Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = crack propensity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 35029 KiB  
Article
Effects of Process Parameters on Defect Formation in Laser Additive Manufacturing of a Novel Ni-Based Superalloy
by Wen-Tao Liu, Jing-Cheng Zhou, Jing-Jing Ruan, Hua Zhang, Xin Zhou, Liang Jiang and Li-Long Zhu
Materials 2025, 18(13), 3102; https://doi.org/10.3390/ma18133102 - 1 Jul 2025
Viewed by 386
Abstract
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification [...] Read more.
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification and remelting, thereby affecting defect formation. In this study, laser-directed energy deposition was employed to evaluate the effects of our key process parameters on the formation of voids and cracks in a novel superalloy. The findings reveal that laser power and linear energy density significantly influence the void content and crack density. However, the influence of other process parameters on defect formation is relatively minimal. The optimal parameter space is characterized by a laser power range of 600~700 W, a linear energy density range of 60~90 J/mm and a powder feeding rate of 0.7~0.8 rpm. Moreover, the precipitation of fine MC-type carbides near the dendrites and grain-boundary misorientations within the range of 31~42° are associated with a higher propensity for crack formation. These insights provide a valuable reference for controlling the process parameters and understanding the cracking mechanisms in laser additive manufacturing of superalloys. Full article
(This article belongs to the Special Issue Intelligent Processing Technology of Materials)
Show Figures

Graphical abstract

18 pages, 5140 KiB  
Article
Characterization of the Mechanical Properties of Fiber-Reinforced Modified High Water Content Materials
by Bao Song, Jinxing Lyu, Zhiyi Zhang, Zhimeng Song and Songxiang Liu
Buildings 2025, 15(13), 2283; https://doi.org/10.3390/buildings15132283 - 28 Jun 2025
Viewed by 280
Abstract
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into [...] Read more.
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into the material system to establish a reinforcing network through interfacial bonding and bridging mechanisms to mitigate these issues. A total of nine specimen groups were developed to assess the influence of fiber type (BF/PP), fiber content (ranging from 0.5% to 2.0%), and water cement ratio (from 1.25 to 1.75) on compressive, tensile, and shear strengths. The findings indicated that basalt fiber exhibited superior performance compared to polypropylene fiber, with a 1% BF admixture yielding the highest compressive strength of 5.08 MPa and notable tensile enhancement attributed to effective pore-filling and three-dimensional reinforcement. Conversely, higher ratios (e.g., 1.75) resulted in diminished strength due to increased porosity, while a ratio of 1.25 effectively balanced matrix integrity and fiber reinforcement. Improvements in shear strength were less significant, as excessive fiber content disrupted interfacial friction, leading to a propensity for brittle failure. In conclusion, basalt fiber-modified high water content materials (with a 1% admixture and a ratio of 1.25) demonstrate enhanced ductility and mechanical performance, rendering them suitable for mining backfill applications. Future investigations should focus on optimizing the fiber matrix interface, exploring hybrid fiber systems, and conducting field-scale validations to promote sustainable mining practices. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 5917 KiB  
Article
The Effect of Condensate Oil on the Spontaneous Combustion of Tank Corrosion Products Based on Thermodynamics
by Wenjing Zang, Jianhai Wang, Shuo Wang, Shuo Yuan, Qi Zeng, Huanran Zhang and Hui Liu
Sustainability 2025, 17(10), 4445; https://doi.org/10.3390/su17104445 - 13 May 2025
Viewed by 506
Abstract
Condensate oil, due to its inherent physical and chemical properties, can accelerate the spontaneous combustion of corrosion products in storage tanks during transportation or storage, posing significant risks to the safety and sustainability of energy infrastructure. While prior research has primarily examined crude [...] Read more.
Condensate oil, due to its inherent physical and chemical properties, can accelerate the spontaneous combustion of corrosion products in storage tanks during transportation or storage, posing significant risks to the safety and sustainability of energy infrastructure. While prior research has primarily examined crude oil or reactive sulfur effects on tank corrosion, the mechanistic role of condensate oil in promoting corrosion product ignition remains unclear. To address this knowledge gap, this study investigates the impact of condensate oil on simulated tank corrosion product compounds (STCPCs) through a combination of microstructural analysis (XRD and SEM) and thermal behavior characterization (TG-DSC). The results reveal that condensate oil treatment markedly increases STCPC surface roughness, inducing crack formation and pore proliferation. These structural changes may enhance the adsorption of O2 and condensate oil, thereby amplifying STCPC reactivity. Notably, condensate oil reduces the thermal stability of STCPC, increasing its spontaneous combustion propensity. DSC analysis further demonstrates that condensate oil introduces additional exothermic peaks during oxidative heating, releasing heat that accelerates STCPC ignition. Moreover, condensate oil lowers the apparent activation energy of STCPC by 1.44 kJ/mol and alters the dominant reaction mechanism. These insights advance the understanding of corrosion-induced spontaneous combustion and highlight critical sustainability challenges in petrochemical storage and transportation. By elucidating the hazards associated with condensate oil, this study provides actionable theoretical guidance for improving the safety and environmental sustainability of energy logistics. Future work should explore mitigation strategies, such as corrosion-resistant materials or optimized storage conditions, to align industrial practices with sustainable development goals. Full article
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Hydrocracking of Various Vacuum Residues
by Dicho Stratiev
Fuels 2025, 6(2), 35; https://doi.org/10.3390/fuels6020035 - 7 May 2025
Cited by 1 | Viewed by 650
Abstract
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point [...] Read more.
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point can vary between 50 and 85 wt. %, for the vacuum residue hydrocracking, no reports have appeared yet to reveal the dependence of conversion on the quality of vacuum residue being hydrocracked. In order to search for such a dependence, eight vacuum residues derived from medium, heavy, and extra heavy crude oils have been hydrocracked in a laboratory unit at different reaction temperatures. The current study has witnessed that the vacuum residue hydrocracking obeys the same rule as that of the other residue conversion processes, confirming that the feedstock quality has a great influence on the process performance. A conversion variation between 45 and 85 wt. % can be observed when the sediment content in the hydrocracked atmospheric residue is within the acceptable limit, guaranteeing the planned cycle length. An intercriteria analysis was performed, and it revealed that the vacuum residue conversion has negative consonances with the contents of nitrogen and metals. Correlations were developed which predict the conversion at constant operating conditions within the uncertainty of conversion measurement of 1.7 wt. % and correlation coefficient of 0.964. The conversion at constant hydrocracked atmospheric residue (HCAR) sediment content was predicted with a correlation coefficient of 0.985. The correlations developed in this work disclosed that the higher the contents of metals, nitrogen, and asphaltenes, and the lower the content of sulfur, the lower the conversion in the hydrocracking process is. It was also shown that vacuum residues, which have the same reactivity (the same conversion at identical operating conditions), can indicate significant difference in the conversion at the same HCAR sediment content due to their diverse propensity to form sediments in the process of hydrocracking. Full article
Show Figures

Figure 1

14 pages, 10765 KiB  
Article
Experimental Study of Pre-Tensioned Polygonal Prestressed T-Beam Under Combined Loading Condition
by Zengbo Yao, Mingguang Wei, Hai Yan, Dinghao Yu, Gang Li, Chunlei Zhang, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(8), 1379; https://doi.org/10.3390/buildings15081379 - 21 Apr 2025
Cited by 1 | Viewed by 474
Abstract
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, [...] Read more.
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, and a top flange width of 1.75 m. A systematic static loading test was conducted. A multi-source data acquisition methodology was employed throughout the experiment. A variety of embedded and external sensors were strategically arranged, in conjunction with non-contact digital image correlation (VIC-3D) technology, to thoroughly monitor and analyze key mechanical performance indicators, including deformation capacity, strain distribution characteristics, cracking resistance, and crack propagation behavior. This study provides valuable insights into the damage evolution process of novel polygonal pre-tensioned T-beams under complex loading conditions. The experimental results indicate that the loading process of the specimen when subjected to combined bending, shear, and torsion, can be divided into two distinct stages: the elastic stage and the crack development stage. Cracks initially manifested at the junction of the upper flange and web at the extremities of the beam and at the bottom flange of the loaded segment. Subsequently, numerous diagonal and flexural–shear cracks developed within the web, while diagonal cracks also commenced to form on the top surface, exhibiting a propensity to propagate toward the support section. Following the appearance of diagonal cracks in the web concrete, both stirrup strain and concrete strain demonstrated abrupt changes. The peak strain observed within the upper stirrups was markedly greater than that measured in the middle and lower regions. On the front elevation of the web, the principal strain peak was concentrated near the connection line between the loading bottom and the upper support. In contrast, on the back elevation of the web, the principal tensile strain was more pronounced near the connection line between the loading top and the lower support. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

19 pages, 18132 KiB  
Article
Notch Fatigue Damage Evolution Mechanism of TC21 Alloy with Multilevel Lamellar Microstructures
by Xiaosong Zhou, Xiang Li, Chaowen Huang, Quan Wu and Fei Zhao
Metals 2025, 15(1), 18; https://doi.org/10.3390/met15010018 - 29 Dec 2024
Viewed by 675
Abstract
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that [...] Read more.
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that increasing aging temperature primarily contributes to the augmentation of α colony (αc) thickness, grain boundaries α phase (GBα) thickness, and α fine (αfine) size alongside a reduction in α lath (αlath) thickness and αfine content. The notch alters stress distribution and relaxation effects at the root, enhancing notched tensile strength while weakening plasticity. Moreover, the increased thickness of GBα emerges as a critical factor leading to the increase area of intergranular cleavage fracture. It is noteworthy that more thickness αlath and smaller αfine facilitate deformation coordination and enhance dislocation accumulation at the interface, leading to a higher propensity for micro-voids and micro-cracks to propagate along the interface. Conversely, at elevated aging temperatures, thinner αlath and larger αfine are more susceptible to fracture, resulting in the liberation of dislocations at the interface. The reduction in αlath thickness is crucial for triggering the initiation of multi-system dislocations at the interface, which promotes the development of persistent slip bands (PSBs) and dislocation nets within αlath. This phenomenon induces inhomogeneous plastic deformation and localized hardening, fostering the formation of micro-voids and micro-cracks. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

15 pages, 20734 KiB  
Article
Biaxial Very High Cycle Fatigue Testing and Failure Mechanism of Welded Joints in Structural Steel Q345
by Bing Xue, Yongbo Li, Wanshuang Yi, Shoucheng Shi, Yajun Dai, Chang Liu, Maojia Ren and Chao He
Crystals 2024, 14(10), 850; https://doi.org/10.3390/cryst14100850 - 28 Sep 2024
Cited by 4 | Viewed by 1547
Abstract
The very high cycle fatigue (VHCF) strength of welded joints made of high-strength structural materials is generally poor, which poses a serious threat to the long life and reliability of the structural components. This work employs an ultrasonic vibration fatigue testing system to [...] Read more.
The very high cycle fatigue (VHCF) strength of welded joints made of high-strength structural materials is generally poor, which poses a serious threat to the long life and reliability of the structural components. This work employs an ultrasonic vibration fatigue testing system to investigate the biaxial fatigue failure mechanism of the welded joints. The results revealed that under uniaxial loading conditions, the propensity for fatigue failure in plate specimens was predominantly observed at the specimen surface. Regardless of whether under uniaxial or biaxial loading, the initiation of fatigue cracks in cruciform joints was consistently traced back to unfused flaws, which were primarily located at the interface between the solder and the base material. Concurrently, it was noted that the fatigue strength of cruciform joints under biaxial loading was merely 44.4% of that under uniaxial loading. The geometric peculiarities of the unfused defects led to severe stress concentrations, which significantly reduced the fatigue life of the material under biaxial loading conditions. Full article
(This article belongs to the Special Issue Advanced High-Strength Steel)
Show Figures

Figure 1

17 pages, 2162 KiB  
Review
Research Progress on the Mechanisms and Control Methods of Rockbursts under Water–Rock Interactions
by Ling Fan, Yangkai Chang, Kang Peng, Yansong Bai, Kun Luo, Tao Wu and Tianxing Ma
Appl. Sci. 2024, 14(19), 8653; https://doi.org/10.3390/app14198653 - 25 Sep 2024
Cited by 7 | Viewed by 1266
Abstract
Rock bursts are among the most severe and unpredictable hazards encountered in deep rock engineering, posing substantial threats to both construction safety and project progress. This study provides a comprehensive investigation into how moisture infiltration influences the propensity for rock bursts, aiming to [...] Read more.
Rock bursts are among the most severe and unpredictable hazards encountered in deep rock engineering, posing substantial threats to both construction safety and project progress. This study provides a comprehensive investigation into how moisture infiltration influences the propensity for rock bursts, aiming to establish new theoretical foundations and practical methods for their prevention. Through the analysis of meticulous laboratory mechanical experiments and sophisticated numerical simulations, we analyzed the variations in the physical and mechanical properties of rocks under different moisture conditions, with a particular focus on strength, brittleness, and energy release characteristics. The findings reveal that moisture infiltration significantly diminishes rock strength and reduces the likelihood of brittle fractures, thereby effectively mitigating the risk of rock bursts. Additionally, further research indicates that in high-moisture environments, the marked reduction in rock burst tendency is attributed to increased rock toughness and the suppression of crack propagation. This study advocates for the implementation of moisture control measures as a pre-treatment strategy for deep rock masses. This innovative approach presents a viable and effective solution to enhance engineering safety and improve construction efficiency, offering a practical method for managing rock burst risks in challenging environments. Full article
Show Figures

Figure 1

15 pages, 4592 KiB  
Article
Microcapsule Triggering Mechanics in Cementitious Materials: A Modelling and Machine Learning Approach
by Evan John Ricketts, Lívia Ribeiro de Souza, Brubeck Lee Freeman, Anthony Jefferson and Abir Al-Tabbaa
Materials 2024, 17(3), 764; https://doi.org/10.3390/ma17030764 - 5 Feb 2024
Cited by 1 | Viewed by 1909
Abstract
Self-healing cementitious materials containing microcapsules filled with healing agents can autonomously seal cracks and restore structural integrity. However, optimising the microcapsule mechanical properties to survive concrete mixing whilst still rupturing at the cracked interface to release the healing agent remains challenging. This study [...] Read more.
Self-healing cementitious materials containing microcapsules filled with healing agents can autonomously seal cracks and restore structural integrity. However, optimising the microcapsule mechanical properties to survive concrete mixing whilst still rupturing at the cracked interface to release the healing agent remains challenging. This study develops an integrated numerical modelling and machine learning approach for tailoring acrylate-based microcapsules for triggering within cementitious matrices. Microfluidics is first utilised to produce microcapsules with systematically varied shell thickness, strength, and cement compatibility. The capsules are characterised and simulated using a continuum damage mechanics model that is able to simulate cracking. A parametric study investigates the key microcapsule and interfacial properties governing shell rupture versus matrix failure. The simulation results are used to train an artificial neural network to rapidly predict the triggering behaviour based on capsule properties. The machine learning model produces design curves relating the microcapsule strength, toughness, and interfacial bond to its propensity for fracture. By combining advanced simulations and data science, the framework connects tailored microcapsule properties to their intended performance in complex cementitious environments for more robust self-healing concrete systems. Full article
(This article belongs to the Special Issue Self-Healing Cementitious Material System)
Show Figures

Figure 1

27 pages, 13432 KiB  
Article
Prediction of Plastic Shrinkage Cracking of Supplementary Cementitious Material-Modified Shotcrete Using Rheological and Mechanical Indicators
by Kyong-Ku Yun, Valerii Panov and Seungyeon Han
Materials 2023, 16(24), 7645; https://doi.org/10.3390/ma16247645 - 14 Dec 2023
Cited by 3 | Viewed by 1520
Abstract
Plastic shrinkage cracking is a complex and multifaceted process that occurs in the period between placement and the final setting. During this period, the mixture is viscoplastic in nature and therefore possesses rheological properties. The investigation of the relationship between rheological behavior and [...] Read more.
Plastic shrinkage cracking is a complex and multifaceted process that occurs in the period between placement and the final setting. During this period, the mixture is viscoplastic in nature and therefore possesses rheological properties. The investigation of the relationship between rheological behavior and its propensity to undergo cracking during the plastic phase presents an intriguing subject of study. However, many factors influence plastic cracking, and the corresponding interaction of its effects is complex in nature. This study aimed to evaluate the impact of rheological and physicomechanical properties on the occurrence of plastic cracking in high-performance shotcrete containing various supplementary cementitious materials. To achieve this, plastic cracking was evaluated employing the ASTM C 1579 standard and a smart crack viewer FCV-30, and the rheological parameters were controlled using an ICAR rheometer. In addition, a study was conducted to assess the strength development and fresh properties. Further, a relationship was established via statistical evaluation, and the best predicting models were selected. According to the study results, it can be concluded that high-yield stress and low plastic viscosity for colloidal silica mixtures are indicators of plastic cracking resistance owing to improved fresh microstructure and accelerated hydration reaction. However, earlier strength development and the presence of a water-reducing admixture allowed mixtures containing silica fume to achieve crack reduction. A higher indicator of yield stress is an indicator of the capillary pressure development of these mixtures. In addition, a series containing ultrafine fly ash (having high flow resistance and torque viscosity) exhibited a risk of early capillary pressure build-up and a decrease in strength characteristics, which could be stabilized with the addition of colloidal silica. Consequently, the mixture containing both silica fume and colloidal silica exhibited the best performance. Thus, the results indicated that rheological characteristics, compressive strength, and water-reducer content can be used to control the plastic shrinkage cracking of shotcrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

48 pages, 26390 KiB  
Review
A Review on the Adiabatic Shear Banding Mechanism in Metals and Alloys Considering Microstructural Characteristics, Morphology and Fracture
by Konstantina D. Karantza and Dimitrios E. Manolakos
Metals 2023, 13(12), 1988; https://doi.org/10.3390/met13121988 - 7 Dec 2023
Cited by 20 | Viewed by 5782
Abstract
The current review work studies the adiabatic shear banding (ASB) mechanism in metals and alloys, focusing on its microstructural characteristics, dominant evolution mechanisms and final fracture. An ASB reflects a thermomechanical deformation instability developed under high strain and strain rates, finally leading to [...] Read more.
The current review work studies the adiabatic shear banding (ASB) mechanism in metals and alloys, focusing on its microstructural characteristics, dominant evolution mechanisms and final fracture. An ASB reflects a thermomechanical deformation instability developed under high strain and strain rates, finally leading to dynamic fracture. An ASB initially occurs under severe shear localization, followed by a significant rise in temperature due to high strain rate adiabatic conditions. That temperature increase activates thermal softening and mechanical degradation mechanisms, reacting to strain instability and facilitating micro-voiding, which, through its coalescence, results in cracking failure. This work aims to summarize and review the critical characteristics of an ASB’s microstructure and morphology, evolution mechanisms, the propensity of materials against an ASB and fracture mechanisms in order to highlight their stage-by-stage evolution and attribute them a more consecutive behavior rather than an uncontrollable one. In that way, this study focuses on underlining some ASB aspects that remain fuzzy, allowing for further research, such as research on the interaction between thermal and damage softening regarding their contribution to ASB evolution, the conversion of strain energy to internal heat, which proved to be material-dependent instead of constant, and the strain rate sensitivity effect, which also concerns whether the temperature rise reflects a precursor or a result of ASB. Except for conventional metals and alloys like steels (low carbon, stainless, maraging, armox, ultra-high-strength steels, etc.), titanium alloys, aluminum alloys, magnesium alloys, nickel superalloys, uranium alloys, zirconium alloys and pure copper, the ASB propensity of nanocrystalline and ultrafine-grained materials, metallic-laminated composites, bulk metallic glasses and high-entropy alloys is also evaluated. Finally, the need to develop a micro-/macroscopic coupling during the thermomechanical approach to the ASB phenomenon is pointed out, highlighting the interaction between microstructural softening mechanisms and macroscopic mechanical behavior during ASB evolution and fracture. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

24 pages, 7548 KiB  
Article
Study on Uniaxial Mechanical Behavior and Damage Evolution Mechanism of Water-Immersed Mudstone
by Yanqi Song, Junjie Zheng, Hongfa Ma, Zhixin Shao, Jiangkun Yang, Fuxin Shen and Chuanpeng Liu
Sustainability 2023, 15(16), 12499; https://doi.org/10.3390/su151612499 - 17 Aug 2023
Cited by 9 | Viewed by 1578
Abstract
The existence of mudstone weak interlayers has a significant impact on the stability of open-pit coal mine slopes. Under the combined influence of rainfall and groundwater, the mechanical properties of the mudstone of weak interlayers deteriorate, leading to a local loss of bearing [...] Read more.
The existence of mudstone weak interlayers has a significant impact on the stability of open-pit coal mine slopes. Under the combined influence of rainfall and groundwater, the mechanical properties of the mudstone of weak interlayers deteriorate, leading to a local loss of bearing capacity of the slope and further accelerating the overall instability of the slope. In order to investigate the changes of macroscopic and mesoscopic structures, mechanical failure behavior, and the damage evolution mechanism of water-immersed mudstone, non-destructive water immersion experiments and uniaxial compression experiments were conducted. The results indicate that the main causes of macroscopic structure failure of water-immersed mudstone are the initiation, propagation, and mutual penetration of micro cracks. The mesoscopic structure characteristics of water-immersed mudstone are primarily manifested by increased surface smoothness, increased occurrence of small-scale pores, the presence of a dense network of fissures on the surface, and fusion of mineral unit boundaries. With the increasing immersion time, the quality, relative water content, and peak strain increase, while the uniaxial mechanical parameters and energy parameters decrease. In addition, a statistically damaged constitutive model for mudstone considering the coupling damage of water immersion and low-stress loading was established, and the model is consistent with experimental results. Finally, the water-softening characteristics of mudstone are caused by the propensity of clay minerals to expand and disintegrate upon water contact, changes in pore structure, variations in mineral types and distributions, and the presence of pore water pressure. This study provides valuable insights into the water–rock deterioration mechanism of mudstone and the stability of slopes containing weak interlayers. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

13 pages, 2126 KiB  
Article
Fracture Resistance of Class II MOD Cavities Restored by Direct and Indirect Techniques and Different Materials Combination
by Vasiliki Tsertsidou, Petros Mourouzis, Dimitrios Dionysopoulos, Panagiotis Pandoleon and Kosmas Tolidis
Polymers 2023, 15(16), 3413; https://doi.org/10.3390/polym15163413 - 15 Aug 2023
Cited by 12 | Viewed by 5034
Abstract
This study aimed to evaluate the fracture resistance of class II MOD cavities restored using different techniques and materials. Sixty extracted maxillary molars were selected and standardized class II MOD cavities were prepared using a custom-made paralleling device. The specimens were divided into [...] Read more.
This study aimed to evaluate the fracture resistance of class II MOD cavities restored using different techniques and materials. Sixty extracted maxillary molars were selected and standardized class II MOD cavities were prepared using a custom-made paralleling device. The specimens were divided into four groups based on the restoration technique used: Group 1 (direct resin composite), Group 2 (short-fiber-reinforced composite resin), Group 3 (composite polyethylene fiber reinforcement), and Group 4 (CAD/CAM resin inlays). Fracture resistance was assessed for each group after thermocycling aging for 10,000 cycles. The mode of fracture was assigned to five types using Burke’s classification. To compare the fracture force among the tested materials, a paired sample t-test was performed. The significance level for each test was set at p < 0.05. Significant differences in fracture resistance were observed among the different restoration techniques. CAD/CAM inlays (2166 ± 615 N), short-fiber-reinforced composite resin (2471 ± 761 N), and composite polyethylene fiber reinforcement (1923 ± 492 N) showed superior fracture resistance compared to the group restored with direct resin composite (1242 ± 436 N). The conventional resin composite group exhibited the lowest mean fracture resistance. The choice of restoration material plays a critical role in the clinical survival of large MOD cavities. CAD/CAM inlays and fiber-reinforced composites offer improved fracture resistance, which is essential for long-term success in extensive restorations. Full article
(This article belongs to the Special Issue Polymers in Restorative Dentistry)
Show Figures

Figure 1

32 pages, 11370 KiB  
Article
Investigating the Detection Capability of Acoustic Emission Monitoring to Identify Imperfections Produced by the Metal Active Gas (MAG) Welding Process
by James Marcus Griffin, Steven Jones, Bama Perumal and Carl Perrin
Acoustics 2023, 5(3), 714-745; https://doi.org/10.3390/acoustics5030043 - 20 Jul 2023
Cited by 7 | Viewed by 4258
Abstract
Welding inspection is a critical process that can be severely time-consuming, resulting in productivity delays, especially when destructive or invasive processes are required. This paper defines the novel approach to investigate the physical correlation between common imperfections found in arc welding and the [...] Read more.
Welding inspection is a critical process that can be severely time-consuming, resulting in productivity delays, especially when destructive or invasive processes are required. This paper defines the novel approach to investigate the physical correlation between common imperfections found in arc welding and the propensity to determine these through the identification of signatures using acoustic emission sensors. Through a set of experiments engineered to induce prominent imperfections (cracks and other anomalies) using a popular welding process and the use of AE technology (both airborne and contact), it provides confirmation that the verification of physical anomalies can indeed be identified through variations in obtained noise frequency signatures. This in situ information provides signals during and after solidification to inform operators of the deposit/HAZ integrity to support the advanced warning of unwanted anomalies and of whether the weld/fabrication process should be halted to undertake rework before completing the fabrication. Experimentation was carried out based on an acceptable set of parameters where extracted data from the sensors were recorded, analysed, and compared with the resultant microstructure. This may allow signal phenomena to be captured and catalogued for future use in referencing against known anomalies. Full article
Show Figures

Figure 1

13 pages, 5148 KiB  
Article
Experimental Study on the Fracture Toughness of Bamboo Scrimber
by Kairan Zhang, Yubo Hou, Yubin Lu and Mingtao Wang
Materials 2023, 16(13), 4880; https://doi.org/10.3390/ma16134880 - 7 Jul 2023
Cited by 8 | Viewed by 1774
Abstract
In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks [...] Read more.
In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks occur, which affects the performance of bamboo scrimber in structural applications. Due to the propensity of cracks to propagate, it reduces the load-bearing capacity of the bamboo scrimber material. Therefore, research on the fracture toughness of bamboo scrimber contributes to determining the material’s load-bearing capacity and failure mechanisms, enabling its widespread application in engineering failure analysis. The fracture toughness of bamboo scrimber was studied via the single-edge notched beam (SENB) experiment and compact compression (CC) method. Nine groups of longitudinal and transverse samples were selected for experimental investigation. The fracture toughness of longitudinal bamboo scrimber under tensile and compressive loadings was 3.59 MPa·m1/2 and 2.39 MPa·m1/2, respectively. In addition, the fracture toughness of transverse bamboo scrimber under tensile and compressive conditions was 0.38 MPa·m1/2 and 1.79 MPa·m1/2, respectively. The results show that, for this material, there was a significant distinction between longitudinal and transverse. Subsequently, three-point bending tests and simulations were studied. The results show that the failure mode and the force–displacement curve of the numerical simulation were highly consistent compared with the experimental results. It could verify the correctness of the test parameters. Finally, the flexural strength of bamboo scrimber was calculated to be as high as 143.16 MPa. This paper provides data accumulation for the numerical simulation of bamboo scrimber, which can further promote the development of bamboo scrimber parameters in all aspects of the application. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop