Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = coxsackievirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7296 KiB  
Article
The Expression Pattern of the Splice Variants of Coxsackievirus and Adenovirus Receptor Impacts CV-B3-Induced Encephalitis and Myocarditis in Neonatal Mice
by Xinglong Zhang, Xin Zhang, Yifan Zhang, Heng Li, Huiwen Zheng, Jingjing Wang, Yun Liao, Li Yu, Dandan Li, Heng Zhao, Jiali Li, Zihan Zhang, Haijing Shi and Longding Liu
Int. J. Mol. Sci. 2025, 26(15), 7163; https://doi.org/10.3390/ijms26157163 - 24 Jul 2025
Viewed by 175
Abstract
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, [...] Read more.
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, we used young Balb/c mice at three developmental stages (7-, 14-, and 30-day-old mice) to investigate CV-B3 pathogenesis. Our findings revealed that 7-day-old mice exhibited substantial infection susceptibility and pathological severity compared to older mice. Critically, an age-dependent analysis showed a progressive decline in the expression of CV-B3-binding Coxsackievirus and Adenovirus Receptor (CAR) splice variants (CAR1 and CAR2) at both the transcriptional and translational levels as the mice matured from 7 to 30 days. These receptor isoforms demonstrated a direct correlation with viral replication efficiency in younger hosts. Concurrently, aging was associated with a rise in non-binding CAR variants (CAR3 and CAR4). During CV-B3 infection, the abundance of CAR1/CAR2 in young mice facilitated accelerated viral proliferation, coupled with the hyperactivation of the NLRP3 inflammasome and the expansion of IL-17-producing γδT cells (γδT17 cells). This cascade triggered excessive production of proinflammatory cytokines (IL-1β, IL-18, and IL-17), culminating in pronounced inflammatory infiltrates within cardiac and cerebral tissues. These findings establish NLRP3 inflammasome dysregulation as a critical determinant of CV-B3-induced tissue damage and provide novel insights into the heightened susceptibility to CV-B infection during early life and its associated severe disease rates. Full article
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 205
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Small Interfering RNAs Targeting VP4, VP3, 2B, or 3A Coding Regions of Enterovirus A71 Inhibit Viral Replication In Vitro
by Yun Ji Ga, Yun Young Go and Jung-Yong Yeh
Biomedicines 2025, 13(7), 1760; https://doi.org/10.3390/biomedicines13071760 - 18 Jul 2025
Viewed by 370
Abstract
Background: Enterovirus A71 (EV-A71) is considered as the primary causative agent of hand, foot, and mouth disease (HFMD) in young children, leading to severe neurological complications and contributing to substantial mortalities in recent HFMD outbreaks across Asia. Despite this, there is currently [...] Read more.
Background: Enterovirus A71 (EV-A71) is considered as the primary causative agent of hand, foot, and mouth disease (HFMD) in young children, leading to severe neurological complications and contributing to substantial mortalities in recent HFMD outbreaks across Asia. Despite this, there is currently no effective antiviral treatment available for EV-A71. RNA interference (RNAi) is a powerful mechanism of post-transcriptional gene regulation that utilizes small interfering RNA (siRNA) to target and degrade specific RNA sequences. Objectives: The aim of this study was to design various siRNAs targeting EV-A71 genomic regions and evaluate the RNAi efficacy against a novel, previously genetically uncharacterized EV-A71 strain. Methods: A novel EV-A71 strain was first sequenced to design target-specific siRNAs. The viral titers, viral protein expression, cytopathic effects, and cell viability of EV-A71-infected HeLa cells were examined to evaluate the specific viral inhibition by the siRNAs. Results: A substantial reduction in viral titers and viral protein synthesis was observed in EV-A71-infected HeLa cells treated with specific siRNAs targeting the VP4, VP3, 2B, and 3A genes. siRNAs delayed cytopathic effects and increased cell viability of EV-A71-infected HeLa cells. Nonspecific interferon induction caused by siRNAs was not observed in this study. In contrast, replication of coxsackievirus B3, another important member of the Enterovirus genus, remained unaffected. Conclusions: Overall, the findings demonstrate that RNAi targeting genomic regions of EV-A71 VP4, VP3, 2B, or 3A could become a potential strategy for controlling EV-A71 infection, and this promising result can be integrated into future anti-EV-A71 therapy developments. Full article
(This article belongs to the Special Issue Encephalitis and Viral Infection: Mechanisms and Therapies)
Show Figures

Figure 1

17 pages, 3681 KiB  
Article
Sensitivity of Pancreatic Cancer Cell Lines to Clinically Approved FAK Inhibitors: Enhanced Cytotoxicity Through Combination with Oncolytic Coxsackievirus B3
by Anja Geisler, Babette Dieringer, Leslie Elsner, Maxim Girod, Sophie Van Linthout, Jens Kurreck and Henry Fechner
Int. J. Mol. Sci. 2025, 26(14), 6877; https://doi.org/10.3390/ijms26146877 - 17 Jul 2025
Viewed by 280
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer development. FAK inhibitors (FAKi) have proven to be promising therapeutics for cancer treatment including for pancreatic cancer. As monotherapy, however, FAKi showed only a modest effect in clinical studies. In this study, we investigated the cytotoxicity of six FAKi (Defactinib, CEP-37440, VS-4718, VS-6062, Ifebemtinib and GSK2256098) used in clinical trials on five pancreatic tumor cell lines. We further examined whether their anti-tumor activity can be enhanced by combination with the oncolytic coxsackievirus B3 (CVB3) strain PD-H. IC50 analyses identified Defactinib and CEP-37440 as the most potent inhibitors of tumor cell growth. VS-4718, VS-6062, and Ifebemtinib showed slightly lower activity, while GSK2256098 was largely ineffective. The combination of Defactinib, CEP-37440, VS-4718, and VS-6062 with PD-H resulted in varying effects on cytotoxicity, depending on the cell line and the specific FAKi, ranging from no enhancement to a pronounced increase. Using the Chou–Talalay method, we determined combination indices (CI), revealing synergistic, additive, but also antagonistic interactions between the respective FAKi and PD-H. Considering both oncolytic efficacy and the CI, the greatest enhancement in oncolytic activity was achieved when VS-4718 or CEP-37440 was combined with PD-H. These findings indicate that co-treatment with PD-H can potentiate the therapeutic activity of the selected FAKi and may represent a novel strategy to improve treatment outcomes in PDAC. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

19 pages, 1415 KiB  
Article
Essential Oil from the Aerial Parts of Artemisia serotina Bunge (Winter Wormwood) Growing in Kazakhstan—Phytochemical Profile and Bioactivity
by Arshyn Kadyrbay, Liliya N. Ibragimova, Magdalena Iwan, Agnieszka Ludwiczuk, Anna Biernasiuk, Zuriyadda B. Sakipova, Łukasz Świątek, Kinga Salwa, Agnieszka Korga-Plewko, Karlygash A. Zhaparkulova, Tolkyn S. Bekezhanova, Aleksandra Józefczyk, Jolanta Szymańska and Anna Malm
Molecules 2025, 30(14), 2956; https://doi.org/10.3390/molecules30142956 - 14 Jul 2025
Viewed by 506
Abstract
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential [...] Read more.
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential oil from A. serotina (ASEO) growing in south Kazakhstan, together with the determination of its biological activity. ASEO isolation was carried out by hydrodistillation according to the State Pharmacopoeia of the Republic of Kazakhstan. Analysis of GC/MS data revealed that the most characteristic components of ASEO were irregular monoterpenes from three families: santolinane, artemisane, and lavandulane. The major compound was santolina alcohol (34.6%). Antimicrobial activity was studied against the reference bacterial and fungal strains using the recommended methods, allowing for an estimation of MIC (minimum inhibitory concentration). ASEO was most effective against Candida albicans (MIC = 2 mg/mL), exerting fungicidal activity. Thw MIC for bacterial species was higher, i.e., 4–16 mg/mL. Antiviral activity was tested against Coxsackievirus B3 (CVB3) and Human Herpesvirus type 1 (HHV-1) propagated in VERO cells. No antiviral effect against either virus was found at an ASEO concentration of 0.25 mg/mL, but a noticeable decrease in the intensity of HHV-1-related cytopathic effects was observed. Anticancer activity studies included several cancer cell lines. Cytotoxicity, cell cycle, thiol levels, and cell vitality were analyzed. Among the cancer cell lines tested, the breast cancer T47-D cell line exhibited the highest sensitivity to ASEO (IC50 = 40.81 ± 4.21 µg/mL at 24 h; IC50 = 33.17 ± 2.11 µg/mL at 48 h). The anticancer effect was suggested to be mainly due to the induction of cytostatic effects, accompanied by a disturbance of the intracellular redox balance. The obtained data provide novel information on the unique chemical composition of ASEO from south Kazakhstan, representing a new chemotype. Its bioactivity, including promising antifungal and anticancer properties, was demonstrated for the first time. Full article
(This article belongs to the Special Issue Chemical Analyses and Applications of Essential Oils)
Show Figures

Figure 1

13 pages, 2677 KiB  
Article
A Single-Tube Two-Step MIRA-CRISPR/Cas12b Assay for the Rapid Detection of Mpox Virus
by Ge Hu, Zhijie Wei, Jinlei Guo, Kangchen Zhao, Qiao Qiao, Xiaojuan Zhu, Tao Wu, Heng Rong, Shuo Ning, Ziyang Hao, Ying Chi, Lunbiao Cui and Yiyue Ge
Viruses 2025, 17(6), 841; https://doi.org/10.3390/v17060841 - 12 Jun 2025
Viewed by 628
Abstract
Mpox is a zoonotic disease caused by the Mpox virus (MPXV). The rapid and accurate diagnosis of MPXV is essential for the timely and effective prevention, control, and treatment of the disease. In this study, we combined Multienzyme Isothermal Rapid Amplification (MIRA) (at [...] Read more.
Mpox is a zoonotic disease caused by the Mpox virus (MPXV). The rapid and accurate diagnosis of MPXV is essential for the timely and effective prevention, control, and treatment of the disease. In this study, we combined Multienzyme Isothermal Rapid Amplification (MIRA) (at 42 °C) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 12b(CRISPR/Cas12b) (at 60 °C) to develop a single-tube two-step assay for rapid MPXV detection, leveraging the distinct physical states of tricosane at these temperatures. MIRA amplification primers and CRISPR/cas12b SgRNA were designed based on the MPXV F3L gene. After screening the primers and sgRNAs, the reaction conditions were optimized, and the performances of the assay were evaluated. The detection limit (LOD) of this single-tube two-step MIRA-CRISPR/Cas12b assay for MPXV is four copies of DNA molecules. No cross-reactivity with other pathogens (herpes simplex virus (HSV), Epstein–Barr virus (EBV), Coxsackievirus A16 (CVA16), Enterovirus A71 (EV-A71), and measles virus (MeV)) was found. The assay also showed good consistency with quantitative real-time PCR (qPCR) (Kappa = 0.9547, p < 0.05, n = 100) in the detection of clinical samples, with a sensitivity of 98.5% and a specificity of 97.0%. The single-tube two-step MIRA-CRISPR/Cas12b assay permits the rapid (within 45 min), sensitive, and specific detection of MPXV. The lack of need for opening the reaction tube eliminates the risk of product contamination. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 4009 KiB  
Article
A Fluorescent Reporter Virus Toolkit for Interrogating Enterovirus Biology and Host Interactions
by Mireya Martínez-Pérez, Sebastian Velandia-Álvarez, Cristina Vidal-Verdú, Beatriz Álvarez-Rodríguez and Ron Geller
Viruses 2025, 17(6), 796; https://doi.org/10.3390/v17060796 - 30 May 2025
Viewed by 600
Abstract
Enteroviruses are a group of highly prevalent human pathogens responsible for a wide range of illnesses, ranging from common cold symptoms to life-threatening diseases. A deep understanding of enterovirus biology, evolution, and host interaction is required for the development of effective vaccines and [...] Read more.
Enteroviruses are a group of highly prevalent human pathogens responsible for a wide range of illnesses, ranging from common cold symptoms to life-threatening diseases. A deep understanding of enterovirus biology, evolution, and host interaction is required for the development of effective vaccines and antivirals. Recombinant reporter viruses encoding luminescent or fluorescent proteins have been developed to facilitate such investigation. In this work, using coxsackievirus B3 as our model, we analyze how the insertion of fluorescent reporter genes at three distinct sites within the viral polyprotein affects viral fitness, identifying the most tolerant site for reporter insertion. We then describe a set of experimental workflows for measuring viral fitness, sera neutralization, antiviral efficacy, and recombination using fluorescent reporter viruses. The high homology between different enteroviruses suggests these assays can be readily adapted to study additional members of this medically and economically relevant group of viruses. Full article
Show Figures

Figure 1

16 pages, 2720 KiB  
Article
Concurrent Circulation of Viral Agents in Pediatric Patients Presenting with Respiratory Illness and Diarrheal Symptoms in Metropolitan Region of São Paulo, Brazil, 2021
by Adriana Luchs, Natanael Sutikno Adiwardana, Leonardo Cecilio da Rocha, Ellen Viana, Simone Guadagnucci, Adriana Parise, Vanessa Cristina Martins Silva, Lais Sampaio de Azevedo, Raquel Guiducci, Yasmin França, Natacha Luana Pezzuol Frank, Ana Lucia Nascimento da Silva, Andre Luiz Vianna de Oliveira, André Henrique Souza Azevedo, Bárbara Segatelli Carreteiro and Maurício Lacerda Nogueira
Viruses 2025, 17(4), 497; https://doi.org/10.3390/v17040497 - 29 Mar 2025
Viewed by 683
Abstract
Pneumonia and diarrhea are the leading causes of death in children under 5 globally, worsened by viral infections. This study investigates viral agents in children ≤ 3 years with respiratory illness and diarrhea in Metropolitan Region of São Paulo, Brazil, during spring 2021. [...] Read more.
Pneumonia and diarrhea are the leading causes of death in children under 5 globally, worsened by viral infections. This study investigates viral agents in children ≤ 3 years with respiratory illness and diarrhea in Metropolitan Region of São Paulo, Brazil, during spring 2021. Twenty paired samples (oropharyngeal swab and feces) were tested using in-house qPCR for HBoV and HAdV, RT-qPCR for RVA, EV, PeV-A, and NoV, and a commercial RT-qPCR kit for SARS-CoV-2, Flu A/B, and RSV. HAstV was detected with conventional nested (RT)-PCR. Positive samples were sequenced for molecular characterization and phylogenetic analysis. Seven viruses were identified: HBoV, NoV, HAdV, PeV-A, EV, RSV, and Flu A. HBoV and NoV were detected in 75% of cases, with co-infection in 65% of patients, indicating their involvement in the gastro-respiratory illness. Genotyping of HBoV (HBoV-1), NoV (GII.4_Sydney[P16], GII.2[P16], and GII.4_Sydney[P31]), EV (Coxsackievirus A6), HAdV (species C, type 6), and PeV-A (genotype 1) showed local virus diversity. Phylogenetic analysis indicated no ongoing community outbreak, with distinct clusters observed. The findings highlight the overlap of respiratory and enteric diseases, revealing local viral diversity and high exposure to enteric viruses. This underscores the challenges in differential diagnosis and the need for syndromic surveillance. Full article
(This article belongs to the Special Issue Viruses Associated with Gastroenteritis)
Show Figures

Figure 1

42 pages, 2059 KiB  
Review
Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure
by Francesco Nappi
Viruses 2025, 17(4), 484; https://doi.org/10.3390/v17040484 - 27 Mar 2025
Cited by 1 | Viewed by 1403
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is [...] Read more.
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed. Full article
Show Figures

Graphical abstract

14 pages, 1459 KiB  
Article
A New Approach to the Etiology of Syncope: Infection as a Cause
by Branislav Milovanovic, Nikola Markovic, Masa Petrovic, Vasko Zugic, Milijana Ostojic, Milica Dragicevic-Antonic and Milovan Bojic
Viruses 2025, 17(3), 427; https://doi.org/10.3390/v17030427 - 15 Mar 2025
Viewed by 1246
Abstract
Background/Objectives: Syncope is a common clinical occurrence, with neurally mediated and orthostatic types accounting for about 75% of cases. The exact pathophysiological mechanisms remain unclear, with recent evidence suggesting autonomic nervous system damage and a potential infectious etiology. This study aimed to examine [...] Read more.
Background/Objectives: Syncope is a common clinical occurrence, with neurally mediated and orthostatic types accounting for about 75% of cases. The exact pathophysiological mechanisms remain unclear, with recent evidence suggesting autonomic nervous system damage and a potential infectious etiology. This study aimed to examine the role of infection in the development of syncope and orthostatic hypotension (OH). Methods: The cross-sectional study included 806 patients from the Neurocardiological Laboratory of the Institute for Cardiovascular Diseases “Dedinje”. Patients were divided into three groups: unexplained recurrent syncope (n = 506), syncope with OH during the head-up tilt test (HUTT) (n = 235), and OH without a history of syncope (n = 62). All participants underwent the HUTT, and 495 underwent serological testing for various microorganisms. Data were analyzed using chi-squared tests and binary and multinomial logistic regression. Results: The HUTT was positive in 90.6% of patients with syncope and OH, compared with 61.6% with syncope alone (p < 0.001). Serological testing revealed that 57.85% of syncope patients, 62.9% of syncope with OH patients, and 78% of OH patients had positive IgM antibodies to at least one microorganism. Multivariate analysis indicated that IgM antibodies to Coxsackievirus and Epstein–Barr virus were significant predictors of OH. Conclusions: This study demonstrated a potential association between infections and syncope/OH. Further investigation into the role of infectious agents in autonomic dysfunction is warranted to clarify the underlying mechanisms of syncope and OH. Full article
(This article belongs to the Special Issue Beyond Acute: Navigating Long COVID and Post-Viral Complications)
Show Figures

Figure 1

20 pages, 8925 KiB  
Article
A New Human SCARB2 Knock-In Mouse Model for Studying Coxsackievirus A16 and Its Neurotoxicity
by Haiting Wu, Ziou Wang, Yiwei Zhang, Lingfeng Hu, Jinling Yang, Caixing Zhang, Mumeng Lou, Na Pi, Qiyan Wang, Shengtao Fan and Zhangqiong Huang
Viruses 2025, 17(3), 423; https://doi.org/10.3390/v17030423 - 14 Mar 2025
Cited by 1 | Viewed by 882
Abstract
Hand, Foot, and Mouth Disease (HFMD) is a viral illness caused by enterovirus infections. While the introduction of the enterovirus 71 (EV71) vaccine has significantly reduced the number of EV71-related cases, the continued spread of Coxsackievirus A16 (CVA16) remains a major public health [...] Read more.
Hand, Foot, and Mouth Disease (HFMD) is a viral illness caused by enterovirus infections. While the introduction of the enterovirus 71 (EV71) vaccine has significantly reduced the number of EV71-related cases, the continued spread of Coxsackievirus A16 (CVA16) remains a major public health threat. Previous studies have shown that human SCARB2 (hSCARB2) knock-in (KI) mice, generated using embryonic stem cell (ESC) technology, are susceptible to CVA16. However, these models have failed to reproduce the clinical pathology and neurotoxicity after CVA16 infection. Therefore, there is an urgent need for a more reliable and effective animal model to study CVA16. In this study, we successfully created a hSCARB2 KI mouse model targeting the ROSA26 locus using CRISPR/Cas9 gene editing technology. The application of CRISPR/Cas9 enabled stable and widespread expression of hSCARB2 in the model. After infection, the KI mice exhibited a clinical pathology that closely mimics human infection, with prominent limb weakness and paralysis. The virus was detectable in multiple major organs of the mice, with peak viral load observed on day 7 post-infection, gradually clearing thereafter. Further analysis revealed widespread neuronal necrosis and infiltration of inflammatory cells in the brain and spinal cord of the KI mice. Additionally, significant activation of astrocytes (GFAP-positive) and microglia (IBA1-positive) was observed in the brain, suggesting that CVA16 infection may induce limb paralysis by attacking neuronal cells. Overall, this model effectively replicates the neuropathological changes induced by CVA16 infection and provides a potential experimental platform for studying CVA16-associated pathogenesis and neurotoxicity. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 3630 KiB  
Article
Bioactive Secondary Metabolites of Two Chinese Edible Boletes, Phlebopus portentosus and Butyriboletus roseoflavus
by Zhixuan Wang, Wei Zhou, Yuhang He, Zeyu Zhao, Yang Cao, Shunzhen Luo, Guangyan Ji, Kaiping Ji, Jing Chen, Jiyang Li and Juan Xiong
Molecules 2025, 30(6), 1197; https://doi.org/10.3390/molecules30061197 - 7 Mar 2025
Cited by 2 | Viewed by 882
Abstract
This study investigated the phytochemical profiles and bioactivities of two edible boletes from Southwestern China, Phlebopus portentosus and Butyriboletus roseoflavus. A total of 33 secondary metabolites, comprising 15 alkaloids, 4 pulvinic acid derivative pigments, and 14 ergosterols, were isolated and identified. To [...] Read more.
This study investigated the phytochemical profiles and bioactivities of two edible boletes from Southwestern China, Phlebopus portentosus and Butyriboletus roseoflavus. A total of 33 secondary metabolites, comprising 15 alkaloids, 4 pulvinic acid derivative pigments, and 14 ergosterols, were isolated and identified. To our best knowledge, boletesine A (1), boletesine B (2), and cis-xerocomic acid (16) were previously undescribed compounds. The new structures were established by extensive spectroscopic methods and chemical calculations. Compound 1 features a hitherto unknown hybrid skeleton formed between a 2-formylpyrrole-alkaloid and a dopacetic acid (DOPAC) via a Michael addition reaction. Bioactivity assays revealed the neuroprotective effects of compounds 18 and 19 against Aβ25–35- or H2O2-induced toxicity. In a cytotoxic assay against a small panel of cancer cell lines, compound 9 exhibited significant activity against HeLa cells (IC50 = 10.76 µM), while 33 demonstrated broad-spectrum cytotoxicity against Hela229, SGC7901, PC-3, and BEL7402 cells (IC50s in the range of 20~30 µM). Of particular note is the anti-influenza virus activities against A/H3N2 and B/Victoria strains of compounds 22 and 26 (EC50 values ranging from 3.6 to 9.6 µM). Along with these, compound 29 showed a moderate antiviral effect against coxsackievirus B3. These findings underscore the therapeutic potential of the two edible boletes in addressing neurodegenerative diseases, cancer, and viral infections, paving the way for their prospective applications in the development of functional foods and pharmaceuticals. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 5404 KiB  
Article
Evolutionary Studies on the Coxsackievirus A-24 Variants Causing Acute Hemorrhagic Conjunctivitis with Emphasis on the Recent Outbreak of 2023 in India
by Sanjaykumar Tikute, Jahnabee Boro, Vikas Sharma, Anita Shete, Alfia Fathima Ashraf, Ranjana Mariyam Raju, Sarah Cherian and Mallika Lavania
Viruses 2025, 17(3), 371; https://doi.org/10.3390/v17030371 - 5 Mar 2025
Viewed by 1157
Abstract
Acute Hemorrhagic Conjunctivitis (AHC) is primarily caused by viral infections, with Coxsackievirus A-24v (CV-A24v) being a significant culprit. Enteroviruses, including CV-A24v, are responsible for global AHC outbreaks. Over time, CV-A24v has evolved, and genotype IV (GIV) has become the dominant strain. This study [...] Read more.
Acute Hemorrhagic Conjunctivitis (AHC) is primarily caused by viral infections, with Coxsackievirus A-24v (CV-A24v) being a significant culprit. Enteroviruses, including CV-A24v, are responsible for global AHC outbreaks. Over time, CV-A24v has evolved, and genotype IV (GIV) has become the dominant strain. This study focused on examining the genetic features and evolutionary trends of CV-A24v responsible for the recent AHC outbreak of 2023 in India. Researchers isolated viral strains from ocular swabs and confirmed the presence of CV-A24v using reverse transcriptase quantitative PCR (RT-qPCR) and whole-genome sequencing. Genomic comparisons between isolates of 2023 and those from a previous outbreak in 2009 were conducted. Phylogenetic analysis revealed that the 2023 isolates formed a distinct cluster within GIV-5 and were related to recent strains from China and Pakistan. The older Indian isolates from 2009 grouped with GIV-3. New subclades, GIV-6 and GIV-7, were also identified in this study, indicating the diversification of CV-A24. Molecular clock and phylogeographic analysis traced the virus’s circulation back to the 1960s, with the common ancestor likely to have originated in Singapore in 1968. The 2023 Indian strains probably originated from Thailand around 2014, with subsequent spread to China and Pakistan. This study concluded that the 2023 outbreak was caused by a genetically distinct CV-A24v strain with nine mutations, underlining the virus’s ongoing evolution and adaptations and offering valuable insights for future outbreak control. Full article
Show Figures

Figure 1

24 pages, 3278 KiB  
Article
In Vitro Antiviral Activity of a Silydianin-Rich Extract from Silybum marianum Seeds Against Four Strains of Enteroviruses: EV71, Coxsackievirus B2, Coxsackievirus A10, and Poliovirus SL-1 and Its Impact on Improving Delayed Gastric Emptying in Mice
by Houda Zaher, José Francisco Quílez del Moral, Sanae Lemrabet, Neri Koutchala and Bouchaib Bencharki
Antibiotics 2025, 14(2), 196; https://doi.org/10.3390/antibiotics14020196 - 14 Feb 2025
Viewed by 1199
Abstract
Background: Gastroparesis, a chronic digestive disorder characterized by delayed gastric emptying, often results from diabetes, post-surgical complications, autoimmune diseases, and neurological disorders. In approximately 50% of cases, the cause is idiopathic gastroparesis (IGD). Recent studies suggest a link between chronic enteroviral infection and [...] Read more.
Background: Gastroparesis, a chronic digestive disorder characterized by delayed gastric emptying, often results from diabetes, post-surgical complications, autoimmune diseases, and neurological disorders. In approximately 50% of cases, the cause is idiopathic gastroparesis (IGD). Recent studies suggest a link between chronic enteroviral infection and persistent gastrointestinal symptoms, including delayed gastric emptying. This study investigates the effects of a silydianin-rich extract from Silybum marianum seeds on enteroviral infections in vitro and the mitigation of delayed gastric emptying in mice. Silydianin, a key bioactive compound known for its liver-protective and antioxidant properties, has not been extensively studied for its impact on enteroviral infections and gastroparesis. Methods: NMR spectroscopy (1H, 13C, DEPT 135 and 2D, and HSQC) and HRMS identified silydianin as the primary compound, with minor flavonolignans. This study assessed the cytotoxicity and antiviral activity of the extract at various stages of the viral life cycle, including virucidal activity, cell protection, and post-infection effects, using neutral red assays in RD cells, with results confirmed by real-time PCR. The viruses studied included coxsackievirus B2, coxsackievirus A10, poliovirus SL-1, and enterovirus EV71. The impact on delayed gastric emptying was evaluated in a mouse model using doses of 100 and 200 mg/kg compared to a control group receiving physiological saline. Results: The silydianin-rich extract showed consistent antiviral activity, with the highest selectivity index (SI) for EV71 (4.08) during virucidal activity. It provided moderate cell protection, with EC50 values ranging from 120.88 to 186.10 µg/mL and SI values from 2.20 to 3.39. Post-infection treatment showed varying efficacy, with coxsackie A10 demonstrating the highest SI (3.90). In vivo, the extract at 200 mg/kg significantly improved gastric emptying to 96.47% and slightly increased gastrointestinal transit from 50.33% to 61.46%. Conclusions: These results suggest that silydianin may be effective for treating enteroviral infections and enhancing intestinal function, making it a promising candidate for gastroparesis treatment and warranting further research. Full article
Show Figures

Figure 1

8 pages, 1188 KiB  
Article
The Emergence of Coxsackievirus A16 Subgenotype B1c: A Key Driver of the Hand, Foot, and Mouth Disease Epidemic in Guangdong, China
by Huiling Zeng, Biao Zeng, Lina Yi, Lin Qu, Jiadian Cao, Fen Yang, Haiyi Yang, Chunyan Xie, Yuxi Yan, Wenwen Deng, Shuling Li, Yingtao Zhang, Baisheng Li, Jing Lu and Hanri Zeng
Viruses 2025, 17(2), 219; https://doi.org/10.3390/v17020219 - 3 Feb 2025
Viewed by 1213
Abstract
Background: In 2024, mainland China witnessed a significant upsurge in Hand, Foot, and Mouth Disease (HFMD) cases. Coxsackievirus A16 (CVA16) is one of the primary causative agents of HFMD. Long-term monitoring of theCVA16 infection rate and genotype changes is crucial for the prevention [...] Read more.
Background: In 2024, mainland China witnessed a significant upsurge in Hand, Foot, and Mouth Disease (HFMD) cases. Coxsackievirus A16 (CVA16) is one of the primary causative agents of HFMD. Long-term monitoring of theCVA16 infection rate and genotype changes is crucial for the prevention and control of HFMD. Methods: A total of 40,673 clinical specimens were collected from suspected HFMD cases in Guangdong province from 2018 to 2024, including rectal swabs (n = 27,954), throat swabs (n = 6791), stool (n = 5923), cerebrospinal fluid (n = 3), and herpes fluid (n = 2). A total of 24,410 samples were detected as EV-positive and further typed by RT-PCR. A total of 872 CVA16-positive samples were isolated and further sequenced to obtain the full-length VP1 sequence. Phylogenetic analysis was performed based on viral protein 1 gene (VP1). Results: In the first 25 weeks of 2024, reported cases of HFMD were 1.36 times higher than the mean rates of 2023. In 2024, CVA16 predominated at 75.42%, contrasting with the past etiological pattern in which the CVA6 was predominant with the detection rate ranging from 32.85 to 77.61% from 2019 to 2023. Phylogenetic analysis based on the VP1 gene revealed that the B1a and B1b subtypes co-circulated in Guangdong from 2018 to 2022. The B1c outbreak clade, detected in Guangdong in 2023, constituted 68.24% of the 148 strains of CVA16 collected in 2024, suggesting a subtype shift in the CVA16 virus. There were three specific amino acid variations (P3S, I235V, and T240A) in the VP1 sequence of B1c. Conclusions: The new emergence of the CVA16 B1c outbreak clade in Guangdong during 2023–2024 highlights the necessity for the enhanced surveillance of the virus evolution epidemiological dynamic in this region. Furthermore, it is imperative to closely monitor the etiological pattern changes in Hand, Foot, and Mouth Disease (HFMD) in other regions as well. Such vigilance will be instrumental in guiding future vaccination strategies for HFMD. Full article
Show Figures

Figure 1

Back to TopTop