Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = credit cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 3679 KiB  
Article
More or Less Openness? The Credit Cycle, Housing, and Policy
by Maria Elisa Farias and David R. Godoy
Economies 2025, 13(7), 207; https://doi.org/10.3390/economies13070207 - 18 Jul 2025
Viewed by 313
Abstract
Housing prices have recently risen sharply in many countries, primarily linked to the global credit cycle. Although various factors play a role, the ability of developing countries to navigate this cycle and maintain autonomous monetary policies is crucial. This paper introduces a dynamic [...] Read more.
Housing prices have recently risen sharply in many countries, primarily linked to the global credit cycle. Although various factors play a role, the ability of developing countries to navigate this cycle and maintain autonomous monetary policies is crucial. This paper introduces a dynamic macroeconomic model featuring a housing production sector within an imperfect banking framework. It captures key housing and economic dynamics in advanced and emerging economies. The analysis shows domestic liquidity policies, such as bank capital requirements, reserve ratios, and currency devaluation, can stabilize investment and production. However, their effectiveness depends on foreign interest rates and liquidity. Stabilizing housing prices and risk-free bonds is more effective in high-interest environments, while foreign liquidity shocks have asymmetric impacts. They can boost or lower the effectiveness of domestic policy, depending on the country’s level of financial development. These findings have several policy implications. For example, foreign capital controls would be adequate in the short term but not in the long term. Instead, governments would try to promote the development of local financial markets. Controlling debt should be a target for macroprudential policy as well as promoting saving instruments other than real estate, especially during low interest rates. Full article
Show Figures

Figure 1

33 pages, 8044 KiB  
Article
Building Ledger Dossier: Case Study of Seismic Damage Mitigation and Building Documentation Tracking Through a Digital Twin Approach
by Giovanni De Gasperis, Sante Dino Facchini and Asif Saeed
Systems 2025, 13(7), 529; https://doi.org/10.3390/systems13070529 - 1 Jul 2025
Viewed by 1030
Abstract
In recent years, numerous regions worldwide have experienced devastating natural disasters, leading to significant structural damage to buildings and loss of human lives. The reconstruction process highlights the need for a reliable method to document and track the maintenance history of buildings. This [...] Read more.
In recent years, numerous regions worldwide have experienced devastating natural disasters, leading to significant structural damage to buildings and loss of human lives. The reconstruction process highlights the need for a reliable method to document and track the maintenance history of buildings. This paper introduces a novel approach for managing and monitoring restoring interventions using a secure and transparent digital framework. We will also present an application aimed at improving building structures with respect to earthquake resistance. The proposed system, referred as the “Building Ledger Dossier”, leverages a Digital Twin approach applied to blockchain to establish an immutable record of all structural interventions. The framework models buildings using OpenSees, while all maintenance, repair activities, and documents are registered as Non-Fungible Tokens on a blockchain network, ensuring timestamping, transparency, and accountability. A Decentralized Autonomous Organization oversees identity management and work validation, enhancing security and efficiency in building restoration efforts. This approach provides a scalable and globally applicable solution for improving both ante-disaster monitoring and post-disaster reconstruction, ensuring a comprehensive, verifiable history of structural interventions and fostering trust among stakeholders. The proposed method is also applicable to other types of processes that require the aforementioned properties for document monitoring, such as the life-cycle management of tax credits and operations in the financial or banking sectors. Full article
Show Figures

Figure 1

13 pages, 240 KiB  
Article
Mechanization and Maize Productivity in Tanzania’s Ruvuma Region: A Python-Based Analysis on Adoption and Yield Impact
by James Jackson Majebele, Minli Yang, Muhammad Mateen and Abreham Arebe Tola
Agriculture 2025, 15(13), 1412; https://doi.org/10.3390/agriculture15131412 - 30 Jun 2025
Viewed by 480
Abstract
This study investigates the influence of agricultural mechanization on maize productivity in Tanzania’s Ruvuma region, a major maize-producing area vital to national food security. It addresses gaps in understanding the cumulative effects of mechanization across the maize production cycle and identifies region-specific barriers [...] Read more.
This study investigates the influence of agricultural mechanization on maize productivity in Tanzania’s Ruvuma region, a major maize-producing area vital to national food security. It addresses gaps in understanding the cumulative effects of mechanization across the maize production cycle and identifies region-specific barriers to adoption among smallholder farmers. Focusing on five key stages—land preparation, planting, plant protection, harvesting, and drying—this research evaluated mechanization uptake at each stage and its relationship with yield disparities. Statistical analyses using Python libraries included regression modeling, ANOVA, and hypothesis testing to quantify mechanization–yield relationships, controlling for farm size and socioeconomic factors, revealing a strong positive correlation between mechanization and maize yields (r = 0.86; p < 0.01). Mechanized land preparation, planting, and plant protection significantly boosted productivity (β = 0.75–0.35; p < 0.001). However, harvesting and drying mechanization showed negligible impacts (p > 0.05), likely due to limited adoption by smallholders combined with statistical constraints arising from the small sample size of large-scale farms (n = 20). Large-scale farms achieved 45% higher yields than smallholders (2.9 vs. 2.0 tons/acre; p < 0.001), reflecting systemic inequities in access. These inequities are underscored by the barriers faced by smallholders, who constitute 70% of farmers yet encounter challenges, including high equipment costs, limited credit access, and insufficient technical knowledge. This study advances innovation diffusion theory by demonstrating how inequitable resource access perpetuates low mechanization uptake in smallholder systems. It underscores the need for context-specific, equity-focused interventions. These include cooperative mechanization models for high-impact stages (land preparation and planting); farmer training programs; and policy measures such as targeted subsidies for harvesting equipment and expanded rural credit systems. Public–private partnerships could democratize mechanization access, bridging yield gaps and enhancing food security. These findings advocate for strategies prioritizing smallholder inclusion to sustainably improve Tanzania’s maize productivity. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
15 pages, 4917 KiB  
Article
Synergistic Integration of g-C3N4 with SnS: Unlocking Enhanced Photocatalytic Efficiency and Electrochemical Stability for Dual-Functional Applications
by Aya Ahmed, Farid M. Abdel-Rahim, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, Shoroog Alraddadi and Abdelaziz M. Aboraia
Catalysts 2025, 15(7), 629; https://doi.org/10.3390/catal15070629 - 27 Jun 2025
Viewed by 438
Abstract
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, [...] Read more.
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, we focused on how g-C3N4 influences the structural, optical, electrochemical, and functional properties of SnS. XRD and FTIR confirmed the formation of SnS/g-C3N4 heterostructure, while surface morphology analysis by SEM showed proper dispersion of SnS particles over g-C3N4 with a good interface contact. The SnS/g-C3N4 composite itself demonstrated improved photocatalytic performance, with the degradation rate of methylene blue reaching approximately 94% under visible light irradiation compared to the moderate activity of SnS. This enhancement can be credited to the successful charge carrier separation enabled by the type II heterojunction created between SnS and g-C3N4. Moreover, the composite presented improved electrochemical activity with a specific capacitance of 1340 F·g−1 at a scan rate of 10 A·g−1 and good cycling stability, where the capacitance was 92% after 5000 cycles. As such, these SnS/g-C3N4 composites suggest the specific application of this class of material in photocatalytic degradation as well as energy storage, putting forward new effective resolutions to environmental and energy issues. Full article
Show Figures

Graphical abstract

23 pages, 324 KiB  
Article
Forced Fraud: The Financial Exploitation of Human Trafficking Victims
by Michael Schidlow
Soc. Sci. 2025, 14(7), 398; https://doi.org/10.3390/socsci14070398 - 23 Jun 2025
Viewed by 1038
Abstract
Human trafficking, a grave violation of human rights, frequently intersects with financial crimes, notably identity theft and coercive debt accumulation. This creates complex challenges for victims, survivors, and law enforcement. Victims of human trafficking are often coerced and/or threatened into committing various forms [...] Read more.
Human trafficking, a grave violation of human rights, frequently intersects with financial crimes, notably identity theft and coercive debt accumulation. This creates complex challenges for victims, survivors, and law enforcement. Victims of human trafficking are often coerced and/or threatened into committing various forms of crime, referred to as “forced criminality.” In recent years, this trend of criminality has moved from violent crimes to financial crimes and fraud, including identity theft, synthetic identity fraud, and serving as money mules. This phenomenon, termed “forced fraud”, exacerbates the already severe trauma experienced by victims (referred to as both victims and survivors throughout, consistent with trauma-informed terminology) trapping them in a cycle of financial instability and legal complications. Traffickers often coerce their victims into opening credit lines, taking out loans, or committing fraud all in their own names, leading to ruined credit histories and insurmountable debt. These financial burdens make it extremely difficult for survivors to rebuild their lives post-trafficking. This paper explores the mechanisms of forced fraud, its impact on survivors, and the necessary legislative and financial interventions to support survivors. By examining first-hand accounts and social and policy efforts from a range of sources, this paper highlights the urgent need for comprehensive support systems that address both the immediate and long-term financial repercussions of human trafficking. Full article
15 pages, 2000 KiB  
Article
A Bench-Scale Demonstration of Direct Air Capture Using an Enhanced Electrochemical System
by Jinwen Wang, Xin Gao, Adam Berger, Ayokunle Omosebi, Tingfei Chen, Aron Patrick and Kunlei Liu
Clean Technol. 2025, 7(2), 50; https://doi.org/10.3390/cleantechnol7020050 - 16 Jun 2025
Viewed by 598
Abstract
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. [...] Read more.
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. The system shows stable performance with over 90% CO2 capture efficiency and approximately 80% CO2 recovery, handling ambient air at 280 L/min. During testing, the unit captured 1 kg of CO2 over 100 h, with a concentrated CO2 output purity of around 70%. Operating efficiently at low voltage (<3 V), the system supports flexible and remote operation without AC/DC converters when using intermittent renewable energy. Techno-economic analysis (TEA) and Life Cycle Assessment (LCA) highlight its minimized required footprint and cost-effectiveness. Marketable hydrogen offsets capture costs, and compatibility with renewable DC power enhances appeal. Hydrogen production displacing CO2 produced via electrolysis achieves 0.94 kg CO2 abated per kg CO2 captured. The project would be economic, with USD 26 per ton of CO2 from the federal 45Q tax credit for carbon utilization, and USD 5 to USD 12 per kg for H2. Full article
Show Figures

Figure 1

12 pages, 1752 KiB  
Proceeding Paper
Ab Initio Life-Cycle Analysis Assisting the Selection of Eco-Friendly Additives in Bio-Based Coatings
by Pieter Samyn, Patrick Cosemans and Thomas Vandenhaute
Eng. Proc. 2025, 87(1), 76; https://doi.org/10.3390/engproc2025087076 - 11 Jun 2025
Viewed by 386
Abstract
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution [...] Read more.
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution to improving the carbon footprint of a coating, in parallel with their influences on coating performance, lifetime, and processing. However, the role of bio-based additives in life-cycle analysis (LCA) is often neglected and minorly considered in current literature. Reasons for this include the complexity of the full system, together with a lack of data, methodological inconveniences, and appropriate design of realistic scenarios. Within this work, an approach of simplified LCA is followed by ab initio cradle-to-gate analysis of coating formulations focusing on the replacement of specific fossil additives (e.g., carbon black, silicates, and calcium carbonate) with bio-based additives (e.g., biochar, bio-based wax, recovered calcium carbonate, and nanocellulose). The different environmental impact parameters (human health, eco-toxicity, resource scarcity, and carbon footprint) for bio-based additives and coating formulations are calculated from eco-cost analysis (Idemat 2024 v2.2 database), indicating a 15 to 30% gain in carbon footprint for coatings with bio-based additives. In a particular case study for improving coating performance by substituting cellulosic additives into nanocellulose from different sources, the reduction in environmental impact parameters is positively associated with their high performance at low concentration. The need for intermediate processing of bio-based additives is a main parameter contributing to their environmental impact, but environmental benefits are abundantly compensated by their carbon storage credit and performance improvement. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

23 pages, 1984 KiB  
Article
Economic Methods for the Selection of Renewable Energy Sources: A Case Study
by James DiLellio, George Aggidis, David Vandercruyssen and David Howard
Sustainability 2025, 17(11), 4857; https://doi.org/10.3390/su17114857 - 26 May 2025
Cited by 1 | Viewed by 659
Abstract
Governments need to evaluate technologies generating electricity from different sources; levelised cost of energy (LCOE) is a widely used metric. However, LCOE is weak at comparing disparate technologies, especially where they have different operational lifespans. The discrepancy is demonstrated using UK government data [...] Read more.
Governments need to evaluate technologies generating electricity from different sources; levelised cost of energy (LCOE) is a widely used metric. However, LCOE is weak at comparing disparate technologies, especially where they have different operational lifespans. The discrepancy is demonstrated using UK government data to examine a range of technologies, namely combined cycle generation (natural gas and hydrogen), sustainable renewable technologies along with independent data describing nuclear power and tidal range schemes. Three methods of analysis were used: LCOE, the internal rate of return (IRR), and a novel analysis. A new metric, the sustained cost of energy (SCOE), negates some of the LCOE shortcomings such as the application of discounting. SCOE examines a fixed period of continuous generation, using the lowest common length of operating life of the technologies analysed. It appears to be a useful metric, especially when interpreted with IRR. The analyses produce broadly similar ordering of technologies, but the longer-lasting systems with high initial costings perform better in SCOE. Subsidies, carbon tax, or credit schemes are essential government incentives if net zero emissions targets are to be met without overly burdening consumers with rapidly growing electricity rates. Full article
Show Figures

Figure 1

26 pages, 3348 KiB  
Review
A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways
by Douglas Peterson Munis da Silva and Rafael Silva Capaz
Hydrogen 2025, 6(2), 34; https://doi.org/10.3390/hydrogen6020034 - 19 May 2025
Viewed by 2647
Abstract
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system, with green H2—i.e., obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest [...] Read more.
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system, with green H2—i.e., obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest in H2 comes from its versatility, which means that H2 can serve as a raw material or energy source, and various technologies allow it to be produced from a wide range of resources. Environmental impacts of H2 production have primarily focused on greenhouse gas (GHG) emissions, despite other environmental aspects being equally relevant in the context of a sustainable energy transition. In this context, Life Cycle Assessment (LCA) studies of H2 supply chains have become more common. This paper aims to compile and analyze discrepancies and convergences among recent reported values from 42 scientific studies related to different H2 production pathways. Technologies related to H2 transportation, storage and use were not investigated in this study. Three environmental indicators were considered: Global Warming Potential (GWP), Energy Performance (EP), and Water Consumption (WF), from an LCA perspective. The review showed that H2 based on wind, photovoltaic and biomass energy sources are a promising option since it provides lower GWP, and higher EP compared to conventional fossil H2 pathways. However, WF can be higher for H2 derived from biomass. LCA boundaries and methodological choices have a great influence on the environmental indicators assessed in this paper which leads to great variability in WF results as well as GWP variation due credits given to avoid GHG emissions in upstream process. In the case of EI, the inclusion of energy embodied in renewable energy systems demonstrates great influence of upstream phase for electrolytic H2 based on wind and photovoltaic electricity. Full article
Show Figures

Graphical abstract

41 pages, 2025 KiB  
Systematic Review
The Energy-Economy Nexus of Advanced Air Pollution Control Technologies: Pathways to Sustainable Development
by Sadiq H. Melhim and Rima J. Isaifan
Energies 2025, 18(9), 2378; https://doi.org/10.3390/en18092378 - 6 May 2025
Cited by 1 | Viewed by 1184
Abstract
Air pollution imposes a substantial economic burden globally, with estimated annual losses exceeding $8.1 trillion due to healthcare costs, lost productivity, infrastructure degradation, and agricultural damage. This review assesses the economic effectiveness of advanced air pollution control technologies within the broader context of [...] Read more.
Air pollution imposes a substantial economic burden globally, with estimated annual losses exceeding $8.1 trillion due to healthcare costs, lost productivity, infrastructure degradation, and agricultural damage. This review assesses the economic effectiveness of advanced air pollution control technologies within the broader context of sustainable energy transitions. Through comparative life-cycle cost-benefit analyses, we evaluate the financial viability, energy efficiency, and policy relevance of innovations such as carbon capture and storage (CCS), AI-driven emissions monitoring, and nanotechnology-enhanced filtration. Among the technologies assessed, CCS presents the most significant capital expenditure (up to $500 million per facility) but offers long-term returns through carbon credits and enhanced oil recovery, yielding up to $30–40 in economic benefits for every $1 invested. AI-based monitoring systems demonstrate strong economic efficiency by reducing energy consumption in industrial operations by up to 15% and improving regulatory compliance at a larger scale. Nanotechnology-enabled filters provide high pollutant capture efficiency and reduce operational resistance, yet face scalability and end-of-life challenges. Additionally, emerging technologies such as bioengineered filters offer promise for low-resource settings but require further economic validation. The integration of these technologies with renewable energy systems, such as hydrogen-powered pollution control units and solar-driven filtration, further amplifies their environmental and economic benefits. By aligning air pollution mitigation with climate and energy goals, this review highlights a pathway for policymakers and industries to achieve both economic resilience and environmental sustainability. The findings underscore that, while upfront costs may be high, strategic investments in advanced pollution control deliver substantial long-term returns across sectors. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 2901 KiB  
Article
Implementation and Costs of an Agroforestry System in a Degraded Area of the Brazilian Semi-Arid Region
by Israel Pereira de Quadro, Antônio Gilvan da Cruz de Souza, Danilo Batista Nogueira, Isac Gabriel Abrahão Bomfim and Aelton Biasi Giroldo
Conservation 2025, 5(2), 20; https://doi.org/10.3390/conservation5020020 - 29 Apr 2025
Viewed by 1472
Abstract
Agroforestry systems (ASs) are increasingly recognized as effective strategies for ecological restoration and sustainable land use in semi-arid regions. This study aimed to evaluate the implementation and early outcomes of an AS established in a degraded urban area in the Brazilian semi-arid region. [...] Read more.
Agroforestry systems (ASs) are increasingly recognized as effective strategies for ecological restoration and sustainable land use in semi-arid regions. This study aimed to evaluate the implementation and early outcomes of an AS established in a degraded urban area in the Brazilian semi-arid region. Specifically, we analyzed the system’s establishment process, estimated its costs, assessed structural development over time, and compared species performance and carbon accumulation across different biodiversity arrangements. After three years, the system accumulated 17.69 Mg ha−1 of carbon and demonstrated significant basal area growth, particularly among fast-growing species such as Ceiba glaziovii, Gliricidia sepium, and Moringa oleifera. These species enhanced overall system productivity and likely contributed to increases in soil organic matter, facilitating the establishment of more demanding, slow-growing species. Cost analysis indicated a total implementation and maintenance estimate of BRL 57,468.79 ha−1 (USD 11,096.29) over three years, with irrigation and maintenance accounting for 44.39%, labor and site preparation 31.59%, and seedling production 24.02%. Although the system proved viable under institutional support, its replicability for smallholders remains dependent on reliable water access or implementation aligned with the rainy season. The use of nursery seedlings enhanced seedling survival and system feasibility. The broader adoption of agroforestry in semi-arid regions will require supportive public policies and technical assistance. Strengthening government programs such as PNAE and PRONAF is essential, as these initiatives can promote system adoption by facilitating access to credit while also reducing costs, particularly when short-cycle crops grown within the system are sold to local schools. It is important to note that agroforestry costs vary depending on the intended objectives, species diversity, and arrangement design. Therefore, technical assistance is critical to guiding smallholders in selecting and implementing context-appropriate systems. Our findings reinforce the potential of agroforestry systems to promote carbon sequestration, restore degraded lands, and support food security and sustainable development in climate-vulnerable regions. Full article
Show Figures

Graphical abstract

40 pages, 1021 KiB  
Article
Carnot Theorem Revisited: A Critical Perspective
by P. D. Gujrati
Entropy 2025, 27(4), 346; https://doi.org/10.3390/e27040346 - 27 Mar 2025
Cited by 1 | Viewed by 694
Abstract
After a brief review of Carnot’s everlasting contributions to the foundations of thermodynamics, we critically examine the consequences of the Carnot theorem, which leaves behind some lingering questions and confusion that persist even today. What is the one significant aspect of the Carnot [...] Read more.
After a brief review of Carnot’s everlasting contributions to the foundations of thermodynamics, we critically examine the consequences of the Carnot theorem, which leaves behind some lingering questions and confusion that persist even today. What is the one significant aspect of the Carnot cycle that leads to this theorem? When does the working substance play an important role for an engine and what is its correlation with the protocol of operational details? Do all reversible engines working between the same two temperatures have the same maximum efficiency of the Carnot engine as Fermi has suggested? Are all heat engines equivalent to a Carnot engine in disguise? Our new perspective allows for the clarification of these questions with a positive answer for the last question. Recognizing that Carnot eventually abandoned the caloric theory, we use a result by Carnot and simple dimensional analysis to show how the first law, the concept of entropy, and the efficiency of the Carnot engine could have been germinated by Carnot in his time. This then demonstrates that Carnot had good understanding of entropy before its invention by Clausius. We suggest that both should be credited with inventing entropy by calling it Carnot–Clausius entropy. We also clarify some fundamental misconceptions plaguing reversible regenerators and their irreversible replacement by heat exchangers in the field. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

17 pages, 3683 KiB  
Communication
A Combination of Flavonoids Suppresses Cell Proliferation and the E6 Oncogenic Pathway in Human Papillomavirus-Transformed Cells
by Federico De Marco, Fabio Altieri, Stefano Giuliani, Italia Falcone, Susanna Falcucci, Mariassunta Tedesco and Roberto Becelli
Pathogens 2025, 14(3), 221; https://doi.org/10.3390/pathogens14030221 - 24 Feb 2025
Cited by 1 | Viewed by 831
Abstract
Despite the availability of excellent HPV-specific vaccines, HPV-related conditions and, notably, their related neoplastic diseases are expected to impact human health for many years to come. Polyphenols and flavonoids are a large class of natural products, credited with a wide range of pharmacological [...] Read more.
Despite the availability of excellent HPV-specific vaccines, HPV-related conditions and, notably, their related neoplastic diseases are expected to impact human health for many years to come. Polyphenols and flavonoids are a large class of natural products, credited with a wide range of pharmacological properties including antineoplastic activity. However, the currently available data depict a rather heterogeneous and sometimes contradictory landscape, and no univocal conclusions can be drawn. To shed light on such a controversial issue, a restricted list of promising polyphenols were evaluated for their antineoplastic activity on HPV-transformed cells. Among them, Kaempferol, Galangin, and Luteolin proved to have distinct anti-clonal activity with ID50 values, respectively, of 1.25, 6.25, and 3.0 microMolar, and three other compounds, namely, Chrysin, Quercetin, and Apigenin, showed fair although less intense activity with ID values, respectively, of 25.0, 40, and 25 microMolar. Interestingly, a distinct anti-proliferative effect could also be suggested for Kaempferol, Luteolin, and Apigenine. Cooperative anti-clonal effects could be suggested for binary and ternary compositions made of Kaepferol, Galangin, and Luteolin once combined at concentrations ranging from 2 to 8 microMolar. At these concentrations, the single components and the triple combination induced distinct cell cycle modulation associated with marked restoration of the p53 and p21Cip1/Waf1 levels, consistent with the disruption of the E6/E6AP interaction whose continuous activity is necessary for both the induction and maintenance of the viral-induced neoplastic phenotype. Full article
Show Figures

Figure 1

31 pages, 3072 KiB  
Article
Is There a Common Financial Cycle in Systemic Economies?
by Khwazi Magubane
J. Risk Financial Manag. 2025, 18(3), 119; https://doi.org/10.3390/jrfm18030119 - 24 Feb 2025
Viewed by 831
Abstract
Countries such as advanced systemic economies (ASEs) and systemic middle-income countries (SMICs), considering macroprudential policy coordination, must ensure that their financial cycles are sufficiently synchronized. However, differences in the features and significance of financial cycles between ASEs and SMICs pose challenges in determining [...] Read more.
Countries such as advanced systemic economies (ASEs) and systemic middle-income countries (SMICs), considering macroprudential policy coordination, must ensure that their financial cycles are sufficiently synchronized. However, differences in the features and significance of financial cycles between ASEs and SMICs pose challenges in determining the extent of their synchronization. Accordingly, this study assesses whether a common financial cycle exists between these types of economies. The point of departure for this analysis is to examine the characteristics of the common financial cycle. To this end, this study employs data on capital flows, credit, house prices, share prices, and policy rates, utilizing the Markov switching dynamic regression model and the dynamic factor model to identify and analyze the cycle. The findings reveal strong evidence of a significant financial cycle, which explains 83% of the total variation across countries. This cycle is characterized by longer durations compared to domestic financial cycles and occurs less frequently than domestic cycles. Moreover, it exhibits high persistence in its contractionary and expansionary phases, with greater volatility in the contractionary phase. Based on these findings, it is recommended that ASEs and SMICs consider establishing a supranational prudential authority to coordinate and oversee macroprudential policy on behalf of the majority. Such an entity should play a proactive role, particularly during contractionary phases, to mitigate systemic risks and enhance financial stability across these interconnected economies. Full article
(This article belongs to the Special Issue Financial Risk Management and Quantitative Analysis)
Show Figures

Figure 1

24 pages, 3772 KiB  
Article
Application of Levelized and Environmental Cost Accounting Techniques to Demonstrate the Feasibility of Green Hydrogen-Powered Buses in Brazil
by Murilo L. Alcantara, José C. C. Santana, Cláudio A. O. Nascimento and Celma O. Ribeiro
Hydrogen 2025, 6(1), 10; https://doi.org/10.3390/hydrogen6010010 - 21 Feb 2025
Cited by 1 | Viewed by 1081
Abstract
Background: This study applied levelized cost of hydrogen (LCOH) and environmental cost accounting techniques to evaluate the feasibility of producing green hydrogen (GH2) via alkaline electrolysis for use in a bus fleet in Fortaleza, Brazil. Methods: A GH2 plant with [...] Read more.
Background: This study applied levelized cost of hydrogen (LCOH) and environmental cost accounting techniques to evaluate the feasibility of producing green hydrogen (GH2) via alkaline electrolysis for use in a bus fleet in Fortaleza, Brazil. Methods: A GH2 plant with a 3 MW wind tower was considered in this financial project. A sensitivity analysis was conducted to assess the economic viability of the project, considering the influence of production volume, the number of electrolysis kits, financing time, and other kay economic indices. Revenue was derived from the sale of by-products, including green hospital oxygen (GHO2) and excess wind energy. A life cycle assessment (LCA) was performed to quantify material and emission flows throughout the H2 production chain. A zero-net hydrogen price scenario was tested to evaluate the feasibility of its use in urban transportation. Results: The production of GH2 in Brazil using alkaline electrolysis powered by wind energy proved to be economically viable for fueling a hydrogen-powered bus fleet. For production volumes ranging from 8.89 to 88.9 kg H2/h, the sensitivity analysis revealed high economic performance, achieving a net present value (NPV) between USD 19.4 million and USD 21.8 million, a payback period of 1–4 years, an internal rate of return (IRR) of 24–90%, and a return on investment (ROI) of 300–1400%. The LCOH decreased with increased production, ranging from 56 to 25 USD/MWh. Over the project timeline, GH2 production and use in the bus fleet reduced CO2 emissions by 53,000–287,000 t CO2 eq. The fuel cell bus fleet project demonstrated viability through fuel cost savings and revenue from carbon credit sales, highlighting the economic, social, and environmental sustainability of GH2 use in urban transportation in Brazil. Full article
Show Figures

Figure 1

Back to TopTop