Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = coupled dipole theories

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 382 KB  
Article
Self-Organized Criticality and Quantum Coherence in Tubulin Networks Under the Orch-OR Theory
by José Luis Díaz Palencia
AppliedMath 2025, 5(4), 132; https://doi.org/10.3390/appliedmath5040132 - 2 Oct 2025
Viewed by 2929
Abstract
We present a theoretical model to explain how tubulin dimers in neuronal microtubules might achieve collective quantum coherence, resulting in wavefunction collapses that manifest as avalanches within a self-organized criticality (SOC) framework. Using the Orchestrated Objective Reduction (Orch-OR) theory as inspiration, we propose [...] Read more.
We present a theoretical model to explain how tubulin dimers in neuronal microtubules might achieve collective quantum coherence, resulting in wavefunction collapses that manifest as avalanches within a self-organized criticality (SOC) framework. Using the Orchestrated Objective Reduction (Orch-OR) theory as inspiration, we propose that microtubule subunits (tubulins) become transiently entangled via dipole–dipole couplings, forming coherent domains susceptible to sudden self-collapse. We model a network of tubulin-like nodes with scale-free (Barabási–Albert) connectivity, each evolving via local coupling and stochastic noise. Near criticality, the system exhibits power-law avalanches—abrupt collective state changes that we identify with instantaneous quantum wavefunction collapse events. Using the Diósi–Penrose gravitational self-energy formula, we estimate objective reduction times TOR=/Eg for these events in the 10–200 ms range, consistent with the Orch-OR conscious moment timescale. Our results demonstrate that quantum coherence at the tubulin level can be amplified by scale-free critical dynamics, providing a possible bridge between sub-neuronal quantum processes and large-scale neural activity. Full article
Show Figures

Figure 1

17 pages, 4214 KB  
Article
Physical Mechanisms of Linear and Nonlinear Optical Responses in Ferrocene-Embedded Cycloparaphenylenes
by Gang Zhang, Qianqian Wang, Yi Zou, Ying Jin and Jingang Wang
Chemistry 2025, 7(5), 136; https://doi.org/10.3390/chemistry7050136 - 25 Aug 2025
Viewed by 1019
Abstract
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic [...] Read more.
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic structure characteristics of Fc-[8]CPP and Fc-[11]CPP. Using density functional theory (DFT) and time-dependent DFT (TD-DFT), the π-electron delocalization properties and optical behaviors of these molecules were analyzed. Furthermore, their responses to external electromagnetic fields were explored through electronic circular dichroism (ECD) and Raman spectroscopy, comparing chiral optical responses and electron–vibration coupling effects to elucidate their photophysical properties. The results reveal that the HOMO-LUMO energy gaps of Fc-[8]CPP and Fc-[11]CPP are 5.81 eV and 5.95 eV, respectively, with a slight increase as ring size grows; Fc-[8]CPP exhibits a stronger chiral response, while Fc-[11]CPP shows reduced chirality due to enhanced symmetry. Finally, TD-DFT calculations demonstrate that their optical absorption is dominated by localized excitations with partial charge transfer contributions. These findings provide a theoretical foundation for designing conjugated macrocyclic materials with superior optoelectronic performance. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

10 pages, 1763 KB  
Communication
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications
by Dongyu Hu, Mengya Pan, Yanpeng Shi and Yifei Zhang
Biosensors 2025, 15(6), 368; https://doi.org/10.3390/bios15060368 - 7 Jun 2025
Cited by 1 | Viewed by 1023
Abstract
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection [...] Read more.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

11 pages, 1603 KB  
Article
Photoinduced Interactions in Thin Films of Azo Dyes and Planar-Aligned Nematic Liquid Crystal
by Aleksey Kudreyko, Vladimir Chigrinov and Arina Perestoronina
Crystals 2025, 15(1), 22; https://doi.org/10.3390/cryst15010022 - 28 Dec 2024
Cited by 1 | Viewed by 1533
Abstract
Properties of surface anchoring depend on the absorbed exposure energy and various potential interactions associated with liquid crystal and azo dye layers. In this study, we investigate a model of dispersion, steric and photoinduced interactions with the goal of providing a qualitative and [...] Read more.
Properties of surface anchoring depend on the absorbed exposure energy and various potential interactions associated with liquid crystal and azo dye layers. In this study, we investigate a model of dispersion, steric and photoinduced interactions with the goal of providing a qualitative and quantitative description of orientationally ordered hard uniaxial liquid crystals and azo dye molecules. By using the Onsager theory, we estimated the effect of excluded volume. Typical repulsive potentials between liquid crystal and azo dye molecules are displayed graphically. The presence of statistical dispersion in molecular alignment of liquid crystals leads to potential wells in dipole–dipole interactions. Our mean field theory investigation of dipole–dipole interactions shows that the anchoring free energy is governed by the net interaction energy associated with the averaged dipole moments of liquid crystal and azo dye molecules, photoaligned surface dipole moments, and local charge densities. We also use the Fokker–Planck equation to show that rotational diffusion is described by the effective mean field potential, which includes photoinduced and van der Waals interactions. Our findings underscore the potential of mean field theory for intermolecular couplings in photoaligned surfaces, opening up new pathways of molecular design for a broad range of parameters. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

19 pages, 495 KB  
Article
State-Selective Double Photoionization of Atomic Carbon and Neon
by Frank L. Yip
Atoms 2024, 12(12), 70; https://doi.org/10.3390/atoms12120070 - 16 Dec 2024
Viewed by 1371
Abstract
Double photoionization (DPI) allows for a sensitive and direct probe of electron correlation, which governs the structure of all matter. For atoms, much of the work in theory and experiment that informs our fullest understanding of this process has been conducted on helium, [...] Read more.
Double photoionization (DPI) allows for a sensitive and direct probe of electron correlation, which governs the structure of all matter. For atoms, much of the work in theory and experiment that informs our fullest understanding of this process has been conducted on helium, and efforts continue to explore many-electron targets with the same level of detail to understand the angular distributions of the ejected electrons in full dimensionality. Expanding on previous results, we consider here the double photoionization of two 2p valence electrons of atomic carbon and neon and explore the possible continuum states that are connected by dipole selection rules to the coupling of the outgoing electrons in 3P, 1D, and 1S initial states of the target atoms. Carbon and neon share these possible symmetries for the coupling of their valence electrons. Results are presented for the energy-sharing single differential cross section (SDCS) and triple differential cross section (TDCS), further elucidating the impact of the initial state symmetry in determining the angular distributions that are impacted by the correlation that drives the DPI process. Full article
Show Figures

Figure 1

20 pages, 11772 KB  
Article
Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of Multiscale Plasticity (FTMP): Part II: Modeling Vacancy Formation and Coupling with Diffusion Analysis
by Xinping You and Tadashi Hasebe
Metals 2024, 14(12), 1406; https://doi.org/10.3390/met14121406 - 9 Dec 2024
Cited by 1 | Viewed by 2027
Abstract
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting [...] Read more.
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting the relationship between the incompatibility rate and the flux of dislocation density as edge dipole annihilation processes. Both direct and indirect coupling diffusion analyses, with and without cyclic straining, demonstrate that varying incompatibility rates tend to further promote vacancy diffusion, leading to surface grooving, enhanced extension rates, and eventual transition to cracks. The findings reveal that (i) the evolved PSB ladder structure serves as a site for vacancy formation, (ii) it provides a diffusion path toward the specimen surface, and (iii) it significantly enhances groove extension rates. These factors effectively facilitate the transition from a “groove” to a “crack”, evidenced by the abrupt acceleration of the extension rate, mirroring systematic experimental observations. These achievements validate the FTMP’s capability to simulate complex phenomena and significantly deepen our understanding of slip band–fatigue crack transition mechanisms. Full article
Show Figures

Figure 1

17 pages, 707 KB  
Article
PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics
by Denis S. Tikhonov
Spectrosc. J. 2024, 2(3), 171-187; https://doi.org/10.3390/spectroscj2030012 - 13 Sep 2024
Cited by 2 | Viewed by 2258
Abstract
Here, we present a general framework for computing the infrared anharmonic vibrational spectra of polyatomic molecules using Born–Oppenheimer molecular dynamics (BOMD) with PyRAMD software. To account for nuclear quantum effects, we suggest using a simplified Wigner sampling (SWS) approach simultaneously coupled with Andersen [...] Read more.
Here, we present a general framework for computing the infrared anharmonic vibrational spectra of polyatomic molecules using Born–Oppenheimer molecular dynamics (BOMD) with PyRAMD software. To account for nuclear quantum effects, we suggest using a simplified Wigner sampling (SWS) approach simultaneously coupled with Andersen and Berendsen thermostats. We propose a new criterion for selecting the parameter of the SWS based on the molecules’ harmonic vibrational frequencies and usage of the large-time-step blue shift correction, allowing for a decrease in computational expenses. For the Fourier transform of the dipole moment autocorrelation function, we propose using the regularized least-squares analysis, which allows us to obtain higher-frequency resolution than with the direct application of fast Fourier transform. Finally, we suggest the usage of the pre-parameterized scaling factors for the IR spectra from BOMD, also providing the scaling factors for the spectra at the BLYP-D3(BJ)/6-31G, PBE-D3(BJ)/6-31G, and PBEh-3c levels of theory. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

22 pages, 10307 KB  
Article
Research on the Corrosion Detection of Rebar in Reinforced Concrete Based on SMFL Technology
by Hongsong Tian, Yujiang Kong, Bin Liu, Bin Ouyang, Zhenfeng He and Leng Liao
Materials 2024, 17(14), 3421; https://doi.org/10.3390/ma17143421 - 11 Jul 2024
Viewed by 2209
Abstract
The corrosion damage of rebars is a leading cause of structural failure in reinforced concrete structures. Timely detection and evaluation of corrosion damage are crucial for ensuring structural safety. The self-magnetic flux leakage (SMFL) technology is often used due to its unique advantages [...] Read more.
The corrosion damage of rebars is a leading cause of structural failure in reinforced concrete structures. Timely detection and evaluation of corrosion damage are crucial for ensuring structural safety. The self-magnetic flux leakage (SMFL) technology is often used due to its unique advantages in detecting corrosion damage of rebars. However, challenges persist in theoretically characterizing corrosion damage and exploring influencing factors. Therefore, the magnetic dipole theory model coupled with multiple-shaped defects is proposed and the influence of corrosion expansion force on the detection of corrosion damage is analyzed. The results show that the standard deviation of the magnetic field intensity induced by corrosion varied by up to 833%, while that induced by corrosion expansion force did not exceed 10%. So the changes in the SMFL field induced by corrosion damage play the dominant role and the influence of corrosion expansion force can be ignored. In addition, corrosion damage experiments on reinforced concrete based on the SMFL technology were conducted. The results indicate that the SFML curves of rebars change monotonically with the increasing corrosion degree. Significant variations in the curves correspond well with the locations of severe corrosion on the rebars. There is a positive relationship between the proposed magnetic parameters and the corrosion degree of the rebars. Furthermore, a corrosion damage evaluation model considering multiple parameters is developed to predict the corrosion degree of rebars. The prediction results demonstrate high accuracy, with an average absolute error of only 8.33%, which is within 10%. Full article
Show Figures

Figure 1

10 pages, 4507 KB  
Article
Graphene-Tuned, Tightly Coupled Hybrid Plasmonic Meta-Atoms
by Kai Chen, Ke Li, Yiming Wang, Zihao Zhang, Yanpeng Shi, Aimin Song and Yifei Zhang
Nanomaterials 2024, 14(8), 713; https://doi.org/10.3390/nano14080713 - 19 Apr 2024
Cited by 2 | Viewed by 1928
Abstract
Tightly coupled meta-atoms (TCMAs) are densely packed metamaterials with unnatural refractive indexes. Actively modulated TCMAs with tunable optical properties have found many applications in beam shaping, holography, and enhanced light–matter interactions. Typically, TCMAs are studied in the classic Bloch theory. Here, tightly coupled [...] Read more.
Tightly coupled meta-atoms (TCMAs) are densely packed metamaterials with unnatural refractive indexes. Actively modulated TCMAs with tunable optical properties have found many applications in beam shaping, holography, and enhanced light–matter interactions. Typically, TCMAs are studied in the classic Bloch theory. Here, tightly coupled H-shaped meta-atoms are proposed with an ultra-high permittivity of ~6000, and their active modulation with graphene is designed by using the tightly coupled dipole array (TCDA) theory. The H-shaped meta-atoms are used as dipole arms, and the graphene strips function as the dipole loads. By tuning the chemical potential of graphene, the resonant amplitude, frequency, and permittivity are dynamically modulated. The simulations indicate that the real and imaginary parts of permittivity change from 6854 to 1522 and from 7356 to 2870, respectively. The experimental validation demonstrates a modulation depth of 11.6% in the resonant frequency, i.e., from 219.4 to 195 GHz, and a substantial 52.5% modulation depth in transmittance under a bias voltage of less than 1.5 V. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

31 pages, 43899 KB  
Article
“Polymerization” of Bimerons in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy
by Natsuki Mukai and Andrey O. Leonov
Nanomaterials 2024, 14(6), 504; https://doi.org/10.3390/nano14060504 - 11 Mar 2024
Cited by 11 | Viewed by 2874
Abstract
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition [...] Read more.
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition to the vortices and antivortices, bimerons feature circular regions which are located behind the anti-vortices and bear the rotational sense opposite to the rotational sense chosen by the Dzyaloshinskii–Moriya interaction. In an attempt to eliminate these wrong-twist regions with an excess of positive energy density, bimerons assemble into chains, and as such exhibit an attracting interaction potential. As an alternative to chains, we demonstrate the existence of ring-shaped bimeron clusters of several varieties. In some rings, bimeron dipoles are oriented along the circle and swirl clockwise and/or counterclockwise (dubbed “roundabouts”). Moreover, a central meron encircled by the outer bimerons may possess either positive or negative polarity. In other rings, the bimeron dipoles point towards the center of a ring and consequently couple to the central meron (dubbed “crossings”). We point out that the ringlike solutions for baryons obtained within the Skyrme model of pions, although driven by the same tendency of the energy reduction, yield only one type of bimeron rings. The conditions of stability applied to the described bimeron rings are additionally extended to bimeron networks when bimerons fill the whole space of two-dimensional samples and exhibit combinations of rings and chains dispersed with different spatial density (dubbed bimeron “polymers”). In particular, bimeron crystals with hexagonal and the square bimeron orderings are possible when the sides of the unit cells represent chains of bimerons joined in intersections with three or four bimerons, respectively; otherwise, bimeron networks represent disordered bimeron structures. Moreover, we scrutinize the inter-transformations between hexagonal Skyrmion lattices and disordered bimeron polymers occuring via nucleation and mutual annihilation of merons within the cell boundaries. Our theory provides clear directions for experimental studies of bimeron orderings in different condensed-matter systems with quasi-two-dimensional geometries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

21 pages, 3957 KB  
Article
Explicit Definitions for the Electromagnetic Energies in Electromagnetic Radiation and Mutual Coupling
by Gaobiao Xiao and Rui Liu
Electronics 2023, 12(19), 4031; https://doi.org/10.3390/electronics12194031 - 25 Sep 2023
Cited by 3 | Viewed by 1531
Abstract
It is still difficult to accurately evaluate the reactive electromagnetic energy and the radiative electromagnetic energy of a radiator, because there are no explicit expressions for them. This paper proposes to borrow the energy concept in the charged particle theory and separate the [...] Read more.
It is still difficult to accurately evaluate the reactive electromagnetic energy and the radiative electromagnetic energy of a radiator, because there are no explicit expressions for them. This paper proposes to borrow the energy concept in the charged particle theory and separate the total electromagnetic energy of a radiator into three parts: a Coulomb–velocity energy, a radiative energy and a macroscopic Schott energy. Consequently, the Poynting vector is considered to include a real radiative power flow by the radiative energy and a pseudo power flow caused by the fluctuation of the reactive energy. The energies involved in the electromagnetic mutual coupling are separated in a similar way. All energies are defined with explicit expressions in which the vector potential plays an important role. The time domain formulation and the frequency domain formulation of the theory are consistent with each other. The theory is verified with the Hertzian dipole. Numerical examples demonstrate that this theory may provide proper interpretations for electromagnetic radiation and mutual coupling problems. Full article
Show Figures

Figure 1

20 pages, 3415 KB  
Article
Energetic and Spectroscopic Properties of the Low-Lying Isomers of C5H: A High-Level Ab Initio Study
by Sayon Satpati, Tarun Roy, Anakuthil Anoop, Venkatesan S. Thimmakondu and Subhas Ghosal
Atoms 2023, 11(9), 115; https://doi.org/10.3390/atoms11090115 - 24 Aug 2023
Cited by 3 | Viewed by 2148
Abstract
Fourteen highly reactive isomers of C5H and their ionic counterparts have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The linear C5H (l-C5H) radical, pent-1,3-diyn-5-yliden-1-yl (1), along with its cationic [...] Read more.
Fourteen highly reactive isomers of C5H and their ionic counterparts have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The linear C5H (l-C5H) radical, pent-1,3-diyn-5-yliden-1-yl (1), along with its cationic form and the cyclic C5H (c-C5H), 1-ethynylcycloprop-1-en-2-yl-3-ylidene (2), have recently been detected in the Taurus Molecular Cloud-1. By using the UCCSD(T)/cc-pCVTZ level of theory, the calculated rotational constants and other spectroscopic parameters are found to be in good agreement with the available experimental data for isomers 1 and 2. Therefore, the current theoretical study may assist synthetic chemists and molecular spectroscopists in detecting other isomers in the laboratory or in the interstellar medium (ISM). Thermodynamically favorable rearrangement schemes for forming low-lying isomers 1, 2, and 3 have also been studied theoretically, and (2λ3-cycloprop-2-en-1-ylidene)ethenylidene (3) with a large dipole moment (μ = 4.73 Debye) is proposed to be a plausible candidate for detection in the ISM. Full article
Show Figures

Figure 1

11 pages, 5529 KB  
Article
Tailing Optical Pulling Force on a Metal–Dielectric Hybrid Dimer with Electromagnetic Coupling
by Xiao-Ming Zhang, Jin-Jing Yu, Hai-Ping Wu, Xia Zhou, Tian-Yue Zhang and Jian-Ping Liu
Nanomaterials 2023, 13(15), 2254; https://doi.org/10.3390/nano13152254 - 5 Aug 2023
Cited by 3 | Viewed by 1809
Abstract
In this work, we demonstrate that optical pulling forces (OPFs) can be induced by a hybrid dimer consisting of a Si nanoparticle (NP) and a coated nanoparticle with a gain core and Au shell under normal plane wave illumination. Analytical theory reveals that [...] Read more.
In this work, we demonstrate that optical pulling forces (OPFs) can be induced by a hybrid dimer consisting of a Si nanoparticle (NP) and a coated nanoparticle with a gain core and Au shell under normal plane wave illumination. Analytical theory reveals that the underlying physical mechanism relies on interactions between the electric dipole (ED) modes excited in the NPs. As compared with the individual NP, it is found that the magnitude of optical force can be enlarged by almost three orders for the Si NP and one order for the coated gain NP in the coupled dimer. In addition, we find that the OPFs exerted on the NPs are heavily dependent on the gain level of the core materials, the incident polarization angle and the sizes of the NPs. More interestingly, we find that the OPF can also be exerted on a trimer system consisting of two identical Si NPs and a coated NP arranged in a line. The related results could be used to propose a versatile platform for manipulating NPs. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

18 pages, 3729 KB  
Article
Structure and Bonding Patterns in C5H4 Isomers: Pyramidane, Planar Tetracoordinate Carbon, and Spiro Molecules
by Sayon Satpati, Tarun Roy, Sandip Giri, Anakuthil Anoop, Venkatesan S. Thimmakondu and Subhas Ghosal
Atoms 2023, 11(6), 96; https://doi.org/10.3390/atoms11060096 - 10 Jun 2023
Cited by 7 | Viewed by 5628
Abstract
We have theoretically investigated nine unusual isomers of the molecular formula C5H4 using coupled cluster (CC) and density functional theory (DFT) methods. These molecules possess non-classical structures consisting of two pyramidanes, three planar tetracoordinate carbon (ptC), and four [...] Read more.
We have theoretically investigated nine unusual isomers of the molecular formula C5H4 using coupled cluster (CC) and density functional theory (DFT) methods. These molecules possess non-classical structures consisting of two pyramidanes, three planar tetracoordinate carbon (ptC), and four spiro types of isomers. Both the pyramidanes (tetracyclo-[2.1.0.01,3.02,5]pentane; py-1 and tricyclo-[2.1.0.02,5]pentan-3-ylidene; py-2) are minima on the potential energy surface (PES) of C5H4. Among the three isomers containing ptC, (SP4)-spiro [2.2]pent-1-yne (ptC-2) is a minimum, whereas isomer, (SP4)-spiro [2.2]pent-1,4-diene (ptC-1) is a fourth-order saddle point, and (SP4)-sprio[2.2]pent-1,4-diylidene (ptC-3) is a transition state. The corresponding spiro isomers spiro[2.2]pent-1,4-diene (spiro-1), sprio[2.2]pent-1,4-diylidene (spiro-3) and spiro[2.2]pent-4-en-1-ylidene (spiro-4) are local minima, except spiro[2.2]pent-1-yne (spiro-2), which is a second-order saddle point. All relative energies are calculated with respect to the global minimum (pent-1,3-diyne; 1) at the CCSD(T)/cc-pVTZ level of theory. Quantum chemical calculations have been performed to analyze the bonding and topological configurations for all these nine isomers at the B3LYP/6-311+G(d,p) level of theory for a better understanding of their corresponding electronic structures. ptC-2 was found to be thermodynamically more stable than its corresponding spiro counterpart (spiro-2) and possesses a high dipole moment (μ = 4.64 D). The stability of the ptC structures with their higher spin states has been discussed. Full article
(This article belongs to the Special Issue Planar Tetracoordinate Carbon—Fifty Years and Beyond)
Show Figures

Figure 1

13 pages, 484 KB  
Article
Spectroscopic Constants and Anharmonic Vibrational Frequencies of C(O)OC, c-C2O2 and Their Silicon-Containing Analogues
by Olivia A. Harwick and Ryan C. Fortenberry
Molecules 2023, 28(11), 4563; https://doi.org/10.3390/molecules28114563 - 5 Jun 2023
Viewed by 3754
Abstract
Comets are likely to contain various carbon oxide molecules potentially including C(O)OC and c-C2O2 on their surfaces and comae, as well as their silicon-substituted analogues possibly playing a role in the formation of interstellar dust grains. In this work, high-level [...] Read more.
Comets are likely to contain various carbon oxide molecules potentially including C(O)OC and c-C2O2 on their surfaces and comae, as well as their silicon-substituted analogues possibly playing a role in the formation of interstellar dust grains. In this work, high-level quantum chemical data are provided to support such potential future astrophysical detection through the generation of predicted rovibrational data. Laboratory-based chemistry would also benefit from such aforementioned computational benchmarking considering these molecules’ historic computational and experimental elusiveness. Coupled-cluster singles, doubles, and perturbative triples, the F12b formalism, and the cc-pCVTZ-F12 basis set garner the rapid, yet highly trusted F12-TcCR level of theory leveraged presently. This current work points to all four molecules’ strong IR activity, coupled with large intensities, thus suggesting the potential for JWST detection. Although Si(O)OSi possesses a permanent dipole moment significantly larger than those of the other molecules of present interest, the significant abundance of the potential precursor carbon monoxide suggests that the dicarbon dioxide molecules may yet be observable in the microwave region of the electromagnetic spectrum. Thus, this present work details the likely existence and detectability of these four cyclic molecules, providing updated implications compared to previous work performed both experimentally and computationally. Full article
Show Figures

Figure 1

Back to TopTop