Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = copper tripeptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2911 KiB  
Review
Are We Ready to Measure Skin Permeation of Modern Antiaging GHK–Cu Tripeptide Encapsulated in Liposomes?
by Karolina Ogórek, Kinga Nowak, Emilia Wadych, Lena Ruzik, Andrei R. Timerbaev and Magdalena Matczuk
Molecules 2025, 30(1), 136; https://doi.org/10.3390/molecules30010136 - 1 Jan 2025
Cited by 1 | Viewed by 4265
Abstract
Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing [...] Read more.
Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing fine lines and wrinkles, tightening skin, improving its elasticity, etc.) is the glycyl-L-histidyl-L-lysine tripeptide complex of copper (GHK–Cu). GHK–Cu is a fairly hydrophilic compound with limited permeation through the lipophilic stratum corneum. On the other hand, liposomes capable of encapsulating GHK–Cu may improve its permeation potential. The present review discusses various issues related to obtaining insight into the permeation of CACs through the skin. Methods for studying the transport of CACs encapsulated by liposomes and free GHK–Cu across the skin barrier are summarized. An analysis of the literature data reveals that the transport of liposomes containing GHK–Cu received little attention. This research gap gives an impetus to the methodological developments for assessing the effect of liposomes on GHK–Cu transportation and trafficking. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

20 pages, 3311 KiB  
Article
Novel Tripeptides as Tyrosinase Inhibitors: In Silico and In Vitro Approaches
by Michał Dymek, Dawid Warszycki, Sabina Podlewska and Elżbieta Sikora
Int. J. Mol. Sci. 2024, 25(24), 13509; https://doi.org/10.3390/ijms252413509 - 17 Dec 2024
Cited by 2 | Viewed by 1702
Abstract
Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling. A [...] Read more.
Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling. A combinatorial library of tripeptides was prepared and docked to the mushroom tyrosinase crystal structure and investigated with molecular dynamics. Based on the results of calculations and expert knowledge, the three potentially most active peptides (CSF, CSN, CVL) were selected. Their in vitro properties were examined, and they achieved half-maximal inhibitory concentration (IC50) values of 136.04, 177.74, and 261.79 µM, respectively. These compounds attach to the binding pocket of tyrosinase mainly through hydrogen bonds and salt bridges. Molecular dynamics simulations demonstrated the stability of the peptid–tyrosinase complexes and highlighted the persistence of key interactions throughout the simulation period. The ability of these peptides to complex copper ions was also confirmed. The CSF peptide showed the highest chelating activity with copper. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed that none of the test tripeptides showed cytotoxicity toward the reconstructed human epidermis. Our results indicated that the developed tripeptides were non-toxic and effective tyrosinase inhibitors. They could be applied as raw materials in skin-brightening or anti-aging cosmetic products. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

11 pages, 5999 KiB  
Article
Short-Peptide-Modified Copper Nanoclusters as a Fluorescent Probe for the Specific Detection of Ascorbic Acid
by Jiataiqi Li, Xin Lan and Xingcen Liu
Sensors 2024, 24(21), 6974; https://doi.org/10.3390/s24216974 - 30 Oct 2024
Viewed by 1019
Abstract
Metal nanoclusters assembled using short peptides as templates exhibit significant potential for development and application in the fields of catalysis and biomedicine, owing to their distinctive electronic structure, favorable optical properties, and biocompatibility. Among them, tripeptides exhibit a simpler structure and greater flexibility, [...] Read more.
Metal nanoclusters assembled using short peptides as templates exhibit significant potential for development and application in the fields of catalysis and biomedicine, owing to their distinctive electronic structure, favorable optical properties, and biocompatibility. Among them, tripeptides exhibit a simpler structure and greater flexibility, enabling them to readily co-assemble with other functional components to create novel materials with significant application value. They can be assembled with copper ions to synthesize highly efficient luminescent nanoclusters, which can serve as an effective fluorescent probe. Here, we report a method for the synthesis of copper nanoclusters (Cu NCs) using tripeptides as templates, which also act as stabilizers and reducing agents. The synthesis conditions and properties were explored and optimized. Under optimal conditions, the Cu NCs exhibit excellent stability and are strongly fluorescent. The Cu NCs can detect 0.1–1.0 μmol/L of ascorbic acid with a low detection limit of 0.075 μmol/L, demonstrating high sensitivity and offering significant application potential for the trace of ascorbic acid in various substances. It also provides new ideas for the assembly of metal nanoclusters and the construction of fluorescent probe sensing platforms. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biochemical Sensors and Their Applications)
Show Figures

Figure 1

17 pages, 2804 KiB  
Article
Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection
by Pantelitsa Pingou, Anthi Parla, Abuzar Kabir, Kenneth G. Furton, Victoria Samanidou, Spyridon Papageorgiou, Efthimios Tsirivas, Athanasia Varvaresou and Irene Panderi
Separations 2024, 11(10), 293; https://doi.org/10.3390/separations11100293 - 12 Oct 2024
Cited by 1 | Viewed by 3095
Abstract
The increasing demand for effective cosmetics has driven the development of innovative analytical techniques to ensure product quality. This work presents the development and validation of a zwitterionic hydrophilic interaction liquid chromatography method, coupled with ultraviolet detection, for the quantification of copper tripeptide [...] Read more.
The increasing demand for effective cosmetics has driven the development of innovative analytical techniques to ensure product quality. This work presents the development and validation of a zwitterionic hydrophilic interaction liquid chromatography method, coupled with ultraviolet detection, for the quantification of copper tripeptide in cosmetics. A novel protocol for sample preparation was developed using fabric phase sorptive extraction to extract the targeted analyte from the complex cosmetic cream matrix, followed by chromatographic separation on a ZIC®-pHILIC analytical column. A thorough investigation of the chromatographic behavior of the copper tripeptide on the HILIC column was performed during method development. The mobile phase consisted of 133 mM ammonium formate (pH 9, adjusted with ammonium hydroxide) and acetonitrile at a 40:60 (v/v) ratio, with a flow rate of 0.2 mL/min. A design of experiments (DOE) approach allowed precise adjustments to various factors influencing the extraction process, leading to the optimization of the fabric phase sorptive extraction protocol for copper tripeptide analysis. The method demonstrated excellent linearity over a concentration range of 0.002 to 0.005% w/w for copper tripeptide, with a correlation coefficient exceeding 0.998. The limits of detection and quantitation were 5.3 × 10−4% w/w and 2.0 × 10−3% w/w, respectively. The selectivity of the method was verified through successful separation of copper tripeptide from other cream components within 10 min, establishing its suitability for high-throughput quality control of cosmetic formulations. Full article
Show Figures

Graphical abstract

17 pages, 1559 KiB  
Article
Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application
by Michał Dymek, Karolina Olechowska, Katarzyna Hąc-Wydro and Elżbieta Sikora
Pharmaceutics 2023, 15(10), 2485; https://doi.org/10.3390/pharmaceutics15102485 - 18 Oct 2023
Cited by 14 | Viewed by 4996
Abstract
Liposomes are self-assembled spherical systems composed of amphiphilic phospholipids. They can be used as carriers of both hydrophobic and hydrophilic substances, such as the anti-aging and wound-healing copper-binding peptide, GHK-Cu (glycyl-L-histidyl-L-lysine). Anionic (AL) and cationic (CL) hydrogenated lecithin-based liposomes were obtained as GHK-Cu [...] Read more.
Liposomes are self-assembled spherical systems composed of amphiphilic phospholipids. They can be used as carriers of both hydrophobic and hydrophilic substances, such as the anti-aging and wound-healing copper-binding peptide, GHK-Cu (glycyl-L-histidyl-L-lysine). Anionic (AL) and cationic (CL) hydrogenated lecithin-based liposomes were obtained as GHK-Cu skin delivery systems using the thin-film hydration method combined with freeze–thaw cycles and the extrusion process. The influence of total lipid content, lipid composition and GHK-Cu concentration on the physicochemical properties of liposomes was studied. The lipid bilayer fluidity and the peptide encapsulation efficiency (EE) were also determined. Moreover, in vitro assays of tyrosinase and elastase inhibition were performed. Stable GHK-Cu-loaded liposome systems of small sizes (approx. 100 nm) were obtained. The bilayer fluidity was higher in the case of cationic liposomes. As the best carriers, 25 mg/cm3 CL and AL hydrated with 0.5 mg/cm3 GHK-Cu were selected with EE of 31.7 ± 0.9% and 20.0 ± 2.8%, respectively. The obtained results confirmed that the liposomes can be used as carriers for biomimetic peptides such as copper-binding peptide and that the GHK-Cu did not significantly affect the tyrosinase activity but led to 48.90 ± 2.50% elastase inhibition, thus reducing the rate of elastin degeneration and supporting the structural integrity of the skin. Full article
(This article belongs to the Special Issue Colloidal Nanocarriers for Dermatological Diseases Therapy)
Show Figures

Figure 1

17 pages, 5912 KiB  
Article
Effect of Peptides on the Synthesis, Properties and Wound Healing Capacity of Silver Nanoparticles
by Afroditi Papaioannou, Angeliki Liakopoulou, Dimitris Papoulis, Eleni Gianni, Patroula Gkolfi, Eleni Zygouri, Sophia Letsiou and Sophia Hatziantoniou
Pharmaceutics 2023, 15(10), 2471; https://doi.org/10.3390/pharmaceutics15102471 - 16 Oct 2023
Cited by 2 | Viewed by 2468
Abstract
The aim of this study is the synthesis of novel peptide–silver nanoparticle conjugates with enhanced wound healing capacity. Peptide–silver nanoparticle conjugates were synthesized using myristoyl tetrapeptide 6 (MT6) or copper tripeptide 1 (CuTP1). Peptide-free silver nanoparticles (AgNP) were synthesized using NaBH4 and sodium [...] Read more.
The aim of this study is the synthesis of novel peptide–silver nanoparticle conjugates with enhanced wound healing capacity. Peptide–silver nanoparticle conjugates were synthesized using myristoyl tetrapeptide 6 (MT6) or copper tripeptide 1 (CuTP1). Peptide-free silver nanoparticles (AgNP) were synthesized using NaBH4 and sodium citrate and were used as control. The addition of the peptides during or after the synthesis of nanoparticles and its impact on the properties of the synthesized peptide–silver nanoparticle conjugates were assessed. The monitoring of the synthesis of nanoparticles was achieved using ultraviolet–visible spectrophotometry (UV–/Vis). The characteristics and colloidal stability of the nanoparticles (size and ζ-potential distribution, morphology, composition and structure) were monitored using dynamic laser scattering (DLS), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). The wound healing capacity of the peptide–silver nanoparticle conjugates was assessed using scratch test assay on fibroblasts (NIH/3T3). The results indicated that the addition of the peptides during the synthesis of nanoparticles lead to better yield of the reaction and more effective capping while the size distribution and ζ-potential of the conjugates indicated long-term colloidal stability. The MT6-AgNP conjugate exhibited 71.97 ± 4.35% wound closure, which was about 5.48-fold higher (p < 0.05) than the corresponding free MT6. The CuTP1-AgNP conjugate exhibited 62.37 ± 18.33% wound closure that was better by 2.82 fold (p < 0.05) compared to the corresponding free CuTP1. Both peptides led to the synthesis of silver nanoparticle conjugates with enhanced wound healing capacity compared to the respective free peptide or to the peptide-free AgNP (29.53 ± 4.71% wound closure, p < 0.05). Our findings demonstrated that the synthetized peptide–silver nanoparticle conjugates are promising ingredients for wound care formulation. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

15 pages, 3404 KiB  
Article
New Biotinylated GHK and Related Copper(II) Complex: Antioxidant and Antiglycant Properties In Vitro against Neurodegenerative Disorders
by Rita Tosto, Graziella Vecchio and Francesco Bellia
Molecules 2023, 28(18), 6724; https://doi.org/10.3390/molecules28186724 - 20 Sep 2023
Cited by 2 | Viewed by 2782
Abstract
Neurodegenerative diseases affect millions of people worldwide. The failure of the enzymatic degradation, the oxidative stress, the dyshomeostasis of metal ions, among many other biochemical events, might trigger the pathological route, but the onset of these pathologies is unknown. Multi-target and multifunctional molecules [...] Read more.
Neurodegenerative diseases affect millions of people worldwide. The failure of the enzymatic degradation, the oxidative stress, the dyshomeostasis of metal ions, among many other biochemical events, might trigger the pathological route, but the onset of these pathologies is unknown. Multi-target and multifunctional molecules could address several biomolecular issues of the pathologies. The tripeptide GHK, a bioactive fragment of several proteins, and the related copper(II) complex have been largely used for many purposes, from cosmetic to therapeutic applications. GHK derivatives were synthesized to increase the peptide stability and improve the target delivery. Herein we report the synthesis of a new biotin–GHK conjugate (BioGHK) through orthogonal reactions. BioGHK is still capable of coordinating copper(II), as observed by spectroscopic and spectrometric measurements. The spectroscopic monitoring of the copper-induced ascorbate oxidation was used to measure the antioxidant activity Cu(II)-BioGHK complex, whereas antiglycant activity of the ligand towards harmful reactive species was investigated using MALDI-TOF. The affinity of BioGHK for streptavidin was evaluated using a spectrophotometric assay and compared to that of biotin. Finally, the antiaggregant activity towards amyloid-β was evaluated using a turn-on fluorescent dye. BioGHK could treat and/or prevent several adverse biochemical reactions that characterize neurodegenerative disorders, such as Alzheimer’s disease. Full article
(This article belongs to the Special Issue Recent Advances in Understanding and Treating Amyloidosis)
Show Figures

Figure 1

23 pages, 921 KiB  
Review
Scandium-44: Diagnostic Feasibility in Tumor-Related Angiogenesis
by György Trencsényi and Zita Képes
Int. J. Mol. Sci. 2023, 24(8), 7400; https://doi.org/10.3390/ijms24087400 - 17 Apr 2023
Cited by 8 | Viewed by 3063
Abstract
Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in [...] Read more.
Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eβ+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin–affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl–bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 5971 KiB  
Article
Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
by Woan-Ruoh Lee, Chien-Yu Hsiao, Zi-Yu Chang, Pei-Wen Wang, Ibrahim A. Aljuffali, Jie-Yu Lin and Jia-You Fang
Pharmaceutics 2022, 14(2), 450; https://doi.org/10.3390/pharmaceutics14020450 - 19 Feb 2022
Cited by 8 | Viewed by 4279
Abstract
Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneous delivery of cosmeceutical peptides. Microsecond-domain fractional [...] Read more.
Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneous delivery of cosmeceutical peptides. Microsecond-domain fractional ablative CO2 and fully ablative erbium (Er):YAG lasers were also used for comparison. In the Franz diffusion cell study, pig or mouse skin was treated with a laser before exposure to palmitoyl tripeptide (PT)-1, PT-38, and copper tripeptide (CT)-1 at a concentration of 150 μM. Psoriasiform, atopic dermatitis (AD)-like, and photoaged skins were also developed as permeation barriers. The non-ablative laser elicited the ultrastructural disruption of the stratum corneum and epidermal vacuolation. All laser modalities significantly increased the skin permeation of peptides in vitro. The non-ablative laser chiefly enhanced peptide delivery to the receptor compartment, whereas the ablative laser mainly increased the intracutaneous peptide deposition. The picosecond- and nanosecond-domain Nd:YAG lasers elevated the amount of PT-1 in the receptor up to 40- and 22-fold compared with untreated skin, respectively. Laser treatment promoted peptide delivery in barrier-deficient and inflamed skins, although this enhancement effect was less than that observed in healthy skin. Fluorescence microscopy indicated the capability of the non-ablative laser to deliver peptides to deeper skin strata. The ablative laser confined the peptide distribution in the epidermis. Confocal microscopy showed that peptides penetrated the skin along the microdots created by the fractional Nd:YAG and CO2 lasers. The skin barrier function determined by transepidermal water loss suggested quick recovery when using a nanosecond-domain laser (within 4 h). A longer period was needed for the skin treated with the fully ablative Er:YAG laser (76−84 h). Nanosecond non-ablative laser-facilitated peptide delivery may become an efficient and safe approach for cosmeceutical applications. Full article
(This article belongs to the Special Issue Skin Drug Delivery: Local and Systemic Applications)
Show Figures

Graphical abstract

30 pages, 5812 KiB  
Article
Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine
by Giselle M. Vicatos, Ahmed N. Hammouda, Radwan Alnajjar, Raffaele P. Bonomo, Gabriele Valora, Susan A. Bourne and Graham E. Jackson
Inorganics 2022, 10(1), 8; https://doi.org/10.3390/inorganics10010008 - 10 Jan 2022
Cited by 2 | Viewed by 4354
Abstract
Copper(II) complexes of glycyl-L-leucyl-L-histidine (GLH), sarcosyl-L-leucyl-L-histidine (Sar-LH), glycyl-L-phenylalanyl-L-histidine (GFH) and sarcosyl-L-phenylalanyl-L-histidine (Sar-FH) have potential anti-inflammatory activity, which can help to alleviate the symptoms associated with rheumatoid arthritis (RA). From pH 2–11, the MLH, ML, MLH-1 and MLH-2 species formed. The combination [...] Read more.
Copper(II) complexes of glycyl-L-leucyl-L-histidine (GLH), sarcosyl-L-leucyl-L-histidine (Sar-LH), glycyl-L-phenylalanyl-L-histidine (GFH) and sarcosyl-L-phenylalanyl-L-histidine (Sar-FH) have potential anti-inflammatory activity, which can help to alleviate the symptoms associated with rheumatoid arthritis (RA). From pH 2–11, the MLH, ML, MLH-1 and MLH-2 species formed. The combination of species for each ligand was different, except at the physiological pH, where CuLH-2 predominated for all ligands. The prevalence of this species was supported by EPR, ultraviolet-visible spectrophotometry, and mass spectrometry, which suggested a square planar CuN4 coordination. All ligands have the same basicity for the amine and imidazole-N, but the methyl group of sarcosine decreased the stability of MLH and MLH-2 by 0.1–0.34 and 0.46–0.48 log units, respectively. Phenylalanine increased the stability of MLH and MLH-2 by 0.05–0.29 and 1.19–1.21 log units, respectively. For all ligands, 1H NMR identified two coordination modes for MLH, where copper(II) coordinates via the amine-N and neighboring carbonyl-O, as well as via the imidazole-N and carboxyl-O. EPR spectroscopy identified the MLH, ML and MLH-2 species for Cu-Sar-LH and suggested a CuN2O2 chromophore for ML. DFT calculations with water as a solvent confirmed the proposed coordination modes of each species at the B3LYP level combined with 6-31++G**. Full article
(This article belongs to the Special Issue Cornerstones in Contemporary Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 1906 KiB  
Article
Expression and Purification of Recombinant GHK Tripeptides Are Able to Protect against Acute Cardiotoxicity from Exposure to Waterborne-Copper in Zebrafish
by Chung-Der Hsiao, Hsin-Hui Wu, Nemi Malhotra, Yen-Ching Liu, Ying-Hsuan Wu, Yu-Nung Lin, Ferry Saputra, Fiorency Santoso and Kelvin H.-C. Chen
Biomolecules 2020, 10(9), 1202; https://doi.org/10.3390/biom10091202 - 19 Aug 2020
Cited by 15 | Viewed by 6269
Abstract
In this study, an alternative method is developed to replace chemical synthesis to produce glycyl-histidyl-lysine (GHK) tripeptides with a bacterial fermentation system. The target GHK tripeptides are cloned into expression plasmids carrying histidine-glutathione-S-transferase (GST) double tags and TEV (tobacco etch virus) cleavage sites [...] Read more.
In this study, an alternative method is developed to replace chemical synthesis to produce glycyl-histidyl-lysine (GHK) tripeptides with a bacterial fermentation system. The target GHK tripeptides are cloned into expression plasmids carrying histidine-glutathione-S-transferase (GST) double tags and TEV (tobacco etch virus) cleavage sites at the N-terminus. After overexpression in Escherichia coli (E. coli) BL21 cells, the recombinant proteins are purified and recovered by high-pressure liquid chromatography (HPLC). UV-vis absorption spectroscopy was used to investigate the chemical and biological properties of the recombinant GHK tripeptides. The results demonstrated that one recombinant GHK tripeptide can bind one copper ion to form a GHK-Cu complex with high affinity, and the recombinant GHK peptide to copper ion ratio is 1:1. X-ray absorption near-edge spectroscopy (XANES) of the copper ions indicated that the oxidation state of copper in the recombinant GHK-Cu complexes here was Cu(II). All of the optical spectrum evidence suggests that the recombinant GHK tripeptide appears to possess the same biophysical and biochemical features as the GHK tripeptide isolated from human plasma. Due to the high binding affinity of GHK tripeptides to copper ions, we used zebrafish as an in vivo model to elucidate whether recombinant GHK tripeptides possess detoxification potential against the cardiotoxicity raised by waterborne Cu(II) exposure. Here, exposure to Cu(II) induced bradycardia and heartbeat irregularity in zebrafish larvae; however, the administration of GHK tripeptides could rescue those experiencing cardiotoxicity, even at the lowest concentration of 1 nM, where the GHK-Cu complex minimized CuSO4-induced cardiotoxicity effects at a GHK:Cu ratio of 1:10. On the other hand, copper and the combination with the GHK tripeptide did not significantly alter other cardiovascular parameters, including stroke volume, ejection fraction, and fractional shortening. Meanwhile, the heart rate and cardiac output were boosted after exposure with 1 nM of GHK peptides. In this study, recombinant GHK tripeptide expression was performed, along with purification and chemical property characterization, which revealed a potent cardiotoxicity protection function in vivo with zebrafish for the first time. Full article
(This article belongs to the Special Issue Metal Binding Proteins 2020)
Show Figures

Figure 1

14 pages, 225 KiB  
Review
Topical Peptide Treatments with Effective Anti-Aging Results
by Silke Karin Schagen
Cosmetics 2017, 4(2), 16; https://doi.org/10.3390/cosmetics4020016 - 22 May 2017
Cited by 152 | Viewed by 144144
Abstract
In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data [...] Read more.
In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research to obtain more details on their effectiveness, and for the development of new treatments. Palmitoyl pentapeptide-4 and Carnosine are other well-researched cosmeceuticals. Additionally, there are many more peptides that are used in cosmetics. However, study results for some are sparse, or have not been published in scientific journals. This article summarizes topical peptides with proven efficacy in controlled in vivo studies. Full article
(This article belongs to the Special Issue Efficacy Assessment of Cosmetics)
12 pages, 843 KiB  
Review
GHK-Cu may Prevent Oxidative Stress in Skin by Regulating Copper and Modifying Expression of Numerous Antioxidant Genes
by Loren Pickart, Jessica Michelle Vasquez-Soltero and Anna Margolina
Cosmetics 2015, 2(3), 236-247; https://doi.org/10.3390/cosmetics2030236 - 28 Jul 2015
Cited by 31 | Viewed by 36323
Abstract
The copper binding tripeptide GHK (glycyl-l-histidyl-l-lysine) is a naturally occurring plasma peptide that significantly declines during human aging. It has been established that GHK:Copper(2+) improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, [...] Read more.
The copper binding tripeptide GHK (glycyl-l-histidyl-l-lysine) is a naturally occurring plasma peptide that significantly declines during human aging. It has been established that GHK:Copper(2+) improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, improves the condition of aging skin and hair, and possesses antioxidant and anti-inflammatory effects. In addition, it increases cellular stemness and secretion of trophic factors by mesenchymal stem cells. GHK’s antioxidant actions have been demonstrated in vitro and in animal studies. They include blocking the formation of reactive oxygen and carbonyl species, detoxifying toxic products of lipid peroxidation such as acrolein, protecting keratinocytes from lethal Ultraviolet B (UVB) radiation, and blocking hepatic damage by dichloromethane radicals. In recent studies, GHK has been found to switch gene expression from a diseased state to a healthier state for certain cancers and for chronic obstructive pulmonary disease (COPD). The Broad Institute’s Connectivity Map indicated that GHK induces a 50% or greater change of expression in 31.2% of human genes. This paper reviews biological data demonstrating positive effects of GHK in skin and proposes interaction with antioxidant-related genes as a possible explanation of its antioxidant activity. Full article
(This article belongs to the Special Issue The Antioxidant Potential of the Skin)
Show Figures

Figure 1

Back to TopTop