Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = cost distance accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 294
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 5615 KiB  
Article
Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk
by Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan and Providence Habumuremyi
Sustainability 2025, 17(9), 4016; https://doi.org/10.3390/su17094016 - 29 Apr 2025
Viewed by 948
Abstract
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, [...] Read more.
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, wind erosion, and sand deposition, which can disrupt operations and increase maintenance costs. To mitigate the significant threats posed by windblown sand to railway safety along the Lanzhou-Xinjiang High-Speed Railway, the technique of double rows of sand fences constructed from concrete columns and plates has been applied to the windward side of the railway. These structures are designed to reduce wind speed and capture moving sand, protecting the rail infrastructure. These fences reduce wind velocity on their leeward sides by 78% and 87% for the first and second rows, respectively. Additionally, due to the large openings in the fences, the sand-trapping efficiencies are 72% for the first row and 63% for the second. The effective shelter distance of the fence is ten times its height. However, advanced technologies like geographic information systems (GIS), geothermal energy solutions, and sustainable infrastructure practices are increasingly integrated into railway transportation to mitigate these risks and enhance safety and reliability. For the Etihad Railway, GIS techniques were utilized to identify areas vulnerable to sand accumulation and validate the substantial benefits of sand fences. Notably, a 40% reduction in wind speed and a significant 74% decrease in sand flux were observed post-installation, underscoring the effectiveness of these structures in disrupting sand mobility. Specifically, wind speed after fence installation was reduced by 40%. The threshold velocity for sand transport was approximately 0.206 m/s. The sand flux before fence installation was 19.95 kg/m2/s, reduced to 5.175 kg/m2/s after fence installation, marking a 74% reduction. The sand deposition behind the sand fence over a 500 m section was around 7387.5 kg/s. This demonstrates the significant role that sand fences play in reducing wind-driven sand transport, thus protecting the Etihad Railway from sand accumulation, and maintaining operational safety. Full article
Show Figures

Figure 1

45 pages, 27252 KiB  
Article
Numerical Simulation of Hydrogen Mixing Process in T-Junction Natural Gas Pipeline
by Yangyang Tian, Tongmu Tian, Gaofei Ren and Jiaxin Zhang
Materials 2025, 18(8), 1879; https://doi.org/10.3390/ma18081879 - 20 Apr 2025
Cited by 1 | Viewed by 555
Abstract
As a cost-effective transitional strategy, the integrated utilization and transportation of hydrogen and natural gas have gained significant attention as a viable pathway toward carbon neutrality. However, hydrogen’s low density, viscosity, and calorific value cause upward migration and accumulation in pipelines, raising embrittlement [...] Read more.
As a cost-effective transitional strategy, the integrated utilization and transportation of hydrogen and natural gas have gained significant attention as a viable pathway toward carbon neutrality. However, hydrogen’s low density, viscosity, and calorific value cause upward migration and accumulation in pipelines, raising embrittlement risks. Its high diffusion and leakage rates also pose significant safety challenges. To address hydrogen–natural gas blending challenges, achieving uniform mixing is crucial. This study systematically examines hydrogen–methane mixing in T-junction pipelines via numerical simulations, analyzing hydrogen mixing ratios (HMR: 10–25%) and methane flow rates (4–10 m/s) to assess flow and mixing dynamics. The coefficient of variation (COV) quantifies mixing uniformity with spatial and temporal analyses, optimizing hydrogen injection for rapid, homogeneous mixing. The key findings are as follows: (1) The uniform mixing length (the minimum axial distance required for the first pipeline cross-section to achieve 95% mixing uniformity) decreases inversely with the HMR, from 100 D to 20.875 D (D represents the pipeline diameter) as the HMR rises from 10% to 25%. (2) Analysis of initial uniform mixing time (defined as the duration required for the first pipeline cross-section to achieve 95% mixing uniformity) shows significant reduction with increasing HMR. While methane flow rate has a less pronounced effect, it nevertheless contributes to reducing the outlet uniform mixing time (defined as the time required to attain 95% mixing uniformity at the pipeline outlet). (3) A fundamental trade-off in engineering applications is established: increasing the HMR reduces mixing length but extends overall mixing time (difference between outlet and initial mixing times), while higher methane flow rates shorten overall mixing time at the cost of increased mixing length. The primary objective of this research is to elucidate the fundamental fluid dynamics of hydrogen–methane mixtures in T-junction pipelines, providing scientific insights for the safe and efficient operation of hydrogen-blended natural gas pipeline systems. Full article
Show Figures

Figure 1

23 pages, 1473 KiB  
Article
Recycled Glass Bottles for Craft-Beer Packaging: How to Make Them Sustainable? An Environmental Impact Assessment from the Combined Accounting of Cullet Content and Transport Distance
by Magdalena Wojnarowska, Magdalena Muradin, Annarita Paiano and Carlo Ingrao
Resources 2025, 14(2), 23; https://doi.org/10.3390/resources14020023 - 29 Jan 2025
Viewed by 2181
Abstract
Effective waste management plays a vital role in advancing sustainability goals across industries, with particular relevance to glass manufacturing—a sector that generates significant environmental challenges due to its resource-intensive production processes and high waste generation. The scale of production results in the accumulation [...] Read more.
Effective waste management plays a vital role in advancing sustainability goals across industries, with particular relevance to glass manufacturing—a sector that generates significant environmental challenges due to its resource-intensive production processes and high waste generation. The scale of production results in the accumulation of substantial amounts of waste glass, which, if not efficiently managed, contributes to environmental degradation. In this context, craft-beer production, which increasingly relies on glass bottles for packaging, presents unique challenges and opportunities for implementing sustainable practices. The sector faces trade-offs between increasing the use of recycled glass (cullet) and addressing the environmental impacts associated with transporting materials over long distances. The combination of centralized waste processing systems and long-distance transport adds economic and environmental costs, with transportation contributing up to 60–80% of overall waste management expenses. Addressing these issues requires an integrated approach that evaluates critical variables, such as cullet content and transport logistics, to identify solutions that balance economic and environmental efficiency. This study addresses the pressing issue of optimizing the recycling of glass bottles for craft-beer packaging by examining the combined influence of cullet content and transport distance on environmental sustainability. The objective was to assess the environmental impacts associated with varying levels of cullet content (0%, 57%, and 90%) and transport distances (25 to 250 km) using life cycle assessment (LCA) methodology aligned with ISO standards and the Product Environmental Footprint Category Rules (PEFCRs). The analysis demonstrated that increasing the proportion of recycled glass and reducing transport distances are key to improving environmental efficiency in bottle production. The most environmentally favorable scenario, S03 (90% cullet content), remains effective even at greater transport distances. In contrast, scenario S02 (57% cullet content) requires further distance reductions to maintain efficiency, particularly beyond 150 km. These findings highlight the importance of shorter supply chains and higher recycled material content as essential steps toward sustainable glass bottle production for the craft-beer industry. Full article
Show Figures

Figure 1

12 pages, 1458 KiB  
Article
Correlated Photon Lidar Based on Time-Division Multiplexing
by Yun Jiang, Bo Liu, Zixun Wang, Fengyun Huang, Taibei Liu, Lan Luo, Feifan He, Yongqi Yang and Bin Zhao
Photonics 2025, 12(2), 114; https://doi.org/10.3390/photonics12020114 - 27 Jan 2025
Viewed by 836
Abstract
Single-photon lidar (SPL) exhibits high sensitivity, making it particularly suitable for detecting weak echoes over long distances. However, its susceptibility to background noise necessitates the implementation of advanced filtering techniques and complex algorithms, which can significantly increase system cost and complexity. To address [...] Read more.
Single-photon lidar (SPL) exhibits high sensitivity, making it particularly suitable for detecting weak echoes over long distances. However, its susceptibility to background noise necessitates the implementation of advanced filtering techniques and complex algorithms, which can significantly increase system cost and complexity. To address these challenges, we propose a time-division-multiplexing-based correlated photon lidar system that employs a narrowband pulsed laser with stable time delays and variable pulse intensities, thereby establishing temporal and intensity correlations. This all-fiber solution not only simplifies the system architecture but also enhances operational efficiency. An adaptive cross-correlation method incorporating time slicing has been developed to extract histogram signals, enabling successful 1.5 km distance measurements under intense daytime noise conditions, using a 1 s accumulation time and a 20 mm receiving aperture. The experimental results demonstrate a 38% (from 1.11 to 1.52) improvement in the signal-to-noise ratio (SNR), thereby enhancing the system’s anti-noise capability, facilitating rapid detection, and reducing overall system costs. Full article
Show Figures

Figure 1

17 pages, 2654 KiB  
Article
Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery
by Tomáš Krajíček, Petr Marada, Ivo Horák, Jan Cukor, Vlastimil Skoták, Jan Winkler, Miroslav Dumbrovský, Radek Jurčík and Josef Los
Agriculture 2025, 15(3), 250; https://doi.org/10.3390/agriculture15030250 - 24 Jan 2025
Viewed by 872
Abstract
This paper aims to solve the problem of erosion sediment that negatively affects the quality of fallowed soil through the development of a new type of agricultural machinery. The transported erosion sediment will be quantified locally to evaluate the danger of these negative [...] Read more.
This paper aims to solve the problem of erosion sediment that negatively affects the quality of fallowed soil through the development of a new type of agricultural machinery. The transported erosion sediment will be quantified locally to evaluate the danger of these negative effects on the fallowed soil and on the functionality of the grass cover. Subsequently, a new type of machinery will be proposed for the remediation of eroded sediment and conservation of the fallowed soil. In various fallow research areas with different management methods (such as biobelts, grassed valleys, and grassed waterways), agricultural land affected by eroded sediment was examined, and appropriate machinery was designed to rehabilitate the stands after erosion events. By identifying the physical and mechanical properties of the soil, as well as the eroded and deposited sediment/colluvium, the shape, material, attachment method, and assembly of the working tool for the relevant mobile energy device were designed. The developed tool, based on a plow–carry system using a tractor, features flexible tools that separate the eroded sediment from the fallow land surface, transfer it over a short distance, and accumulate it in a designated area to facilitate subsequent removal with minimal damage to the herbaceous vegetation. The calculated erosion event was 196.9 m3 (179.0 m3 ha−1), corresponding to 295 tons (268.5 t ha−1) deposited from the area of 90 ha. Afterward, the proposed machinery was evaluated for the cost of the removal of the eroded sediment. Based on experience from the field, we calculated that 174 m3 per engine hour results in EUR 0.22 m−3. From the performed experiment, it is evident that the proposed machinery offers a suitable solution for eroded sediment removal locally, which prevents further erosion and subsequent sediment deposition in water bodies where the costs for sediment removal are higher. Moreover, we have proven the potential negative impact of invasive plant species because their seeds were stored in the sediment. Finally, it is credible to state that the proposed agricultural machinery offers an effective solution for the eroded sediment relocation, which subsequently can be used for other purposes and monetized. This results in an increase in the profitability of the erosion sediment removal process, which is already in place at the source before further transportation to aquatic systems where the costs for removal are significantly higher. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 5924 KiB  
Article
Capitalising on the Floristic Survey as a Non-Destructive Line of Evidence for Mineral Potential Modelling: A Case Study of Bauxite in South-Western Australia
by Lewis Trotter, Grant Wardell-Johnson, Andrew Grigg, Sarah Luxton and Todd P. Robinson
Land 2024, 13(12), 1995; https://doi.org/10.3390/land13121995 - 22 Nov 2024
Viewed by 771
Abstract
While geobotanists have long used plant occurrence to locate subsurface resources, none have utilised floristic surveys as evidence in models of mineral potential. Here, we combine plant species distributions with terrain metrics to produce predictive models showing the probability of bauxite presence. We [...] Read more.
While geobotanists have long used plant occurrence to locate subsurface resources, none have utilised floristic surveys as evidence in models of mineral potential. Here, we combine plant species distributions with terrain metrics to produce predictive models showing the probability of bauxite presence. We identified nineteen taxa with statistically significant associations with known bauxite deposits and identified eleven terrain metrics from previous studies. We grouped variables into three variable sets (floristic, topographic, and topo-flora) and produced mineral potential models for each using four algorithms or approaches: (a) a generalised linear model (GLM); (b) random forest (RF); (c) maxent (ME); and (d) a heterogenous stacking ensemble (GLM-RF-ME). Overall, the random forest model outperformed all algorithms including the ensemble based on the area under the curve (AUC) metric. The floristic set of variables outperformed the topographic set (AUC: 0.86 v 0.82). However, together they had the greatest predictive capacity (AUC: 0.89). Six taxa, including Banksia grandis, Leucopogon verticillatus, and Persoonia longifolia, were indicators of bauxite presence, while five other taxa, including Xanthorrhoea preissii and Hypocalymma angustifolium, were associated with bauxite absence. Important topographic variables were topographic wetness, landscape position, and valley depth, which characterised bauxite locations as being well drained, in the upper slope positions of subdued hills, and at some distance from valleys. The addition of floristic surveys provides a new line of evidence about the overlying botanical life that tolerates, accumulates, or avoids bauxite or associated minerals. As opposed to drilling, both datasets can be collected and interrogated at low cost and without impact to the surrounding environment. These data are valuable additions to future applications of mineral potential modelling. Full article
(This article belongs to the Special Issue Geospatial Data in Landscape Ecology and Biodiversity Conservation)
Show Figures

Figure 1

18 pages, 10724 KiB  
Article
A Preliminary Study on Mitigation Techniques for 3D Deformation of Adjacent Buildings Induced by Tunnelling in Water-Rich Strata: A Case
by Wei He, Xiangxun Kong, Liang Tang, Wenli Chen, Wei Hu and Guanbin Chen
Symmetry 2024, 16(10), 1339; https://doi.org/10.3390/sym16101339 - 10 Oct 2024
Cited by 1 | Viewed by 1023
Abstract
Controlling the ground settlement and building deformation triggered by shield tunnelling, particularly within water-rich strata, poses a significant engineering challenge. This study conducts a finite element (FE) analysis focusing on the ground settlement and deformation of adjacent structures (with a minimum distance of [...] Read more.
Controlling the ground settlement and building deformation triggered by shield tunnelling, particularly within water-rich strata, poses a significant engineering challenge. This study conducts a finite element (FE) analysis focusing on the ground settlement and deformation of adjacent structures (with a minimum distance of 2.6 m to the tunnel) due to earth pressure balance (EPB) shield tunnelling. The analysis incorporates the influence of groundwater through a 3D fluid–solid coupling model. This study assesses the effects of tunnelling on the behaviour of nearby buildings and introduces two mitigation strategies: the vertical partition method and the portal partition method. Their effectiveness is compared and evaluated. Our findings reveal that the deformation curves of the stratum and the building are influenced by the accumulation and dissipation of pore pressure. The vertical partition method reduced surface settlement by approximately 70%, while the portal partition method further minimized building deformation but required careful application to avoid issues like uplift. Both methods effectively mitigate the impacts of tunnel construction, with the portal partition method offering superior performance in terms of material use and cost efficiency. This research provides a scientific foundation and technical guidance for similar engineering endeavours, which is vital for ensuring the safety of metro tunnel construction and the stability of adjacent buildings. Full article
Show Figures

Figure 1

19 pages, 1271 KiB  
Article
A Novel Areal Maintenance Strategy for Large-Scale Distributed Photovoltaic Maintenance
by Deyang Yin, Yuanyuan Zhu, Hao Qiang, Jianfeng Zheng and Zhenzhong Zhang
Electronics 2024, 13(18), 3593; https://doi.org/10.3390/electronics13183593 - 10 Sep 2024
Viewed by 732
Abstract
A smart grid is designed to enable the massive deployment and efficient use of distributed energy resources, including distributed photovoltaics (DPV). Due to the large number, wide distribution, and insufficient monitoring information of DPV stations, the pressure to maintain them has increased rapidly. [...] Read more.
A smart grid is designed to enable the massive deployment and efficient use of distributed energy resources, including distributed photovoltaics (DPV). Due to the large number, wide distribution, and insufficient monitoring information of DPV stations, the pressure to maintain them has increased rapidly. Furthermore, based on reports in the relevant literature, there is still a lack of efficient large-scale maintenance strategies for DPV stations at present, leading to the high maintenance costs and overall low efficiency of DPV stations. Therefore, this paper proposes a maintenance period decision model and an areal maintenance strategy. The implementation steps of the method are as follows: firstly, based on the reliability model and dust accumulation model of the DPV components, the maintenance period decision model is established for different numbers of DPV stations and different driving distances; secondly, the optimal maintenance period is determined by using the Monte Carlo method to calculate the average economic benefits of daily maintenance during different periods; then, an areal maintenance strategy is proposed to classify all the DPV stations into different areas optimally, where each area is maintained to reach the overall economic optimum for the DPV stations; finally, the validity and rationality of this strategy are verified with the case study of the DPV poverty alleviation project in Badong County, Hubei Province. The results indicate that compared with an independent maintenance strategy, the proposed strategy can decrease the maintenance cost by 10.38% per year, which will help promote the construction of the smart grid and the development of sustainable cities. The results prove that the method proposed in this paper can effectively reduce maintenance costs and improve maintenance efficiency. Full article
Show Figures

Figure 1

14 pages, 2987 KiB  
Article
A Visual Distance-Based Capillary Immunoassay Using Biomimetic Polymer Nanoparticles for Highly Sensitive and Specific C-Reactive Protein Quantification
by Ruodong Huang, Zhenbo Liu, Xinlin Jiang, Junqi Huang, Ping Zhou, Zongxia Mou, Dong Ma and Xin Cui
Int. J. Mol. Sci. 2024, 25(18), 9771; https://doi.org/10.3390/ijms25189771 - 10 Sep 2024
Cited by 1 | Viewed by 1460
Abstract
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop [...] Read more.
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop a visual CRP-quantification assay using affordable glass capillaries. The PMPC nanoparticles, synthesized via reflux precipitation polymerization, demonstrated multivalent binding capabilities, enabling rapid and specific CRP capture. In the presence of CRP, PMPC nanoparticles formed sandwich structures with magnetic nanoparticles functionalized with CRP antibodies, thereby enhancing detection sensitivity and specificity. These sandwich complexes were magnetically accumulated into visible and quantifiable stacks within the glass capillaries, allowing for the rapid, sensitive, and specific quantification of CRP concentrations with a detection limit of 57.5 pg/mL and a range spanning from 0 to 5000 ng/mL. The proposed visual distance-based capillary biosensor shows great potential in routine clinical diagnosis as well as point-of-care testing (POCT) in resource-limited settings. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

21 pages, 7673 KiB  
Article
Long-Term Ultraviolet Treatment for Macrofouling Control in Northern and Southern Hemispheres
by Paul Whitworth, Anthony S. Clare, John A. Finlay, Richard F. Piola, Joseph Plummer and Nick Aldred
J. Mar. Sci. Eng. 2023, 11(12), 2211; https://doi.org/10.3390/jmse11122211 - 21 Nov 2023
Cited by 6 | Viewed by 2705
Abstract
The biofouling of marine structures must be controlled if crippling operational and maintenance costs are to be avoided and biological invasions prevented. However, traditional methods of biofouling control typically involve the use of toxic chemicals, which have their own drawbacks, both financial and [...] Read more.
The biofouling of marine structures must be controlled if crippling operational and maintenance costs are to be avoided and biological invasions prevented. However, traditional methods of biofouling control typically involve the use of toxic chemicals, which have their own drawbacks, both financial and environmental. For ships, the hull is the largest surface requiring a fouling-control coating; however, there are other so-called ‘niche’ areas (up to 10% of the total wetted area) that typically cannot be, or are not routinely, treated to prevent biofouling accumulation. The use of UV light is a tried and tested sterilization method that has been shown to also work underwater. However, the speed with which UV can be applied to large-scale biofouling control will be determined by the engineering challenges involved and the lack of basic understanding of the biological mode of action. The former is essential for the effective translation of this established technology into a high-performance, industrially useful fouling-control system. The latter will be important for environmental regulation and safe use as well as performance optimisation. Here, we developed two bespoke flow-through systems to replicate ship niche areas and deployed them in Melbourne, Australia, and North East England. We demonstrated a 40–90% reduction in biofouling coverage on silicone tiles embedded with UV-emitting LEDs, even as the LED output waned (after ~8000 h). Image analysis and amplicon sequencing of 18S genes provided complementary information about the taxonomic composition of the fouling communities and highlighted some taxa, for example, ascidians and diatoms, which may have, or in the future develop, UV resistance. Interestingly, the UV treatment far exceeded performance estimates based on the predicted attenuation distance of UV in seawater. Overall, while it is clear that UV treatment works in terms of its efficacy against the vast majority of observed fouling species, technical challenges remain, as do knowledge gaps surrounding the biological and ecological effects of widespread use. Full article
(This article belongs to the Special Issue Marine Environmentally-Friendly Antifouling Technology)
Show Figures

Figure 1

16 pages, 2431 KiB  
Article
Optimization of Green Vehicle Paths Considering the Impact of Carbon Emissions: A Case Study of Municipal Solid Waste Collection and Transportation
by Tingting Li, Shejun Deng, Caoye Lu, Yong Wang and Huajun Liao
Sustainability 2023, 15(22), 16128; https://doi.org/10.3390/su152216128 - 20 Nov 2023
Cited by 7 | Viewed by 2963
Abstract
In recent years, the waste produced as a result of the production and consumption activities of urban residents has led to significant environmental degradation and resource wastage. This paper focuses on the research object of municipal solid waste (MSW) collection and transportation based [...] Read more.
In recent years, the waste produced as a result of the production and consumption activities of urban residents has led to significant environmental degradation and resource wastage. This paper focuses on the research object of municipal solid waste (MSW) collection and transportation based on the concept of “sustainable development and green economy”. Firstly, this study examines the current state of urban domestic garbage collection and transportation. It analyzes the following challenges and deficiencies of the existing collection and transportation system: (1) the operating efficiency of garbage collection vehicles is low, resulting in a significant accumulation of waste on the roadside and within the community; (2) the vehicle collection and transportation routes are fixed, and there are empty vehicles running; (3) the amount of garbage on a route exceeds the vehicle’s loading capacity, which requires the vehicle to perform a second round of collection and transportation. To enhance the efficiency of urban garbage collection and transportation and minimize the collection and transportation costs, we are investigating the problem of optimizing the path for green vehicles. To comprehensively optimize the fixed cost, variable cost, and carbon emission cost incurred during vehicle operation, a vehicle routing model with time windows is established, taking into account vehicle load constraints. Carbon emission coefficient and carbon tax parameters are introduced into the model and the “fuel-carbon emission” conversion method is used to measure the carbon cost of enterprises. An improved ant colony optimization (ACO) method is proposed: (1) the introduction of a vehicle load factor improves the ant state transfer method; (2) the updated pheromone method is improved, and additional pheromone is added to both the feasible path and the path with the minimum objective function; (3) the max–min ACO algorithm is introduced to address the issue of premature convergence of the algorithm; (4) the embedding of a 2-opt algorithm further prevents the ACO algorithm from falling into the local optimum. Finally, the calculation results based on the example data demonstrate that the algorithm has a significant advantage over the genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The total transportation distance determined by this algorithm is shorter than that of the GA and PSO methods, and the total cost of the scheme is 1.66% and 1.89% lower than that determined by GA and PSO, respectively. Compared to the data from the actual case, the number of vehicles required in the operation of this algorithm and model is reduced by three. Additionally, the total cost, fixed cost, and carbon emission cost incurred by the vehicles during operation were reduced by 31.2%, 60%, and 25.3% respectively. The results of this study help the station to collect and distribute waste efficiently, while also achieving the goals of energy saving, consumption reduction, and emission reduction. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

17 pages, 20339 KiB  
Article
An Extended Vector Polar Histogram Method Using Omni-Directional LiDAR Information
by Byunguk Lee, Wonho Kim and Seunghwan Lee
Symmetry 2023, 15(8), 1545; https://doi.org/10.3390/sym15081545 - 5 Aug 2023
Cited by 1 | Viewed by 1685
Abstract
This study presents an extended vector polar histogram (EVPH) method for efficient robot navigation using omni-directional LiDAR data. Although the conventional vector polar histogram (VPH) method is a powerful technique suitable for LiDAR sensors, it is limited in its sensing range by the [...] Read more.
This study presents an extended vector polar histogram (EVPH) method for efficient robot navigation using omni-directional LiDAR data. Although the conventional vector polar histogram (VPH) method is a powerful technique suitable for LiDAR sensors, it is limited in its sensing range by the single LiDAR sensor to a semicircle. To address this limitation, the EVPH method incorporates multiple LiDAR sensor’s data for omni-directional sensing. First off, in the EVPH method, the LiDAR sensor coordinate systems are directly transformed into the robot coordinate system to obtain an omni-directional polar histogram. Several techniques are also employed in this process, such as minimum value selection and linear interpolation, to generate a uniform omni-directional polar histogram. The resulting histogram is modified to represent the robot as a single point. Subsequently, consecutive points in the histogram are grouped to construct a symbol function for excluding concave blocks and a threshold function for safety. These functions are combined to determine the maximum cost value that generates the robot’s next heading angle. Robot backward motion is made feasible based on the determined heading angle, enabling the calculation of the velocity vector for time-efficient and collision-free navigation. To assess the efficacy of the proposed EVPH method, experiments were carried out in two environments where humans and obstacles coexist. The results showed that, compared to the conventional method, the robot traveled safely and efficiently in terms of the accumulated amount of rotations, total traveling distance, and time using the EVPH method. In the future, our plan includes enhancing the robustness of the proposed method in congested environments by integrating parameter adaptation and dynamic object estimation methods. Full article
(This article belongs to the Special Issue Unmanned Vehicles, Automation, and Robotics)
Show Figures

Figure 1

19 pages, 12546 KiB  
Article
A Probabilistic Approach to Mapping the Contribution of Individual Riverine Discharges into Liverpool Bay Using Distance Accumulation Cost Methods on Satellite Derived Ocean-Colour Data
by Richard Heal, Lenka Fronkova, Tiago Silva, Kate Collingridge, Richard Harrod, Naomi Greenwood and Michelle J. Devlin
Remote Sens. 2023, 15(14), 3666; https://doi.org/10.3390/rs15143666 - 23 Jul 2023
Cited by 1 | Viewed by 1727
Abstract
Assessments of the water quality in coastal zones often rely on indirect indicators from contributing river inputs and the neighbouring ocean. Using a novel combination of distance accumulation cost methods and an ocean-colour product derived from SENTINEL-3 data, we developed a probabilistic method [...] Read more.
Assessments of the water quality in coastal zones often rely on indirect indicators from contributing river inputs and the neighbouring ocean. Using a novel combination of distance accumulation cost methods and an ocean-colour product derived from SENTINEL-3 data, we developed a probabilistic method for the assessment of dissolved inorganic nitrogen (DIN) in Liverpool Bay (UK) for the period from 2017 to 2020. Using our approach, we showed the annual and monthly likelihood of DIN exposure from its 12 major contributory rivers. Furthermore, we generated monthly risk maps showing the probability of DIN exposure from all rivers, which revealed a seasonal variation of extent and location around the bay. The highest likelihood of high DIN exposure throughout the year was in the estuarine regions of the Dee, Mersey, and Ribble, along with near-shore areas along the north Wales coast and around the mouth of the rivers Mersey and Ribble. There were seasonal changes in the risk of DIN exposure, and this risk remained high all year for the Mersey and Dee estuary regions. In contrast, for the mouth and near the coastal areas of the Ribble, the DIN exposure decreased in spring, remained low during the summer and early autumn, before displaying an increase during winter. Our approach offers the ability to assess the water quality within coastal zones without the need of complex hydrodynamic models, whilst still having the potential to apportion nutrient exposure to specific riverine inputs. This information can help to prioritise how direct mitigation strategies can be applied to specific river catchments, focusing the limited resources for coastal zone and river basin management. Full article
(This article belongs to the Special Issue Recent Advances in Water Quality Monitoring)
Show Figures

Figure 1

29 pages, 6737 KiB  
Article
From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion
by Fred Letson and Sara C. Pryor
Energies 2023, 16(9), 3906; https://doi.org/10.3390/en16093906 - 5 May 2023
Cited by 14 | Viewed by 2300
Abstract
Wind turbine blade leading-edge erosion (LEE) is a cause of increased operation and maintenance costs and decreased annual energy production. Thus, detailed, site-specific quantification of likely erosion conditions are critically needed to inform wind plant owner/operator decisions regarding mitigation strategies. Estimating the damage [...] Read more.
Wind turbine blade leading-edge erosion (LEE) is a cause of increased operation and maintenance costs and decreased annual energy production. Thus, detailed, site-specific quantification of likely erosion conditions are critically needed to inform wind plant owner/operator decisions regarding mitigation strategies. Estimating the damage potential at a wind plant site requires accurate measurement of precipitation intensity, phase, droplet size distributions, wind speeds and their joint statistics. The current work quantifies the effect of disdrometer type on the characterization of LEE potential at a site in the US Southern Great Plains. using observations from three co-located disdrometers (an optical, an impact and a video disdrometer), along with hub-height wind-speed observations from a Doppler lidar and two LEE models: a kinetic energy model and the Springer model. Estimates of total kinetic energy of hydrometeor impacts over the four-year study period vary by as much as 38%, and coating lifetime derived from accumulated distance-to-failure estimates from the Springer model differ by an even greater amount, depending on disdrometer type. Damage potential at this site is concentrated in time, with 50% of impact kinetic energy occurring in 6–12 h per year, depending on which set of disdrometer observations is used. Rotor-speed curtailment during the most erosive 0.1–0.2% of 10 min periods is found to increase blade lifetimes and lead to the lowest levelized cost of energy. Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
Show Figures

Figure 1

Back to TopTop