
exhibited the same amorphous state as that of natural HP-β-CD, and no ICs showed CRT
crystalline peaks. These results indicated that the crystalline structure of CRT transformed
into an amorphous state in all three ICs, possibly due to the interaction between CRT and
CDs [39,40]. This amorphous transformation of CRT in all three ICs was also confirmed
using differential scanning calorimetry (Figure S2).

3.1.3. SEM

The surface textures of the CRT, CDs, PMs, and ICs are shown in Figure 4. SEM
images in Figure 4a–d represent the crystalline states of pure CRT, natural α-CD, natural
HP-β-CD, and natural γ-CD, respectively. Figure 4e–g represent the PMs of CRT/α-CD,
CRT/HP-β-CD, and CRT/γ-CD, respectively. Figure 4h–j represent the ICs of CRT/α-
CD, CRT/HP-β-CD, and CRT/γ-CD, respectively. Crystalline CRT existed in irregularly
prismatic structures, natural α-CD appeared as regular cubic structures, natural HP-β-CD
exhibited spherical particles with cavity structures, and natural γ-CD showed a block-like
shape with a smooth surface (Figure 4a–d). The micrograph of all three CRT/CD PMs
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showed a mix of the original morphology of CRT and natural CDs, with no new structures
(Figure 4e–g). Conversely, the CRT/CD ICs differed from CRT, α-CD, HP-β-CD, and γ-CD
in terms of particle appearance, shape, and size, and the original morphology of CRT and
the raw CD materials disappeared (Figure 4h–j). Such modifications in particle shape and
aspect are consistent with the interactions between CRT and CD in ICs [41,42].
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3.1.4. 1H NMR Spectra

ICs were also characterized using solution-state 1H NMR spectroscopy. Guest drug
encapsulation into the cavity of CDs can be observed by the chemical shifts of protons in
the 1H-NMR spectrum [43]. Figures 1a and 5 show the structure of the CRT molecule and
1H NMR spectra of CRT, CDs, PMs, and ICs. The chemical shifts of CRT in CRT/CD PMs
and ICs were investigated. CRT was detected in DMSO-d6 and D2O solvents using 1H
NMR spectroscopy (Figure S3). The natural CDs, CRT/CD PMs, and ICs were detected
only in the D2O solution using 1H NMR spectroscopy (Figure 5A(b–d), Figure 5B(b–d),
and Figure 5C(b–d), respectively). As CRT dissolved in DMSO-d6, characteristic peaks
were detected in the 1H-NMR spectrum at 1.9–2.1 ppm based on the characteristic peaks
of sharp aliphatic H2,2′ ,6,6′ [44]. However, due to the poor solubility of CRT in the D2O
solution, 1H peaks were not observed. Only the D2O peak at 4.79 ppm was observed
(Figure S3) [45]. No characteristic peaks of CRT were detected in 1H spectra of the three
CRT/CD PMs, indicating that the solubility of CRT in D2O was extremely low for PMs. The
simple PM of CRT and CD showed poor CRT solubilization, with no interaction between
CRT and CD in PM. In contrast, for the three CRT/CD ICs, peaks were detected in the
range of 1.7–2.3 ppm, which were not detected for natural CD or PMs. According to the
1H spectrum of CRT in DMSO-d6 (Figure 5A(a)) and previous findings [44], these peaks
(1.7–2.3 ppm) may correspond to the sharp aliphatic H2,2′ ,6,6′ of CRT, indicating that the
solubility of CRT in D2O was improved due to the formation of IC. In addition, variation
in CDs in CRT/CD PMs and ICs was also evaluated, and 1H chemical shifts are shown in
Table 1. ∆δ (∆δCD−PM = δCD−δPM and ∆δCD−IC = δCD−δIC) was defined as the change
in chemical shift between the raw CD and CRT/CD PM or CRT/CD IC. H1–H6 protons
located on the surface of the three CDs showed slight or no chemical shifts in their PMs,
indicating no interactions between CRT and CDs and that CRT did not enter the CD cavities
in PMs [46]. In contrast, for the three CRT/CD ICs, slight changes were observed in the
chemical shifts of H1, H2, and H4 protons located on the outer surface of CDs, along with
significant changes in the chemical shifts of H3 and H5 protons located on the inner surface
of CDs. The up-field shifts of H3 and H5 protons might be explained by van der Waals
interactions between CRT and the inner surface of CDs [47]. In the stereoscopic structure of
CD, the interior H3 proton is located on the wide side of the CD cavity and the H5 proton
is located on the narrow side of the cavity. The chemical shifts of H3 in the α-CD and γ-CD
cavities were larger than those of H5. These results suggested that CRT entered the cavities
of both α-CD and γ-CD from the wide side. However, the chemical shifts of H3 in the
HP-β-CD cavity were smaller than those of H5, possibly attributed to the entry of CRT
from the narrow side [48,49]. Among these three CDs, HP-β-CD showed relatively larger
changes for H3 and H5 protons than the other two natural CDs (α- and γ-CD), suggesting a
stronger interaction with CRT. The significant changes in the chemical shift of CD protons
as well as the detection of aliphatic protons of CRT only in CRT/CD ICs demonstrated
that CRT was successfully encapsulated into the cavity of CDs and formed ICs [50–52].
Combined with the above FTIR, PXRD, and NMR results, these results confirmed that CRT
formed ICs with the three types of CDs.

3.2. Phase Solubility Study

The phase solubility curves of CRT in α-CD, HP-β-CD, and γ-CD at 37 ± 0.5 ◦C in
phosphate buffer (pH 6.8) are shown in Figure 6a–c. The solubility of CRT increased linearly
as the CD concentration increased for α-CD, whereas the solubility of CRT in HP-β-CD and
γ-CD increased nonlinearly and deviated from the straight line in the negative direction as
the CD concentrations increased. This indicated that soluble ICs formed for all three types
of CDs. According to the Higuchi and Connors classification [32], these diagrams could
be classified as AL-type (linear increase in drug solubility as a function of cyclodextrin
concentration) for α-CD and AN-type (negatively deviating isotherm) for HP-β-CD and
γ-CD [53]. It was speculated that the inclusion ratios of CRT to CD may be 1:1 for α-CD
and 1:2 for both HP-β-CD and γ-CD. Combined with the results of 1H NMR, changes in the
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chemical shifts of H3 and H5 for CRT/α-CD IC were relatively small; thus, CRT was only
partially incorporated in α-CD, and the drug did not fully penetrate into its cavity. As listed
in Table S2, the ∆G values of the three ICs were all negative, indicating that the inclusion
reactions occur spontaneously. Based on the initial linear part of the profile, the stability
constants (Kc) were 3027, 7912, and 427 M−1 for α-CD, HP-β-CD, and γ-CD, respectively
(Table S2). The stability constant of the IC formed between CRT and HP-β-CD was higher
than that of the IC formed with the other two CDs, indicating that the IC formed between
CRT and HP-β-CD was more stable, which could be due to the greater water solubility and
higher wetting and complexing ability of HP-β-CD. The Kc of the CRT/γ-CD IC was lower
than those of the other two ICs, possibly because γ-CD exhibits a larger pore size and CRT
was more likely to dissociate from the CD cavity, resulting in the lowest stability among
the ICs [49]. As determined using the continuous variation method [54] (Figure S4), the
inclusion ratios were 1:1 for CRT/α-CD IC and 1:2 for both CRT/HP-β-CD and CRT/γ-CD
ICs, consistent with the phase solubility results.

Table 1. 1H chemical shifts of CD in CRT/α-CD (A), CRT/HP-β-CD (B), and CRT/γ-CD (C) systems.

H Chemical Shift (ppm)

δ (α-CD) δ (PM) ∆ δ(CD−PM) δ (IC) ∆ δ(CD−IC)
H1 5.067 5.065 0.002 5.070 −0.003
H2 3.659 3.659 0 3.657 0.002

A H3 3.998 3.997 0.001 3.993 0.005
H4 3.601 3.599 0.002 3.598 0.003
H5 3.886 3.886 0 3.883 0.003
H6 3.919 3.918 0.001 3.916 0.003
H Chemical shift (ppm)

δ (HP-β-CD) δ (PM) ∆ δ(CD−PM) δ (IC) ∆ δ(CD−IC)
H1 5.091 5.090 0.001 5.087 0.004
H2 3.653 3.652 0.001 3.651 0.002

B H3 4.032 4.033 -0.001 4.022 0.010
H4 3.518 3.516 0.002 3.521 −0.003
H5 3.868 3.869 -0.001 3.815 0.053
H6 3.888 3.885 0.003 3.878 0.010
H Chemical shift (ppm)

δ (γ-CD) δ (PM) ∆ δ(CD−PM) δ (IC) ∆ δ(CD−IC)
H1 5.124 5.122 0.002 5.115 0.009
H2 3.684 3.681 0.003 3.670 0.014

C H3 3.951 3.950 0.001 3.918 0.033
H4 3.607 3.605 0.002 3.618 −0.011
H5 3.871 3.869 0.002 3.849 0.022
H6 3.887 3.885 0.002 3.875 0.012

3.3. Dissolution and Solubility of CRT/CD ICs

CRT is insoluble in water and most organic solvents; therefore, to determine whether
the IC formation improves its dissolution behavior, dissolution properties in phosphate
buffer (pH 6.8) were investigated. The CRT dissolution profiles of crystalline CRT, PMs,
and ICs of CRT/α-CD, CRT/HP-β-CD, and CRT/γ-CD systems are shown in Figure 7A–C,
respectively. The cumulative dissolution rate of crystalline CRT was only 13% at 180 min.
Additionally, the dissolution rate of the PMs did not differ substantially from that of
crystalline CRT, and the cumulative dissolution rates were 16, 18, and 19% at 180 min for
CRT/α-CD, CRT/HP-β-CD, and CRT/γ-CD, respectively. The dissolution rates for both
crystalline CRT and PMs were extremely low. Conversely, the cumulative dissolution of
CRT from CRT/CD ICs at a sampling time of 5 min was approximately 97%, demonstrating
much higher dissolution rates than those of PMs and crystalline CRT. The better solubility
of CRT observed in 1H NMR and phase solubility studies might explain the fast dissolution
of CRT/CD ICs (Figures 5 and 6). In addition, the improvement in dissolution could be
largely attributed to the amorphization of CRT after complexation, as indicated by the
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PXRD results (Figure 3). Solubility tests were performed to compare CRT/CD ICs and pure
CRT. The solubility values of the prepared ICs with different CDs are listed in Table 2. The
solubilities of pure CRT in water (1.23 ± 0.07 mg/L) and buffer salts (1.84 ± 0.11 mg/L)
were extremely low. The solubility of CRT after forming ICs increased by approximately
6500–10,000 times (Table 2). Notably, the best solubility was observed for CRT/HP-β-CD
IC, possibly because HP-β-CD, a modified CD, has the best water solubility among the
three CDs. Overall, all three CRT/CD ICs conferred an enhanced CRT dissolution rate and
solubility, revealing their potential use in the development of effective strategies to enhance
the dissolution rate of poorly water-soluble CRT.
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Figure 5. 1H NMR spectra of (a) CRT (DMSO-d6), (b) CD (D2O), (c) PM (D2O), and (d) IC (D2O) in
CRT/α-CD (A), CRT/HP-β-CD (B), and CRT/γ-CD (C) systems from 1.7 to 5.1 ppm.

3.4. Effect of Storage on the Stability of CRT

Stability was evaluated under various heat, light, and moisture conditions to inves-
tigate the effect of storage on the CRT content. The degradation curves of all samples
(pure CRT, CRT/α-CD IC, CRT/HP-β-CD IC, and CRT/γ-CD IC) were determined by
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plotting the relative CRT content versus storage time (days) under different conditions. The
storage conditions under heat, light, and moisture treatments are shown in Figure 8A–C.
The relative contents of CRT and three types of ICs decreased to varying extents under all
storage conditions. During thermal treatment (60 ± 0.5 ◦C) of CRT, the relative content of
pure CRT significantly decreased to 80%, whereas ICs exhibited at least 90% retention even
after 10 days. The preparation of ICs can significantly mitigate the decrease in CRT and
improve thermal instability. During storage at a light intensity of 4500 ± 500 lx at 25 ◦C, the
retention of CRT in ICs was at least 85%, slightly higher than that of pure CRT, indicating
that ICs had greater stability than that of pure CRT under light conditions. During storage
at an RH of 75% at 25 ◦C, the retention of both pure CRT and ICs decreased, although the
decrease was slightly lower for ICs than pure CRT. CD may be a hydrophilic excipient
that exhibits hygroscopicity under highly humid conditions. The encapsulation of water
molecules affected the interaction between CD and CRT, resulting in a decrease in CRT
contents in ICs [55]. During storage, CRT was degraded under heat, light, and moisture,
whereas the formation of ICs could protect CRT from damage caused by these factors.
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Figure 7. Dissolution profiles of (a) CRT, (b) PM, and (c) IC in CRT/α-CD (A), CRT/HP-β-CD system (B),
and CRT/γ-CD (C) systems in phosphate-buffered solution at 37 ◦C and pH 6.8 (n = 3, mean± S.D.).

Table 2. Solubility of CRT for each CRT/CD ICs at 25 ◦C.

Sample H2O (mg/L) pH6.86 Buffer Salt (mg/L)

CRT/α-CD IC 8402.40 ± 15.72 8032.66 ± 16.23
CRT/HP-β-CD IC 12,429.04 ± 20.33 9125.41 ± 17.92

CRT/γ-CD IC 8607.02 ± 19.08 8270.63 ± 18.52
CRT 1.23 ± 0.07 1.84 ± 0.11
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Figure 8. Stability experiments of (•) CRT, (�) CRT/α-CD IC, (N) CRT/HP-β-CD IC, and (H) CRT/γ-
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humidity conditions under 25 ± 0.5 ◦C (C).

3.5. Pharmacokinetics Study of CRT/CD ICs

The plasma concentration–time curves following the intragastric administration of
both free CRT and CRT/CD ICs are shown in Figure 9, and the main pharmacokinetic
parameters are listed in Table 3. The pharmacokinetic curves of the three CRT/CD ICs
were significantly better than those of free CRT, indicating that IC formation increased
blood CRT concentration in rats. The peak concentration (Cmax) was 0.545 ± 0.023 µg/mL
for free CRT, compared with 2.376 ± 0.118, 2.487 ± 0.126, and 2.355 ± 0.095 µg/mL for
CRT/α-CD IC, CRT/HP-β-CD IC, and CRT/γ-CD IC, respectively. In addition, following
oral administration (20 mg/kg), the time to reach the maximum concentration (Tmax) was
2 h for free CRT and 1 h for all three CRT/CD ICs.
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Figure 9. Concentration–time curve of CRT pharmacokinetic profile using SD rats from (�) CRT, (N)
CRT/α-CD IC, (H) CRT/HP-β-CD IC, and ( ) CRT/γ-CD IC (n = 6, mean ± S.D.).

Table 3. Pharmacokinetic parameters of CRT and each CRT/CD ICs in SD rats (n = 6). Cmax: peak
plasma concentration; Tmax: time to reach highest plasma concentration; T1/2: elimination half-life
time; AUC: area under the curve; MRT: mean residence time.

Sample

CRT CRT/α-CD IC CRT/HP-β-CD IC CRT/γ-CD IC

Cmax (µg/mL) 0.545 ± 0.023 2.376 ± 0.118 * 2.487 ± 0.126 * 2.355 ± 0.095 *
Tmax (h) 2 1 1 1
T1/2 (h) 2.059 ± 0.237 2.241 ± 0.131 1.995 ± 0.209 1.928 ± 0.190

AUC0–12 (µg·h/mL) 2.411 ± 0.163 8.886 ± 0.115 * 9.522 ± 0.411 * 9.107 ± 0.134 *
AUC0–∞ (µg·h/mL) 2.665 ± 0.196 9.723 ± 0.222 * 10.237 ± 0.343 * 9.869 ± 0.245 *

MRT0–12 (h) 3.033 ± 0.082 2.787 ± 0.032 2.824 ± 0.034 2.796 ± 0.042
Relative bioavailability (%) 368.561% 394.940% 377.727%

*: p < 0.01, significant difference relative to CRT.

Therefore, compared with free CRT, the three ICs significantly decreased the peak
time of CRT in rats, and the relative bioavailability of the three ICs using α-CD, HP-
β-CD, and γ-CD was increased by 4.35, 4.49, and 4.37 times, respectively. Therefore,
CRT/CD IC significantly increased the peak concentration, absorption rate, and degree
of CRT in vivo, consistent with the in vivo results for various IC formulations [33,56,57].
As calculated using Equation (2), the mean AUC0-∞ values of free CRT, CRT/α-CD IC,
CRT/HP-β-CD IC, and CRT/γ-CD IC were 2.665± 0.196, 9.723± 0.222, 10.237± 0.343, and
9.869 ± 0.245 µg·h/mL (p < 0.01), respectively. This indicated that the CRT/CD ICs could
significantly enhance the degree and rate of intestinal absorption of CRT. The bioavail-
ability of free CRT was relatively low, possibly due to its poor solubility in water. The
dissolution and absorption in the intestine were both low, lowering the drug contents
in vivo. In contrast, the IC formation could improve the solubility of CRT, increase the
amount of CRT dissolved in the intestine, and increase the amount of CRT entering the
blood from the intestine. These results demonstrated that the oral relative bioavailability
of CRT was increased by 3.68, 3.94, and 3.77 times when administrated as IC using α-CD,
HP-β-CD, and γ-CD, respectively. CRT/HP-β-CD IC showed a slightly higher relative
bioavailability than those of CRT/α-CD and CRT/γ-CD ICs, roughly analogous to the re-
sults of the solubility test. In a previous study, the highest plasma concentration of CRT was
1249.3 ± 788.1 ng/mL at approximately 2 h after oral administration in mice, even for a
dose of 117.2 mg/mL [58]. Moreover, CRT or saffron tea administered orally to humans
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showed a Tmax concentration at approximately 4.6 h, and the concentrations of CRT in the
blood ranged from 100.9 to 279.7 ng/mL based on the dose [59,60]. CRT/CD ICs could
significantly reduce CRT dose to achieve a higher plasma concentration and shorten Tmax
than those obtained in previous studies after oral administration.

4. Conclusions

In this study, we successfully prepared CRT/CD ICs using two natural CDs (α-, and
γ-CD) and a modified CD (HP-β-CD) with lower toxicity than β-CD using the sonication
method. Notably, we observed enhanced solubility, stability, and bioavailability of CRT.
The formation of all three ICs was confirmed using FTIR, PXRD, SEM, and 1H NMR.
Solubility and dissolution tests indicated that the three CRT/CD ICs significantly improved
the water solubility of CRT. Further, IC formation can improve the stability of CRT during
storage under heat, light, and moisture conditions. The inclusion ratios determined using
phase solubility diagrams and the continuous variation method were 1:1 for CRT/α-CD IC
and 1:2 for both CRT/HP-β-CD and CRT/γ-CD ICs. These three ICs of the CRT showed
significantly lower peak times than those of pure CRT in rats, and the relative bioavailability
of the three ICs using α-CD, HP-β-CD, and γ-CD was increased by 3.68, 3.94, and 3.77 times,
respectively. These findings indicated that ICs can improve the relative bioavailability of
CRT substantially in rats. NMR analysis, phase solubility study, and solubility tests revealed
a superior inclusion efficiency of HP-β-CD with a higher Kc value, solubility, and relative
bioavailability than the other two. However, α-CD and γ-CD showed certain advantages
in terms of security and environmental friendliness. These three CDs were effective in
carrying CRT, although further evaluation is warranted in terms of pharmacodynamics
and toxicology. The preparation of CRT/CD ICs improved the oral relative bioavailability
of CRT, offering a new approach for the development of cost-effective solid formulations or
healthy foods based on CRT.
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7. Koşar, M.; Başer, K.H.C. Beneficial effects of saffron (Crocus sativus L.) in ocular diseases. In Saffron; Academic Press: Cambridge,
MA, USA, 2020; pp. 155–161.

8. Imenshahidi, M.; Hosseinzadeh, H.; Javadpour, Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its
constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother. Res. 2010, 24, 990–994. [CrossRef] [PubMed]

9. Finley, J.W.; Gao, S. A perspective on Crocus sativus L.(Saffron) constituent crocin: A potent water-soluble antioxidant and
potential therapy for Alzheimer’s disease. J. Agric. Food. Chem. 2017, 65, 1005–1020. [CrossRef] [PubMed]

10. Song, Y.-N.; Wang, Y.; Zheng, Y.-H.; Liu, T.-L.; Zhang, C. Crocins: A comprehensive review of structural characteristics,
pharmacokinetics and therapeutic effects. Fitoterapia 2021, 153, 104969. [CrossRef]

11. Mishra, Y.; Mishra, V. Multifaceted roles of crocin, phytoconstituent of Crocus sativus Linn. In cancer treatment: An expanding
horizon. S. Afr. J. Bot. 2023, 160, 456–468. [CrossRef]

12. Zhang, C.-F. Research progress on pharmacokinetics and dosage forms of crocin and crocetin. Chin. Tradit. Herb. Drugs. 2019, 50,
234–242.

13. Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Pharmacokinetic properties of saffron and its active components. Eur. J. Drug. Metar.
Pharmacokinet. 2018, 43, 383–390. [CrossRef] [PubMed]

14. Zeinali, M.; Zirak, M.R.; Rezaee, S.A.; Karimi, G.; Hosseinzadeh, H. Immunoregulatory and anti-inflammatory properties of
Crocus sativus (Saffron) and its main active constituents: A review. Iran. J. Basic Med. Sci. 2019, 22, 334. [PubMed]

15. Guo, Z.-L.; Li, M.-X.; Li, X.-L.; Wang, P.; Wang, W.-G.; Du, W.-Z.; Yang, Z.-Q.; Chen, S.-F.; Wu, D.; Tian, X.-Y. Crocetin: A systematic
review. Front. Pharmacol. 2022, 12, 745683. [CrossRef] [PubMed]

16. Liu, X.; Wang, Z.; Song, X.; Chang, X.; Zu, E.; Ma, X.; Sukegawa, M.; Liu, D.; Wang, D.O. Crocetin Alleviates Ovariectomy-Induced
Metabolic Dysfunction through Regulating Estrogen Receptor β. J. Agric. Food. Chem. 2021, 69, 14824–14839. [CrossRef] [PubMed]

17. Batool, Z.; Chen, J.-H.; Gao, Y.; Lu, L.W.; Xu, H.; Liu, B.; Wang, M.; Chen, F. Natural Carotenoids as Neuroprotective Agents
for Alzheimer’s Disease: An Evidence-Based Comprehensive Review. J. Agric. Food. Chem. 2022, 70, 15631–15646. [CrossRef]
[PubMed]

18. José Bagur, M.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron:
An old medicinal plant and a potential novel functional food. Molecules 2017, 23, 30. [CrossRef] [PubMed]

19. Soltani, F.; Ramezani, M.; Amel Farzad, S.; Mokhtarzadeh, A.; Hashemi, M. Comparison study of the effect of alkyl-modified and
unmodified PAMAM and PPI dendrimers on solubility and antitumor activity of crocetin. Artif. Cells Nanomed. Biotechnol. 2017,
45, 1356–1362. [CrossRef]

20. Lautenschläger, M.; Lechtenberg, M.; Sendker, J.; Hensel, A. Effective isolation protocol for secondary metabolites from saffron:
Semi-preparative scale preparation of crocin-1 and trans-crocetin. Fitoterapia 2014, 92, 290–295. [CrossRef]

21. Mirhadi, E.; Nassirli, H.; Malaekeh-Nikouei, B. An updated review on therapeutic effects of nanoparticle-based formulations of
saffron components (safranal, crocin, and crocetin). J. Pharm. Investig. 2020, 50, 47–58. [CrossRef]

22. Pradhan, J.; Mohanty, C.; Sahoo, S.K. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated
toxicity in human embryonic kidney cells. Life Sci. 2019, 216, 39–48. [CrossRef]

23. Neyshaburinezhad, N.; Kalalinia, F.; Hashemi, M. Encapsulation of crocetin into poly (lactic-co-glycolic acid) nanoparticles
overcomes drug resistance in human ovarian cisplatin-resistant carcinoma cell line (A2780-RCIS). Mol. Biol. Rep. 2019, 46,
6525–6532. [CrossRef] [PubMed]

24. Li, H.; Cui, M.-Y.; Zha, S.-H.; Tian, R.-R.; Zhao, Q.-S. β-cyclodextrin-based nanosponges for crocetin delivery: Physicochemical
characterization, aqueous solubility, and bioactivity. J. Mol. Liq. 2023, 384, 122235. [CrossRef]

25. Wong, K.H.; Xie, Y.; Huang, X.; Kadota, K.; Yao, X.-S.; Yu, Y.; Chen, X.; Lu, A.; Yang, Z. Delivering crocetin across the blood-brain
barrier by using γ-cyclodextrin to treat Alzheimer’s disease. Sci. Rep. 2020, 10, 3654. [CrossRef] [PubMed]

26. Rasheed, A. Cyclodextrins as drug carrier molecule: A review. Sci. Pharm. 2008, 76, 567–598. [CrossRef]
27. Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M.

Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides 2021, 3, 1–31. [CrossRef]
28. Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [CrossRef]

https://doi.org/10.1016/j.scienta.2020.109560
https://doi.org/10.1021/acs.jafc.2c07915
https://www.ncbi.nlm.nih.gov/pubmed/37403229
https://doi.org/10.1007/s13580-021-00349-8
https://doi.org/10.1002/jsfa.8134
https://www.ncbi.nlm.nih.gov/pubmed/27861946
https://doi.org/10.1016/j.phrs.2021.105963
https://www.ncbi.nlm.nih.gov/pubmed/34757208
https://doi.org/10.1002/ptr.3044
https://www.ncbi.nlm.nih.gov/pubmed/20013822
https://doi.org/10.1021/acs.jafc.6b04398
https://www.ncbi.nlm.nih.gov/pubmed/28098452
https://doi.org/10.1016/j.fitote.2021.104969
https://doi.org/10.1016/j.sajb.2023.07.038
https://doi.org/10.1007/s13318-017-0449-3
https://www.ncbi.nlm.nih.gov/pubmed/29134501
https://www.ncbi.nlm.nih.gov/pubmed/31223464
https://doi.org/10.3389/fphar.2021.745683
https://www.ncbi.nlm.nih.gov/pubmed/35095483
https://doi.org/10.1021/acs.jafc.1c04570
https://www.ncbi.nlm.nih.gov/pubmed/34851635
https://doi.org/10.1021/acs.jafc.2c06206
https://www.ncbi.nlm.nih.gov/pubmed/36480951
https://doi.org/10.3390/molecules23010030
https://www.ncbi.nlm.nih.gov/pubmed/29295497
https://doi.org/10.1080/21691401.2016.1236805
https://doi.org/10.1016/j.fitote.2013.11.014
https://doi.org/10.1007/s40005-019-00435-1
https://doi.org/10.1016/j.lfs.2018.11.027
https://doi.org/10.1007/s11033-019-05098-7
https://www.ncbi.nlm.nih.gov/pubmed/31646427
https://doi.org/10.1016/j.molliq.2023.122235
https://doi.org/10.1038/s41598-020-60293-y
https://www.ncbi.nlm.nih.gov/pubmed/32107408
https://doi.org/10.3797/scipharm.0808-05
https://doi.org/10.3390/polysaccharides3010001
https://doi.org/10.1016/S0032-9592(03)00258-9


Pharmaceutics 2023, 15, 2790 17 of 18

29. Crini, G. A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [CrossRef] [PubMed]
30. Loftsson, T. Cyclodextrins in parenteral formulations. J. Pharm. Sci. 2021, 110, 654–664. [CrossRef]
31. Wang, J.-Y.; Li, C.-W.; Xu, Y.-J.; Yu, Q.; Liu, N.; Liu, D.-C. Optimization of the Preparation of Trans-crocetin from Crocin by

Alkaline Hydrolysis via Response Surface Methodology. Sci. Technol. Food Ind. 2021, 42, 8.
32. Higuchi, T.; Connors, K.A. Advances in Analytical Chemistry and Instrumentation; Interscience Publishers, Inc.: New York, USA,

1965; pp. 117–212.
33. Soliman, K.A.; Ibrahim, H.K.; Ghorab, M.M. Effect of different polymers on avanafil–β-cyclodextrin inclusion complex: In vitro

and in vivo evaluation. Int. J. Pharmaceut. 2016, 512, 168–177. [CrossRef]
34. Roy, N.; Ghosh, B.; Roy, D.; Bhaumik, B.; Roy, M.N. Exploring the inclusion complex of a drug (umbelliferone) with α-cyclodextrin

optimized by molecular docking and increasing bioavailability with minimizing the doses in human body. ACS Omega 2020, 5,
30243–30251. [CrossRef] [PubMed]

35. Liu, H.-N.; Jiang, X.-X.; Naeem, A.; Chen, F.-C.; Wang, L.; Liu, Y.-X.; Li, Z.; Ming, L.-S. Fabrication and Characterization of
β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules
2022, 28, 37. [CrossRef] [PubMed]

36. Wdowiak, K.; Rosiak, N.; Tykarska, E.; Żarowski, M.; Płazińska, A.; Płaziński, W.; Cielecka-Piontek, J. Amorphous Inclusion
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