Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,266)

Search Parameters:
Keywords = cost equations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 768 KiB  
Article
Optimization of Stresses near Reinforced Holes in Relation to Sustainable Design of Composite Structural Elements
by Bartosz Miller, Marta Maksymovych, Olesia Maksymovych and Fedir Gagauz
Sustainability 2025, 17(15), 7103; https://doi.org/10.3390/su17157103 - 5 Aug 2025
Abstract
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or [...] Read more.
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or glued composite reinforcing overlays. The determination of stresses near holes and overlays is reduced to solving a system of singular integral equations. The kernels of these equations are constructed using Green’s solution, which allows a reduction in the number of equations to four. It is shown that the stress concentration near holes can be significantly reduced by optimizing the thickness, elastic properties, and shape of the overlays. The stress calculations performed based on the three-dimensional theory of elasticity confirmed the reliability of the results obtained within the framework of the plane problem of an anisotropic body. The results obtained, in accordance with the concept of sustainable development, enable the develop simple methods for increasing reliability, reducing material consumption, and reducing the manufacturing and operating costs of composite structures in the aerospace and mechanical engineering industries. Full article
24 pages, 3795 KiB  
Article
An Improved Galerkin Framework for Solving Unsteady High-Reynolds Navier–Stokes Equations
by Jinlin Tang and Qiang Ma
Appl. Sci. 2025, 15(15), 8606; https://doi.org/10.3390/app15158606 (registering DOI) - 3 Aug 2025
Viewed by 62
Abstract
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the [...] Read more.
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the multiscale nature of these flows demands prohibitively high computational resources for uniformly refined meshes. This paper proposes an improved Galerkin framework that synergistically integrates a Variational Multiscale Stabilization (VMS) method with an adaptive mesh refinement (AMR) strategy to overcome these dual challenges. Based on the Ritz–Galerkin formulation with the stable Taylor–Hood (P2P1) element, a VMS term is introduced, derived from a generalized θ-scheme. This explicitly constructs a subgrid-scale model to effectively suppress numerical oscillations without introducing excessive artificial diffusion. To enhance computational efficiency, a novel a posteriori error estimator is developed based on dual residuals. This estimator provides the robust and accurate localization of numerical errors by dynamically weighting the momentum and continuity residuals within each element, as well as the flux jumps across element boundaries. This error indicator guides an AMR algorithm that combines longest-edge bisection with local Delaunay re-triangulation, ensuring optimal mesh adaptation to complex flow features such as boundary layers and vortices. Furthermore, the stability of the Taylor–Hood element, essential for stable velocity–pressure coupling, is preserved within this integrated framework. Numerical experiments are presented to verify the effectiveness of the proposed method, demonstrating its ability to achieve stable, high-fidelity solutions on adaptively refined grids with a substantial reduction in computational cost. Full article
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 - 2 Aug 2025
Viewed by 250
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

18 pages, 1458 KiB  
Article
Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan
by Sodikjon Avazalievich Mamasoliev, Motoi Kusadokoro, Takeshi Maru, Shavkat Hasanov and Yoshiko Kawabata
Sustainability 2025, 17(15), 6991; https://doi.org/10.3390/su17156991 - 1 Aug 2025
Viewed by 180
Abstract
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising [...] Read more.
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising drought conditions. This study explores the factors influencing grape farmers’ willingness to collaborate on water management in the districts of Ishtikhan, Payarik, and Kushrabot, which together produce 75–80% of the region’s grapes. A quantitative survey of 384 grape-producing households was conducted across 19 county citizens’ gatherings (38.7% of such gatherings), and structural equation modeling was employed to analyze a framework consisting of four dimensions: norms, environmental concerns, economic barriers, and the intention to adopt sustainable practices. The results indicate that norms and environmental concerns positively influence collaboration, suggesting a collective orientation toward sustainability. In contrast, economic barriers such as high costs and limited financial capacity significantly hinder cooperative behavior. Furthermore, a strong individual intention to adopt sustainable practices was associated with a greater likelihood of collaboration. These findings highlight the critical drivers and constraints shaping collective water use in agriculture and suggest that targeted policy measures and community-led efforts are vital for promoting sustainable water governance in drought-prone regions. Full article
Show Figures

Figure 1

27 pages, 968 KiB  
Article
Factors Influencing Generative AI Usage Intention in China: Extending the Acceptance–Avoidance Framework with Perceived AI Literacy
by Chenhui Liu, Libo Yang, Xinyu Dong and Xiaocui Li
Systems 2025, 13(8), 639; https://doi.org/10.3390/systems13080639 - 1 Aug 2025
Viewed by 224
Abstract
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat [...] Read more.
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat avoidance theory (TTAT), this research integrates perceived AI literacy into the AI acceptance–avoidance framework as a central variable. This study gathered 583 valid survey responses from China and validated its model using a dual-phase, combined method that integrates structural equation modeling and artificial neural networks. Research findings indicate that the model explains 51.6% of the variance in generative AI usage intention. Except for social influence, all variables within the extended framework significantly impact the usage intention, with perceived AI literacy being the strongest predictor (β = 0.33, p < 0.001). Additionally, perceived AI literacy mitigates the adverse effect of perceived threats on the intention to use AI. Practical implications suggest that enterprises adopt a tiered strategy, as follows: maximize perceived benefits by integrating AI skills into reward systems and providing task-automation training; minimize perceived costs through dedicated technical support and transparent risk mitigation plans; and cultivate AI literacy via progressive learning paths, advancing from data analysis to innovation. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
Show Figures

Figure 1

19 pages, 439 KiB  
Article
Multi-Objective Optimization for Economic and Environmental Dispatch in DC Networks: A Convex Reformulation via a Conic Approximation
by Nestor Julian Bernal-Carvajal, Carlos Arturo Mora-Peña and Oscar Danilo Montoya
Electricity 2025, 6(3), 43; https://doi.org/10.3390/electricity6030043 - 1 Aug 2025
Viewed by 197
Abstract
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line [...] Read more.
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line capacities. To overcome the non-convexity introduced by quadratic voltage products in the power flow equations, a convex reformulation is proposed using second-order cone programming (SOCP) with auxiliary variables. This reformulation ensures global optimality and enhances computational efficiency. Two test systems are used for validation: a 6-node DC grid and an 11-node grid incorporating hourly photovoltaic generation. Comparative analyses show that the convex model achieves objective values with errors below 0.01% compared to the original non-convex formulation. For the 11-node system, the integration of photovoltaic generation led to a 24.34% reduction in operating costs (from USD 10.45 million to USD 7.91 million) and a 27.27% decrease in CO2 emissions (from 9.14 million kg to 6.64 million kg) over a 24 h period. These results confirm the effectiveness of the proposed SOCP-based methodology and demonstrate the environmental and economic benefits of renewable integration in DC networks. Full article
Show Figures

Figure 1

28 pages, 3272 KiB  
Review
Research Advancements in High-Temperature Constitutive Models of Metallic Materials
by Fengjuan Ding, Tengjiao Hong, Fulong Dong and Dong Huang
Crystals 2025, 15(8), 699; https://doi.org/10.3390/cryst15080699 - 31 Jul 2025
Viewed by 808
Abstract
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson [...] Read more.
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson pressure bar testing, and hot torsion. The original experimental data used for establishing the constitutive model serves as the foundation for developing phenomenological models such as Arrhenius and Johnson–Cook models, as well as physical-based models like Zerilli–Armstrong or machine learning-based constitutive models. The resulting constitutive equations are integrated into finite element analysis software such as Abaqus, Ansys, and Deform to create custom programs that predict the distributions of stress, strain rate, and temperature in materials during processes such as cutting, stamping, forging, and others. By adhering to these methodologies, we can optimize parameters related to metal processing technology; this helps to prevent forming defects while minimizing the waste of consumables and reducing costs. This study provides a comprehensive overview of commonly utilized experimental equipment and methods for developing constitutive models. It discusses various types of constitutive models along with their modifications and applications. Additionally, it reviews recent research advancements in this field while anticipating future trends concerning the development of constitutive models for high-temperature deformation processes involving metallic materials. Full article
Show Figures

Figure 1

24 pages, 13347 KiB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 201
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints
by Kang Xu, Zhaopeng Liu and Shuaihu Li
Energies 2025, 18(15), 4018; https://doi.org/10.3390/en18154018 - 28 Jul 2025
Viewed by 260
Abstract
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling [...] Read more.
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling operating point. To address this problem, this paper proposes a multi-objective dispatch decision-making optimization model for the IMDN with static security region (SSR) constraints. Firstly, the non-sequential Monte Carlo sampling is employed to generate diverse operational scenarios, and then the key risk characteristics are extracted to construct the risk assessment index system for the transmission and distribution grid, respectively. Secondly, a hyperplane model of the SSR is developed for the IMDN based on alternating current power flow equations and line current constraints. Thirdly, a risk assessment matrix is constructed through optimal power flow calculations across multiple load levels, with the index weights determined via principal component analysis (PCA). Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. A membership matrix of the solution set is then established using fuzzy comprehensive evaluation to identify the optimal compromised operating point for dispatch decision support. Finally, the effectiveness and superiority of the proposed method are validated using an integrated IEEE 9-bus and IEEE 33-bus test system. Full article
Show Figures

Figure 1

17 pages, 1397 KiB  
Article
Comparison of Soil Organic Carbon Measurement Methods
by Wing K. P. Ng, Pete J. Maxfield, Adrian P. Crew, Dayane L. Teixeira, Tim Bevan and Matt J. Bell
Agronomy 2025, 15(8), 1826; https://doi.org/10.3390/agronomy15081826 - 28 Jul 2025
Viewed by 217
Abstract
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different [...] Read more.
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different agricultural land types. The measurement methods of loss-on-ignition (LOI), automated dry combustion (Dumas), and real-time near-infrared spectroscopy (NIRS) were compared. A total of 95 soil core samples, ranging in clay and calcareous content, were collected across a range of agricultural land types from forty-eight fields across five farms in the Southwest of England. There were similar and positive correlations between all three methods for measuring SOC (ranging from r = 0.549 to 0.579; all p < 0.001). On average, permanent grass fields had higher SOC content (6.6%) than arable and temporary ley fields (4.6% and 4.5%, respectively), with the difference of 2% indicating a higher carbon storage potential in permanent grassland fields. Newly predicted conversion equations of linear regression were developed among the three measurement methods according to all the fields and land types. The correlation of the conversation equations among the three methods in permanent grass fields was strong and significant compared to those in both arable and temporary ley fields. The analysed results could help understand soil carbon management and maximise sequestration. Moreover, the approach of using real-time NIRS analysis with a rechargeable portable NIRS soil device can offer a convenient and cost-saving alternative for monitoring preliminary SOC changes timely on or offsite without personnel risks from the high-temperature furnace and chemical reagent adopted in the LOI and Dumas processes, respectively, at the laboratory. Therefore, the study suggests that faster, lower-cost, and safer methods like NIRS for analysing initial SOC measurements are now available to provide similar SOC results as traditional soil analysis methods of the LOI and Dumas. Further studies on assessing SOC levels in different farm locations, land, and soil types across seasons using NIRS will improve benchmarked SOC data for farm stakeholders in making evidence-informed agricultural practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 358
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 257
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

24 pages, 4099 KiB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 302
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

18 pages, 296 KiB  
Article
Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea
by Chang-Soo Noh, Min-Ki Hyun and Seung-Hoon Yoo
Energies 2025, 18(14), 3809; https://doi.org/10.3390/en18143809 - 17 Jul 2025
Viewed by 369
Abstract
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) [...] Read more.
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) coexist, a hedonic price equation was estimated to analyze the impact of the heating method choices on housing values. Various housing attributes, including physical, locational, and environmental factors, were controlled, and multiple regression models were compared to identify the best-performing specification. The results show that apartments equipped with a DHS are priced, on average, KRW 92 million (USD 72 thousand) higher than those with an IHS. The price difference corresponds to KRW 849 thousand (USD 665) per m2 and possesses the statistical significance at the 5% level. Moreover, it is quite meaningful, representing roughly 11.2% of the price of an average apartment. These findings suggest that the use of DHS has a positive effect on apartment prices that reflect consumers’ preferences, beyond its advantages in stable heat supply and energy cost savings. This article provides empirical evidence that DHS can serve as an important urban infrastructure contributing to asset value enhancement. Although this study is based on a specific geographic area and caution must be exercised in generalizing its findings, it reports the interesting finding that residential heating method significantly affects housing prices. Full article
25 pages, 1500 KiB  
Article
The Role of Sequencing Economics in Agglomeration: A Contrast with Tinbergen’s Rule
by Akifumi Kuchiki
Economies 2025, 13(7), 204; https://doi.org/10.3390/economies13070204 - 17 Jul 2025
Viewed by 266
Abstract
In this paper, we present the concept of “sequencing economics”, consisting of (A) segmentation, (B) construction sequencing, and (C) functions. An agglomeration is organized into segments, and sequencing economics examines the sequential process of efficiently building such segments. The functions (C) of the [...] Read more.
In this paper, we present the concept of “sequencing economics”, consisting of (A) segmentation, (B) construction sequencing, and (C) functions. An agglomeration is organized into segments, and sequencing economics examines the sequential process of efficiently building such segments. The functions (C) of the segments act as a master switch, an accelerator, a brake, etc. in the implementation of agglomeration policy. In this paper, we identify a master switch and an accelerator in scientific city agglomeration policy and draw two conclusions. First, in agglomeration policy, the construction of the master switch lowers “transport costs”, as derived from the monocentric city model of spatial economics by Fujita and Krugman. Second, the accelerator segment represents the activities of the service sector that have the highest forward-linkage effect in an input–output relationship. Regarding science city agglomeration policy, it can be concluded that the master switch is high-speed rail and the accelerator is research and education activities. In this paper, the new scientific urban agglomeration that emerges from monocentric cities is referred to as railroad-driven agglomeration (RDA), which is a type of transit-oriented development (TOD). This paper demonstrates that the Tsukuba Express, as a case study of RDA, caused the agglomeration of Tsukuba Science City. This paper establishes the concept of sequencing economics, a policy implementation rule that differs from Tinbergen’s rule. The latter is based on the concept of simultaneous equations, whereas the rule of sequencing economics is based on sequential equations. RDA enables middle-income countries to surpass their middle-income status. Full article
Show Figures

Figure 1

Back to TopTop