Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = copper retention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 968 KB  
Article
Preclinical Theranostic Profiling of [64Cu]Cu-Acetate in Prostate Cancer
by Sadaf Ghanaatgar Kasbi, Martin Savard, Céléna Dubuc, Yves Dory, Brigitte Guérin and Fernand Gobeil
Molecules 2025, 30(19), 3957; https://doi.org/10.3390/molecules30193957 - 2 Oct 2025
Viewed by 290
Abstract
Copper plays a critical role in cancer biology, with tumor cells exhibiting abnormal copper metabolism that drives proliferation and tumor growth. A limited number of preclinical and clinical studies have reported promising theranostic potential of copper-based radionuclides, such as 64Cu, for both [...] Read more.
Copper plays a critical role in cancer biology, with tumor cells exhibiting abnormal copper metabolism that drives proliferation and tumor growth. A limited number of preclinical and clinical studies have reported promising theranostic potential of copper-based radionuclides, such as 64Cu, for both diagnostic imaging and targeted radiotherapy in diverse cancers, including prostate cancer (PCa). In this work, we evaluated the cellular uptake and antitumor efficacy of [64Cu]Cu-acetate using both cellular and animal models of PCa. Uptake assays revealed that ~70% of the administered dose (10 kBq) was internalized by PC-3 cells within 24 h, predominantly localizing to the cytoplasm, with around 9% detected in the nucleus. These results were corroborated by comparable natural Cu-acetate uptake levels (at equimolar dose) in PC-3 cells, as quantified by ICP-MS. Clonogenic assays revealed a dose-dependent reduction in survival following treatment with [64Cu]Cu-acetate (3 and 6 MBq), whereas its non-radioactive counterpart [NatCu]Cu-acetate, even at excess concentrations (10 µM), had no significant effect. Ex vivo biodistribution studies showed selective tumor accumulation/retention alongside expected hepatic uptake. Clear tumor visualization was achieved using μPET imaging with [64Cu]Cu-acetate (10 MBq iv). A single higher dose (65 MBq iv) effectively reduced tumor growth in a subcutaneous PC-3 xenograft mouse model, without systemic toxicity, as evidenced by stable body weight. Together, these results further support the theranostic potential of [64Cu]Cu in PCa. Full article
(This article belongs to the Special Issue Applications of Radiochemistry in Healthcare)
Show Figures

Figure 1

15 pages, 3403 KB  
Article
Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria
by Milena Kercheva, Patrycja Boguta, Kamil Skic, Viktor Kolchakov, Katerina Doneva and Maya Benkova
Pollutants 2025, 5(4), 33; https://doi.org/10.3390/pollutants5040033 - 1 Oct 2025
Viewed by 264
Abstract
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under [...] Read more.
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under grassland located at different distances from the Aurubis-Pirdop Copper smelter in Bulgaria. Data for soil particle-size distribution, soil bulk and particle densities, mineralogical composition, soil organic carbon contents, cation exchange properties, surface charge, soil water retention curves, pore size distribution—obtained by mercury intrusion porosimetry (MIP)—and thermal properties were obtained. The contents of Pb, Cu, As, Zn, and Cd were above the maximum permissible level in the humic horizon and decreased with depth and distance from the Copper smelter. Depending on HM speciation, the correlations are established with SOC and most physicochemical parameters. It can be concluded that the HMs impact the clay content, specific surface area, distribution of pores, and the water stability of soil aggregate fraction 1–3 mm to varying degrees. Full article
Show Figures

Figure 1

25 pages, 8488 KB  
Article
Limestone-Based Hybrid Passive Treatment for Copper-Rich Acid Mine Drainage: From Laboratory to Field
by Joshua Pascual Pocaan, Brian Gerald Bueno, Jaica Mae Pagaduan, Johara Capingian, Michelle Airah N. Pablo, Jacob Louies Rohi W. Paulo, Arnel B. Beltran, Aileen H. Orbecido, Renan Ma. Tanhueco, Carlito Baltazar Tabelin, Mylah Villacorte-Tabelin, Vannie Joy T. Resabal, Irish Mae Dalona, Dennis Alonzo, Pablo Brito-Parada, Yves Plancherel, Robin Armstrong, Anne D. Jungblut, Ana Santos, Paul F. Schofield, Richard Herrington and Michael Angelo B. Promentillaadd Show full author list remove Hide full author list
Minerals 2025, 15(10), 1043; https://doi.org/10.3390/min15101043 - 1 Oct 2025
Viewed by 341
Abstract
Acid mine drainage (AMD) is an environmental concern that needs to be addressed by some mining industries because of its high concentrations of metals and acidity that destroy affected ecosystems. Its formation typically persists beyond the operating life of a mine site. Its [...] Read more.
Acid mine drainage (AMD) is an environmental concern that needs to be addressed by some mining industries because of its high concentrations of metals and acidity that destroy affected ecosystems. Its formation typically persists beyond the operating life of a mine site. Its management is even more challenging for sites that are abandoned without rehabilitation. In this study, a legacy copper–gold mine located in Sto. Niño, Tublay, Benguet, Philippines, generating a copper- and manganese-rich AMD (Cu, maximum 17.2 mg/L; Mn, maximum 2.90 mg/L) at pH 4.59 (minimum) was investigated. With its remote location inhabited by the indigenous people local community (IPLC), a novel limestone-based hybrid passive treatment system that combines a limestone leach bed (LLB) and a controlled modular packed bed reactor (CMPB) has been developed from the laboratory and successfully deployed in the field while investigating the effective hydraulic retention time (HRT), particle size, and redox conditions (oxic and anoxic) in removing Cu and Mn and increasing pH. Laboratory-scale and pilot-scale systems using simulated and actual AMD, respectively, revealed that a 15 h HRT and both oxic and anoxic conditions were effective in treating the AMD. Considering these results and unsteady conditions of the stream in the legacy mine, a hybrid multi-stage limestone leach bed and packed bed were deployed having variable particle size (5 mm to 100 mm) and HRT. Regular monitoring of the system showed the effective removal of Cu (88.5%) and Mn (66.83%) as well as the increase of pH (6.26), addressing the threat of AMD in the area. Improvement of the lifespan of the system needs to be addressed, as issues of Cu-armoring were observed, resulting in reduced performance over time. Nonetheless, the study presents a novel technique in implementing passive treatment systems beyond the typical treatment trains reported in the literature. Full article
Show Figures

Graphical abstract

16 pages, 3334 KB  
Article
Integrated Alkali Gradient pH Control Purification of Acidic Copper-Containing Etching Waste Solution and Cu2(OH)3Cl Conversion-Calcination Process for High-Purity CuO
by Dengliang He, Song Ren, Shuxin Liu and Shishan Xue
Processes 2025, 13(9), 2807; https://doi.org/10.3390/pr13092807 - 2 Sep 2025
Viewed by 568
Abstract
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel [...] Read more.
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel purification technology for the acidic copper-containing etching waste solution was exploited via integrated alkali gradient pH control (3.0, 3.2, and 3.5). At pH 3.0, the system demonstrated selective metal removal with 94.02% efficiency for Fe and 82.60% for Mn. Elevating the pH to 3.2 enabled effective elimination of Zn (59.32%), Cr (59.46%), and Al (33.24%), while maintaining minimal copper loss (8.16%). Further pH adjustment to 3.5 achieved enhanced removal efficiencies of 97.86% (Fe), 91.30% (Mn), 59.38% (Zn), 62.10% (Cr), 21.66% (Ca), 34.05% (Al), and 26.66% (Co), with copper retention remaining high at 70.83% (29.17% loss). Furthermore, using the purified AEWS (pH 3.2) as precursor, high-purity nano-CuO was successfully synthesized through a Cu2(OH)3Cl conversion-calcination process, exhibiting 99.20% CuO purity with 0.0012% chlorine content and <0.1% metallic impurities. The development and application of the purification technology for AEWS containing copper, along with the production methodology for high-purity CuO, were significant to the fields of electronic information industry, environmental engineering, green industry and sustainable development of the ecological environment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

16 pages, 2324 KB  
Article
A Stability Study of [Cu(I)(dmby)2]TFSI in Biopolymer-Based Aqueous Quasi-Solid Electrolytes
by Giulia Adriana Bracchini, Elvira Maria Bauer, Claudia Mazzuca and Marilena Carbone
Gels 2025, 11(8), 645; https://doi.org/10.3390/gels11080645 - 14 Aug 2025
Viewed by 470
Abstract
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which [...] Read more.
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which to overcome the typical drawbacks of common liquid electrolytes such as corrosion, volatility or leakage. Despite the promising results obtained so far, redox-active species such as bis(6,6′-dimethyl-2,2′-bipyridine)copper(I) trifluoromethanesulfonylimide, ([Cu(I)(dmby)2]TFSI), still present inherent challenges associated with their poor water solubility and oxidative lability, which prevents their employment in cheap and sustainable aqueous electrolytes. The present study investigates the stabilization of the Cu(I) complex ([Cu(I)(dmby)2]TFSI) within two natural hydrogels based on the biopolymers κ-carrageenan and galactomannan, using ZnO nanoparticles as gelling agents. These eco-friendly and biocompatible systems are proposed as potential matrices for quasi-solid electrolytes (QSEs), offering a promising platform for advanced electrolyte design in electrochemical applications. Both hydrogels effectively stabilized and retained the redox species within their networks. In order to shed light on distinct stabilization mechanisms, complementary FTIR and SEM analyses were relevant to reveal the structural rearrangements, specific to each matrix, upon complex incorporation. Furthermore, thermogravimetric analysis confirmed notable thermal resilience in both systems, with the galactomannan-based gel demonstrating enhanced performance. Altogether, this work introduces a novel strategy for embedding copper-based redox couples into gelled electrolytes, paving the way toward their integration in real electrochemical devices, where long-term stability, redox retention, and energy conversion efficiency are critical evaluation criteria. Full article
Show Figures

Graphical abstract

16 pages, 5296 KB  
Article
The Effect of the Fresh Latex Ratio on the Composition and Properties of Bio-Coagulated Natural Rubber
by Jianwei Li, Honghai Huang, Li Ding, Tuo Dai, Haoran Geng, Tao Zhao, Liguang Zhao, Fan Wu and Hongxing Gui
Polymers 2025, 17(16), 2211; https://doi.org/10.3390/polym17162211 - 13 Aug 2025
Viewed by 724
Abstract
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization [...] Read more.
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization characteristics of compounded rubber, and physical–mechanical properties of vulcanized natural rubber. The results indicate that, compared to acid-coagulated natural rubber, enzyme-assisted microbial coagulated natural rubber exhibits slightly lower levels of volatile matter, impurities, plasticity retention index (PRI), nitrogen content, calcium ions (Ca2+), iron ions (Fe3+), and fatty acid content. Conversely, it demonstrates higher values in ash content, initial plasticity (P0), Mooney viscosity (ML(1+4)), acetone extract, magnesium ions (Mg2+), copper ions (Cu2+), manganese ions (Mn2+), gel content, molecular weight and distribution, and glass transition temperature (Tg). With the increase in the proportion of PR107 and Reyan 72059 fresh latex, the ash content, volatile matter content, fatty acid content, gel content, and dispersion coefficient (PDI) of natural rubber gradually decrease, while the impurity content, PRI, nitrogen content, weight-average molecular weight (Mw), and number-average molecular weight (Mn) gradually increase. Compared to acid-coagulated natural rubber compounds, enzyme-assisted microbial-coagulated natural rubber compounds exhibit higher minimum torque (ML) and maximum torque (MH), but shorter scorch time (t10) and optimum cure time (t90). Furthermore, as the proportion of PR107 and Reyan 72059 fresh latex increases, the ML of the compounds gradually decreases. In pure rubber formulations, enzyme-assisted microbial-coagulated natural rubber vulcanizates demonstrate higher tensile strength, tear strength, modulus at 300%, and Shore A hardness compared to acid-coagulated natural rubber vulcanizates. When the fresh latex ratio of PR107, Reyan 72059, and Reyan 73397 is 1:1:3, the tensile strength and 300% modulus of the natural rubber vulcanizates reach their maximum values. In carbon black formulations, the tensile strength and tear strength of enzyme-assisted microbial-coagulated natural rubber vulcanizates are significantly higher than those of acid-coagulated natural rubber vulcanizates in pure rubber formulations, with the increase exceeding that of other samples. Full article
(This article belongs to the Special Issue Polymer Functionalization Modification)
Show Figures

Figure 1

16 pages, 1002 KB  
Article
A Targeted Radiotheranostic Agent for Glioblastoma: [64Cu]Cu-NOTA-TP-c(RGDfK)
by Alireza Mirzaei, Samia Ait-Mohand, Prenitha Mercy Ignatius Arokia Doss, Étienne Rousseau and Brigitte Guérin
Brain Sci. 2025, 15(8), 844; https://doi.org/10.3390/brainsci15080844 - 7 Aug 2025
Viewed by 783
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making [...] Read more.
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making it a valuable target for tumor-specific delivery and PET imaging. This study explores a novel radiotheranostic agent, [64Cu]Cu-NOTA-TP-c(RGDfK), which combines the imaging and therapeutic capabilities of copper-64 (64Cu) and the cytotoxic activity of a terpyridine-platinum (TP) complex, conjugated to c(RGDfK). Methods: A robust protocol was developed for the small-scale preparation of NOTA-TP-c(RGDfK). Comparative cellular studies were conducted using U87 MG glioblastoma (GBM) cells and SVG p12 human astrocytes to evaluate the performance of [64Cu]Cu-NOTA-TP-c(RGDfK) relative to [64Cu]Cu-NOTA-c(RGDfK), [64Cu]Cu-NOTA-TP, natCu-NOTA-TP-c(RGDfK), cisplatin, and temozolomide. Results: 64Cu-radiolabeling of NOTA-TP-c(RGDfK) was achieved with >99% radiochemical purity, and competition assays confirmed high binding affinity to integrin αvβ3 (IC50 = 16 ± 8 nM). Cellular uptake, internalization, and retention studies demonstrated significantly higher accumulation of [64Cu]Cu-NOTA-TP-c(RGDfK) in U87 MG cells compared to control compounds, with 38.8 ± 1.8% uptake and 28.0 ± 1.0% internalization at 24 h. Nuclear localization (6.0 ± 0.5%) and stable intracellular retention further support its therapeutic potential for inducing localized DNA damage. Importantly, [64Cu]Cu-NOTA-TP-c(RGDfK) exhibited the highest cytotoxicity in U87 MG cells (IC50 = 10 ± 2 nM at 48 h), while maintaining minimal toxicity in normal SVG p12 astrocytes. Conclusions: These results highlight [64Cu]Cu-NOTA-TP-c(RGDfK) as a promising targeted radiotheranostic agent for GBM, warranting further preclinical development Full article
Show Figures

Figure 1

8 pages, 3048 KB  
Communication
Layer-by-Layer Nanoassembly of Cu(OH)2 Multilayer Membranes for Nanofiltration
by Wenbo Sun, Yanpeng Xue and Guozhi Liu
Coatings 2025, 15(8), 895; https://doi.org/10.3390/coatings15080895 - 1 Aug 2025
Viewed by 413
Abstract
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time [...] Read more.
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time of the liquid–liquid reaction on membrane structure and pore sizes were studied by SEM, TEM, and X-ray diffraction. The growth mechanism of the membrane was discussed and the formation process model was proposed. It was found that the reaction temperature was a key factor in obtaining a Cu(OH)2 monolayer, and this could be used to adjust the thickness and pore size of the monolayer. The as-prepared Cu(OH)2 membranes exhibited excellent filtration performance with the pure water fluxes of 156.2 L·m−2 h−1 bar−1 and retention rates of 100% for methylene blue (50 ppm) at a pressure of 0.1 MPa. This successfully opens up a new method of synthesizing multilayer nanoarrays’ Cu(OH)2 structure for nanofiltration. Full article
(This article belongs to the Special Issue Deposition-Based Coating Solutions for Enhanced Surface Properties)
Show Figures

Graphical abstract

19 pages, 7490 KB  
Article
Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings
by Mate Czagany, Gabor Meszaros, Daniel Koncz-Horvath, Adrienn Hlavacs, Mark Windisch, Byungil Hwang and Peter Baumli
Materials 2025, 18(15), 3544; https://doi.org/10.3390/ma18153544 - 29 Jul 2025
Viewed by 468
Abstract
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure [...] Read more.
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure of the coating consists of 0.8–10 µm particles, with an X-ray amorphous phase structure. The surface morphology and porosity of the coating can be tuned simply by changing the etching time. The supercapacitive performance of the electrodes was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements. The capacitance of the coating was found to vary on the etching time according to a maximum function, allowing for the determination of an optimal duration to obtain a specific capacitance of 157 mF/cm2 (at 0.5 A/g). An excellent charge storage retention of 178% was found after 5000 CV cycles at a scan rate of 50 mV/s owing to the evolved electrochemically active network on the surface of the electrode, indicating a long-term stable and reliable electrode. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

18 pages, 24780 KB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 513
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 7645 KB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 520
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

12 pages, 9594 KB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 1101
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

23 pages, 11935 KB  
Article
Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil
by Pabllo Henrique Costa dos Santos, Marcondes Lima da Costa, Nilson S Ferreira, Mariella Alzamora Camarena and Rayara do Socorro Souza da Silva
Minerals 2025, 15(5), 501; https://doi.org/10.3390/min15050501 - 8 May 2025
Viewed by 969
Abstract
The Carajás Mineral Province hosts one of the world’s most extensive sulfide-bearing copper belts. These deposits are typically covered by thick regolith, including gossans, laterites, colluviums, and soil, which can be used as important exploration indicators. In some cases, these covers can be [...] Read more.
The Carajás Mineral Province hosts one of the world’s most extensive sulfide-bearing copper belts. These deposits are typically covered by thick regolith, including gossans, laterites, colluviums, and soil, which can be used as important exploration indicators. In some cases, these covers can be mined alongside the parent hypogene ore. Therefore, accurate identification of copper-bearing minerals is essential for selecting the most appropriate metallurgical techniques. This study investigated the saprolite horizon overlying the Alvo 118 deposit, where the parent rocks are chloritites hosting copper-bearing hypogene sulfides, partially altered to an immature gossan. Saprolite formation was primarily controlled by the weathering of chlorite, mostly converted into kaolinite, with smectite and vermiculite serving as intermediates, forming a typical lower saprolite association. During weathering, iron released from chlorite and indirectly by vermiculite and smectite contributed to the formation of ferrihydrite, goethite, and hematite. Magnetite octahedrons, relics of the hypogene ore, pseudomorphic phases, are embedded in the clay mineral matrix. While FTIR analysis of kaolinite showed no evidence of copper retention, Mössbauer spectroscopy enabled the quantification of iron-bearing minerals, revealing a strong correlation between CuO contents and goethite and ferrihydrite. These results suggest that goethite and ferrihydrite may be the main copper carriers in the deposit, consistent with findings from similar deposits. Weak acid leaching is proposed as the most effective technique for copper extraction from this mineralization type. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

14 pages, 9159 KB  
Article
Copper Nanoclusters Anchored on Crumpled N-Doped MXene for Ultra-Sensitive Electrochemical Sensing
by Hanxue Yang, Chao Rong, Shundong Ge, Tao Wang, Bowei Zhang and Fu-Zhen Xuan
Sensors 2025, 25(8), 2508; https://doi.org/10.3390/s25082508 - 16 Apr 2025
Viewed by 733
Abstract
Simultaneous detection of dopamine (DA) and uric acid (UA) is essential for diagnosing neurological and metabolic diseases but hindered by overlapping electrochemical signals. We present an ultrasensitive electrochemical sensor using copper nanoclusters anchored on nitrogen-doped crumpled Ti3C2Tx MXene [...] Read more.
Simultaneous detection of dopamine (DA) and uric acid (UA) is essential for diagnosing neurological and metabolic diseases but hindered by overlapping electrochemical signals. We present an ultrasensitive electrochemical sensor using copper nanoclusters anchored on nitrogen-doped crumpled Ti3C2Tx MXene (Cu-N/Ti3C2Tx). The engineered 3D crumpled architecture prevents MXene restacking, exposes active sites, and enhances ion transport, while Cu nanoclusters boost electrocatalytic activity via accelerated electron transfer. Structural analyses confirm uniform Cu dispersion (3.0 wt%), Ti-N bonding, and strain-induced wrinkles, synergistically improving conductivity. The sensor achieves exceptional sensitivity (1958.3 and 1152.7 μA·mM−1·cm−2 for DA/UA), ultralow detection limits (0.058 and 0.099 μM for DA/UA), rapid response (<1.5 s), and interference resistance (e.g., ascorbic acid). Differential pulse voltammetry enables independent linear detection ranges (DA: 2–60 μM; UA: 5–100 μM) in biofluids, with 94.4% stability retention over 7 days. The designed sensor exhibits excellent capabilities for DA and UA detection. This work provides a novel design strategy for developing high-performance electrochemical sensors. Full article
Show Figures

Figure 1

27 pages, 3186 KB  
Review
Anaerobic Bioremediation of Acid Mine Drainage Using Sulphate-Reducing Bacteria: Current Status, Challenges, and Future Directions
by Ditiro Mafane, Tholiso Ngulube and Mamasegare Mabel Mphahlele-Makgwane
Sustainability 2025, 17(8), 3567; https://doi.org/10.3390/su17083567 - 15 Apr 2025
Cited by 6 | Viewed by 3982
Abstract
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of [...] Read more.
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of AMD because it is cost-effective and efficient. Anaerobic bioremediation employing sulphate-reducing bacteria (SRB) presents a promising solution by facilitating the reduction of sulphate to sulphide. The formed can precipitate and immobilise heavy metals, assisting them in their removal from contaminated wastewater. This paper examines the current status of SRB-based bioremediation, with an emphasis on recent advances in microbial processes, reactor design, and AMD treatment efficiencies. Reviewed studies showed that SRB-based bioreactors can achieve up to 93.97% of sulphate reduction, with metal recovery rates of 95% for nickel, 98% for iron and copper, and 99% for zinc under optimised conditions. Furthermore, bioreactors that used glycerol and ethanol as a carbon source improved the efficiency of sulphate reduction, achieving a pH neutralisation from 2.8 to 7.5 within 14 days of hydraulic retention time. Despite the promising results achieved so far, several challenges remain. These include the need for optimal environmental conditions, the management of toxic hydrogen sulphide production, and the economic feasibility of large-scale applications. Future directions are proposed to address these challenges, focusing on the genetic engineering of SRB, integration with other treatment technologies, and the development of cost-effective and sustainable bioremediation strategies. Ultimately, this review provides valuable information to improve the efficiency and scalability of SRB-based remediation methods, contributing to more sustainable mining practices and environmental conservation. To ensure relevance and credibility, relevance and regency were used as criteria for the literature search. The literature sourced is directly related to the subject of the review, and the latest research, typically from the last 5 to 10 years, was prioritised. Full article
Show Figures

Figure 1

Back to TopTop