Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil
Abstract
:1. Introduction
2. Geological and Geomorphological Setting
3. Materials and Methods
4. Results
4.1. Bedrock
4.2. Structure of the Weathering Profile
4.3. Multi-Elemental Chemical Composition of the Studied Saprolite
4.4. Clay Minerals
4.5. Iron-Bearing Minerals
5. Discussion
5.1. Mineralogical Transformations and Iron Oxyhydroxide Formation
5.2. Elemental Retention
5.3. Copper Immobilization and Metallurgical Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, M.L.; Angélica, R.S.; Fonseca, L.R. Geochemical exploration for gold in deep weathered lateritized gossans in the Amazon region-Brazil: A case history of the Igarapé Bahia deposit. Geochim. Bras. 1996, 10, 13–26. [Google Scholar]
- Costa, M.L.; Angélica, R.S.; Costa, N.C. The geochemical association Au–As–B–(Cu)–Sn–W in latosol, colluvium, lateritic iron crust and gossan in Carajás, Brazil: Importance for primary ore identification. J. Geochem. Explor. 1999, 67, 33–49. [Google Scholar] [CrossRef]
- Porto, C.G. Geochemical exploration challenges in the regolith dominated Igarapé Bahia gold deposit, Carajás, Brazil. Ore Geol. Rev. 2016, 73, 432–450. [Google Scholar] [CrossRef]
- Toledo-Groke, M.C.; Melfi, A.J.; Parisot, J.C. Comportamento do cobre durante o intemperismo das rochas xistosas cupríferas do Salobo 3A, Serra dos Carajás. Geochim. Bras. 1987, 2, 187–200. [Google Scholar]
- Veiga, M.M.; Schorscher, H.D.; Fyfe, W.S. Relationship of copper with hydrous ferric oxides: Salobo, Carajás, PA, Brazil. Ore Geol. Rev. 1991, 6, 245–255. [Google Scholar] [CrossRef]
- Grainger, C.J.; Groves, D.I.; Tallarico, F.H.B.; Fletcher, I.R. Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil: Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 2008, 33, 451–489. [Google Scholar] [CrossRef]
- Vasconcelos, P.M.; Renne, P.R.; Brimhall, G.H.; Becker, T.A. Direct dating of weathering phenomena by 40Ar39Ar and K-Ar analysis of supergene K-Mn oxides. Geochim. Cosmochim. Acta 1994, 58, 1635–1665. [Google Scholar] [CrossRef]
- King, L.C. A Geomorfologia do Brasil Oriental. Rev. Bras. Geogr. 1956, 18, 147–265. [Google Scholar]
- Monteiro, H.S.; Vasconcelos, P.M.P.; Farley, K.A.; Lopes, C.A.M. Age and evolution of diachronous erosion surfaces in the Amazon: Combining (U-Th)/He and cosmogenic 3He records. Geoch Cosmo Acta 2018, 229, 162–183. [Google Scholar] [CrossRef]
- Santos, P.H.S.; Costa, M.L. Mineralogical and textural evolution of the Alvo 118 copper-bearing gossan: Implications for supergene metallogenesis in Carajás Mineral Province, Brazil. J. S. Am. Earth Sci. 2023, 121, 104108. [Google Scholar] [CrossRef]
- Albuquerque, M.A.C.; Andrade, P.J.M.B.; Maurity, C.; Kwitko, R. Geologia e características das mineralizações cupríferas do depósito Alvo 118. In VII Simpósio de Geologia da Amazônia; Província Mineral de Carajás: Pará, Brazil, 2001; pp. 5–8. [Google Scholar]
- Santos, P.H.S.; Costa, M.L.; Roerdink, D.R. Geochemical and Isotopic Fractionation in the Hypogene Ore, Gossan, and Saprolite of the Alvo 118 Deposit: Implications for Copper Exploration in the Regolith of the Carajás Mineral Province. Minerals 2023, 13, 1441. [Google Scholar] [CrossRef]
- Docegeo; Internal Report; Departamento Nacional de Produção Mineral: Rio de Janeiro, Brazil, 1991.
- Mano, E.S.; Caner, L.; Petit, S.; Chaves, A.P. Mineralogical characterization of copper lateritic ore from the Furnas deposit—Carajás, Brazil. Int. Eng. J. 2020, 73, 329–335. [Google Scholar] [CrossRef]
- Mano, E.S.; Caner, L.; Chaves, A.P. Methodology for laterítics Cu-bearing clay minerals characterization. Holos 2015, 31, 3–12. [Google Scholar] [CrossRef]
- Ildefonse, P.; Manceau, A.; Prost, D.; Toledo-Groke, M.C. Hydroxy-Cu vermiculite formed by the weathering of Fe-biotites at Salobo, Carajás, Brazil. Clays Clay Miner. 1986, 34, 338–345. [Google Scholar] [CrossRef]
- Oliveira, S.M.B.; Silva, M.L.M.; Toledo, M.C.M. The role of residual 2, 1 phyllosilicates in lateritic metallogenesis: Ni and Cu deposits in Serra dos Carajás, Brazilian Amazônia. Geochim. Bras. 1995, 9, 161–171. [Google Scholar]
- Oliveira, S.M.B.; Imbernon, R.A.L.; Partiti, C.S.M.; Rechenberg, H.R. Mössbauer spectroscopic study of iron oxides and oxyhydroxides in gossans. Geoderma 1996, 73, 245–256. [Google Scholar] [CrossRef]
- Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud. 2001, 10, 1–10. [Google Scholar]
- Chetty, D. Acid-gangue interactions in heap leach operations: A review of the role of mineralogy for predicting ore behavior. Minerals 2018, 8, 47. [Google Scholar] [CrossRef]
- Thomas, M. Understanding gangue acid consumption in copper sulfide heap leaching: Predicting the impact of carbonates, silicates and secondary precipitates. Miner. Eng. 2021, 171, 107090. [Google Scholar] [CrossRef]
- Silva, E.R.P.; Kotschoubey, B. Alteração supergênica do depósito de cobre-ouro do Salobo, Serra dos Carajás-PA—Ênfase no comportamento do cobre. Rev. Bras. Geociências 2000, 30, 623–630. [Google Scholar] [CrossRef]
- Ker, J.C. Latossolos do Brasil: Uma Revisão. Rev. Geonomos 1997, 5, 17–40. [Google Scholar] [CrossRef]
- Eggleton, R.A. The Regolith Glossary, Surficial Geology, Soils and Landscapes; CRC LEME: Camberra, Australia, 2001; p. 144. [Google Scholar]
- Maurity, C.W.; Kotschoubey, B. Evolução recente da cobertura de alteração no platô N1- Serra dos Carajás-Pa: Degradação, pseudocarstificação, espeleotemas. Bol. Mus. Para Emílio Goeldi 1995, 7, 331–362. [Google Scholar]
- Tallarico, F.H.B.; Figueiredo, B.R.; Groves, D.I.; Kositcin, N.; McNaughton, N.J.; Fletcher, I.R.; Rego, J.L. Geology and SHRIMPU–Pb geochronology of the Igarapé Bahia Deposit, Carajás Copper–Gold Belt, Brazil: An Archean (2.57 Ga) example of iron–oxide Cu–Au–(U–REE) mineralization. Econ. Geol. 2005, 100, 7–28. [Google Scholar] [CrossRef]
- Torresi, I.; Xavier, R.P.; Bortholoto, D.F.A.; Monteiro, L.V.S. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis. Miner. Depos. 2011, 47, 299–323. [Google Scholar] [CrossRef]
- USGS. Shuttle Radar Topography Mission (SRTM). 2018. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1 (accessed on 5 May 2025).
- Munsell Color (Firm). Munsell Soil-Color Charts; Munsell Color: Boston, MA, USA, 1992. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Starkey, H.C.; Blackmon, P.D.; Hauff, P.L. The Routine Mineralogical Analysis of Clay-Bearing Samples. 1984. Available online: https://pubs.usgs.gov/bul/1563/report.pdf (accessed on 5 May 2025).
- Moore, D.M.; Reynolds, R.C., Jr. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; p. 400. [Google Scholar]
- Farmer, V.C. Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Miner. 1998, 33, 601–604. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Murad, E.; Schwertmann, U. The Möessbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Ame Min. 1980, 65, 1044–1049. [Google Scholar]
- Imbernon, R.A.L.; Blot, A.; Pereira, V.P.; Franco, D.R. Characterization of Zn-bearing chlorite by Mössbauer (ME) and infrared spectroscopy (IR)—Occurrence associated to the Pb-Zn-Ag deposits of Canoas, PR, Brazil. Braz. J. Geol. 2011, 41, 28–236. [Google Scholar] [CrossRef]
- Vandenberghe, R.E.; De Grave, E. Application of Mössbauer spectroscopy in earth sciences. In Mössbauer Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2012; pp. 91–185. [Google Scholar] [CrossRef]
- Bowen, L.H.; De Grave, E.; Vandernberghe, R.E. Mössbauer Effect Studies of Magnetic Soils and Sediments. In Mössbauer Spectroscopy Applied to Magnetism and Materials Science; Long, G.J., Grandjean, F., Eds.; Plenum Press: New York, NY, USA, 1993; Volume 1, pp. 115–159. [Google Scholar]
- Kukkadapu, R.K.; Zachara, J.M.; Fredrickson, J.K.; Smitn, S.C.; Dohnalkova, A.C.; Russell, C.K. Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Miner. Soc. Am. 2003, 88, 11–12. [Google Scholar] [CrossRef]
- Guyodo, Y.; Banerjee, S.K.; Lee Penn, R.; Burleson, D.; Berqui, T.S.; Seda, T.; Solheid, P. Magnetic properties of synthetic six-line ferrihydrite nanoparticles. Phys. Earth Planet. Inter. 2006, 154, 222–233. [Google Scholar] [CrossRef]
- Ziganshin, A.M.; Ziganshina, E.E.; Byrne, J.; Gerlach, R.; Struve, E.; Biktagirov AKappler, A. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica. AMB Express 2015, 5, 8. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, M.; Koopal, L.K.; Li, W.; Xu, W.; Liu, F.; Zhang, J.; Liu, Q.; Feng, X.; Sparks, D. Effects of crystallite size on the structure and magnetism of ferrihydrite. Envron. Sci. Nano 2016, 3, 190–202. [Google Scholar] [CrossRef]
- Zhao, Z.; Yao, L.; Li, J.; Ma, X.; Han, L.; Lin, Z.; Guan, S. Determination of interactions of ferrihydrite-humic acid-Pb (II) system. Environ. Sci. Pollut. Res. 2022, 29, 21561–21575. [Google Scholar] [CrossRef]
- Airey, P.L. Radionuclide migration around uranium ore bodies in the Alligator Rivers Region of the Northern Territory of Australia–Analogue of radioactive waste repositories—A review. Chem. Geol. 1986, 55, 255–268. [Google Scholar] [CrossRef]
- Murakami, T. Weathering of Chlorite in a Quartz-Chlorite Schist: I. Mineralogical and Chemical Changes. Clays Clay Miner. 1996, 44, 244–256. [Google Scholar] [CrossRef]
- Sirbu-Radasanu, D.S.; Huzum, R.; Dumitraş, D.-G.; Stan, C.O. Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians). Minerals 2022, 12, 1161. [Google Scholar] [CrossRef]
- Gilkes, R.J.; Little, I.P. Weathering of chlorite and some associations of trace elements in Permian phyllites in Southeast Queensland. Geoderma 1972, 7, 233–247. [Google Scholar] [CrossRef]
- Ross, G.J.; Kodama, H. Experimental alteration of a chlorite into a regularly interstratified chlorite vermiculite by chemical oxidation. Clays Clay Miner. 1976, 24, 183–190. [Google Scholar] [CrossRef]
- Schulze, D.G. Clay minerals. In Encyclopedia of Soils in the Environment; Hille, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 246–254. [Google Scholar]
- Aspandiar, M.F.; Eggleton, R.A. weathering of chlorite: I. Reactions and products in microsystems controlled by the primary mineral. Clays Clay Miner. 2002, 50, 685–698. [Google Scholar] [CrossRef]
- Banfield, J.F. Transmission Electron Microscope Study of Biotite Weathering. Clays Clay Miner. 1988, 36, 47–60. [Google Scholar] [CrossRef]
- Carnicelli, S.; Mirabella, A.; Cecchini, G.; Sanesi, G. Weathering of Chlorite to a Low-Charge Expandable Mineral in a Spodosol on the Apennine Mountains, Italy. Clays Clay Miner. 1997, 45, 28–41. [Google Scholar] [CrossRef]
- Castaldini, M.; Mirabella, A.; Sartori, G.; Fabiani, A.; Santomassimo, F.; Miclaus, N. Soil development and microbial community along an altitudinal transect in trentino mountains. Dev. Soil Sci. 2002, 28, 217–228. [Google Scholar] [CrossRef]
- Nickel, E.H.; Daniels, J.L. Gossans. In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 261–390. [Google Scholar]
- Spier, C.A.; Levett, A.; Rosière, C.A. Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner. Depos. 2018, 54, 983–1010. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Moore, F.; Asadi, S. Leached caps mineralogy and geochemistry as supergene enrichment fertility indicators, Meiduk and Parkam porphyry copper deposits, SW Iran. J. Geochem. Explor. 2018, 194, 198–209. [Google Scholar] [CrossRef]
- Schwertmann, U.; Murad, E. Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite. Clays Clay Miner. 1983, 31, 277–284. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Zeegers, H. Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. In Handbook of Exploration Geochemistry, 4; Elsevier: Amsterdam, The Netherlands, 1992; p. 607. [Google Scholar]
- Butt, C.R.M.; Lintern, M.J.; Anand, R.R. Evolution of regoliths and landscapes in deeply weathered terrain—Implications for geochemical exploration. Ore Geol. Rev. 2000, 16, 167–183. [Google Scholar] [CrossRef]
- Barley, M.E.; Pickard, A.L.; Hagemann, S.G.; Folkert, S.L. Hydrothermal origin for the 2-billion-year-old Mount Tom Price giant iron ore deposit, Hamersley Province, Western Australia. Miner. Depos. 1999, 34, 784–789. [Google Scholar] [CrossRef]
- Montreuil, J.-F.; Potter, E.G.; Corriveau, L.; Davis, W.J. Element mobility patterns in magnetite-group IOCG systems: The Fab IOCG system, Northwest Territories, Canada. Ore Geol. Rev. 2016, 72, 562–584. [Google Scholar] [CrossRef]
- Graham, R.C. Weathering of Iron-Bearing Minerals in Soils and Saprolite on the North Carolina Blue Ridge Front: I. Sand-Size Primary Minerals. Clays Clay Miner. 1989, 37, 19–28. [Google Scholar] [CrossRef]
- Habteselassie, M.M.; Mathison, C.I.; Gilkes, R.J. Vanadium in magnetite gabbros and its behaviour during lateritic weathering, Windimurra Complex, Western Australia. Aust. J. Earth Sci. 1996, 43, 555–566. [Google Scholar] [CrossRef]
- Acker, J.G.; Bricker, O.P. The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim. Cosmochim. Acta 1992, 56, 3073–3092. [Google Scholar] [CrossRef]
- Thornber, M.R.; Taylor, G.F. The mechanisms of sulphide oxidation and gossan formation. Handb. Explor. Geochem. 1992, 4, 119–138. [Google Scholar] [CrossRef]
- Nickel, E.H. The mineralogy and geochemistry of the weathering profile of the Teutonic Bore Cu-Pb-Zn-Ag sulphide deposit. J. Geochem. Explor. 1984, 22, 239–263. [Google Scholar] [CrossRef]
- Chávez, W. Supergene oxidation of copper deposits: Zoning and distribution of copper oxide minerals. Soc. Econ. Geol. News 2000, 41, 10–21. [Google Scholar] [CrossRef]
- Atapour, H.; Aftabi, A. The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: Implications for exploration and the environment. J. Geochem. Explor. 2007, 93, 47–65. [Google Scholar] [CrossRef]
- Brown, A.C. Refinements for footwall red-bed diagenesis in the sediment-hosted stratiform copper deposits model. Econ. Geol. 2005, 100, 765–771. [Google Scholar] [CrossRef]
- Putter, T.; Mees, F.; Decrée, S.; Dewaele, S. Malachite, an indicator of major Pliocene Cu remobilization in karstic environment (Katanga, Democratic Republic of Congo). Ore Geol. Rev. 2010, 38, 90–100. [Google Scholar] [CrossRef]
- Papineau, D. Chemically oscillating reactions in the formation of botryoidal malachite. Ame Miner. 2020, 105, 447–454. [Google Scholar] [CrossRef]
- Mosser, C.; Mestdagh, M.; D’Ecarreau Herbillon, A.J. Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites. Clay Miner. 1990, 25, 271–282. [Google Scholar] [CrossRef]
- Mosser, C.; Mosser, A.; Romeo, M.; Petit, S.; Decarreau, A. Natural and synthetic copper phyllosilicates studied by XPS. Clays Clay Miner. 1992, 40, 593–599. [Google Scholar] [CrossRef]
- Petit, S.; Decarreau, A.; Mosser, C.; Ehret, G.; Grauby, O. Hydrothermal Synthesis (250 °C) of Copper-Substituted Kaolinites. Clays Clay Miner. 1995, 43, 482–494. [Google Scholar] [CrossRef]
- Strauss, R.; Brummer, G.W.; Barrow, N.J. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci. 1997, 48, 101–114. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Frost, R.L. An overview of the role of goethite surfaces in the environment. Chemosphere 2014, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Taylor, A. Overview of Gangue Mineralogy Issues in Oxide Copper Heap Leaching. International Project Development Services Pty Limited. 2003. Available online: https://emrlibrary.gov.yk.ca/minerals/MajorMines/carmackscopper/overview_of_gangue_mineralogy_issues.pdf (accessed on 5 May 2025).
- Snäll, S.; Liljefors, T. Leachability of major elements from minerals in strong acids. J. Geochem. Explor. 2000, 71, 1–12. [Google Scholar] [CrossRef]
- Tan, H.; Skinner, W.; Addai-Mensah, J. Leaching behaviour of low and high Fe substituted chlorite clay minerals at low pH. Hydrometallurgy 2012, 125, 100–108. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Franzidis, J.P.; Petersen, J. Heap leaching technology—Current state, innovations and future directions: A review. Min. Proc. Ext. Met. Rev. 2015, 37, 73–119. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Sole, K.C.; Davenport, W.G.; Alvear Flores, G.R.F. Hydrometallurgical copper extraction. In Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2022; pp. 361–406. [Google Scholar]
Sample | Chlo. | Gran. | Hypo. | Coarse Saprolite | Fine Saprolite | |||||
---|---|---|---|---|---|---|---|---|---|---|
Depth | 209 m | 87 m | 128 m | 41 m | 34 m | 27 m | 22 m | 13 m | 9 m | 1 m |
Wt.% TiO2 | 0.89 | 0.63 | 0.12 | 1.07 | 0.74 | 1.18 | 1.16 | 0.98 | 1.67 | 0.83 |
Al2O3 | 11.68 | 16.59 | 3.72 | 13.95 | 9.79 | 17.75 | 15.38 | 17.65 | 23.50 | 15.43 |
Fe2O3 | 16.52 | 3.57 | 31.89 | 10.77 | 14.81 | 13.62 | 11.72 | 14.38 | 8.33 | 16.64 |
MgO | 7.52 | 1.28 | 3.32 | 3.12 | 3.10 | 1.12 | 2.43 | 2.05 | 1.68 | 0.97 |
CaO | 1.36 | 3.42 | 0.84 | 0.01 | 0.03 | 0.01 | 0.01 | 0.03 | 0.06 | 0.04 |
Na2O | 0.45 | 3.95 | 0.03 | 0.03 | 0.05 | 0.03 | 0.04 | 0.12 | 0.11 | 0.04 |
K2O | 2.84 | 3.81 | 1.74 | 0.08 | 0.30 | 0.04 | 0.32 | 1.06 | 0.25 | 0.18 |
S | 0.01 | 0.07 | 10 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.01 |
CuO | 0.01 | 0.16 | 25.24 | 1.11 | 1.37 | 0.51 | 0.92 | 0.74 | 0.87 | 0.88 |
ppm Li | 14.3 | 17.7 | 15.5 | 11.9 | 14 | 7.3 | 7.3 | 6.8 | 5.1 | 3.6 |
Be | 3.72 | 2.83 | 311 | 6.54 | 12.75 | 9.61 | 7.17 | 18.5 | 9.21 | 16.3 |
P | 490 | 1610 | 2080 | 290 | 720 | 420 | 350 | 1110 | 750 | 880 |
Sc | 33.7 | 13 | 10.4 | 16.8 | 24.6 | 25.9 | 21 | 37.7 | 25.4 | 28.6 |
V | 225 | 52 | 44 | 81 | 157 | 118 | 88 | 190 | 98 | 148 |
Cr | 33 | 4 | 0.5 | 4 | 21 | 15 | 4 | 63 | 13 | 41 |
Mn | 727 | 420 | 77 | 322 | 771 | 142 | 275 | 306 | 605 | 1180 |
Co | 59.7 | 17.8 | 92.5 | 36.6 | 106 | 13.6 | 32.1 | 47 | 84.5 | 55.3 |
Ni | 180.5 | 56.5 | 185 | 138 | 138 | 64.6 | 141.5 | 208 | 121 | 133 |
Zn | 61 | 40 | 30 | 63 | 42 | 24 | 76 | 101 | 68 | 63 |
Ga | 41.9 | 17.05 | 16.1 | 21.6 | 30.7 | 31.4 | 21.9 | 26.5 | 24.4 | 28 |
Ge | 0.34 | 0.16 | 0.62 | 0.1 | 0.16 | 0.23 | 0.08 | 0.1 | 0.34 | 0.37 |
As | 0.7 | 0.4 | 10 | 0.2 | 0.9 | 0.9 | 0.3 | 0.5 | 0.8 | 2.2 |
Se | 0.5 | 0.5 | 15 | 1 | 2 | n.d. | n.d. | n.d. | n.d. | n.d. |
Rb | 93.8 | 185.5 | 167 | 10.8 | 39.3 | 3 | 19.2 | 105.5 | 19.2 | 21.8 |
Sr | 32 | 22.9 | 4.8 | 11.8 | 7.1 | 8.8 | 12.4 | 8.9 | 34.1 | 8.6 |
Y | 65.2 | 24.8 | 500 | 32.3 | 136 | 231 | 22.7 | 56.6 | 73.8 | 231 |
Zr | 139.5 | 158 | 4.3 | 206 | 132.5 | 255 | 205 | 208 | 344 | 241 |
Nb | 8.3 | 8.1 | 11.8 | 8.3 | 10.7 | 11.4 | 8.7 | 7.7 | 12.6 | 10 |
Mo | 1.56 | 1.45 | 6.15 | 1.3 | 12.8 | 2.78 | 0.97 | 3.04 | 0.81 | 4.09 |
Ag | 0.05 | 0.13 | 12.15 | 0.87 | 1.88 | 1.72 | 0.35 | 0.34 | 0.31 | 0.77 |
Cd | 0.01 | 0.06 | 0.05 | n.d. | 0.03 | n.d. | n.d. | n.d. | 0.03 | n.d. |
In | 0.023 | 0.023 | 3.47 | 0.023 | 0.044 | 0.029 | 0.021 | 0.034 | 0.035 | 0.068 |
Sn | 26.3 | 13.1 | 27.8 | 16 | 21.8 | 18.7 | 20 | 21 | 10.7 | 19.9 |
Sb | 0.15 | 0.1 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | n.d. | n.d. |
Te | 0.09 | 0.025 | 13.85 | 0.11 | 0.45 | 0.11 | 0.025 | 0.07 | 0.06 | 0.42 |
Cs | 0.59 | 0.15 | 1.59 | 0.25 | 1.78 | 0.07 | 0.29 | 1.48 | 0.37 | 0.86 |
Ba | 470 | 620 | 70 | 140 | 120 | 90 | 210 | 220 | 560 | 280 |
La | 147 | 44.9 | 15.5 | 15.6 | 24.8 | 36.6 | 16.6 | 9.7 | 89.6 | 86 |
Ce | 289 | 84 | 75.4 | 30 | 50 | 27.1 | 31 | 21.2 | 162.5 | 237 |
Hf | 3.9 | 4.2 | 0.9 | 4.5 | 3.3 | 6.3 | 5 | 5.3 | 8.8 | 6.3 |
Ta | 0.55 | 0.51 | 1.18 | 0.56 | 0.92 | 0.87 | 0.59 | 0.59 | 0.94 | 0.85 |
W | 0.9 | 2.6 | 1.2 | 6.8 | 2.9 | 5.1 | 2.3 | 4.2 | 9.7 | 6.7 |
Re | 0.002 | 0.001 | 0.016 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.004 |
Au | n.d. | 0.007 | 3.82 | 0.005 | 0.092 | n.d. | n.d. | 0.015 | 0.057 | 0.08 |
Tl | 0.29 | 0.44 | 0.3 | 0.04 | 0.15 | 0.02 | 0.03 | 0.25 | 0.08 | 0.36 |
Pb | 3.1 | 6.2 | 32.5 | 6.1 | 4.3 | 4.3 | 5.9 | 4.5 | 9.7 | 12.1 |
Bi | 0.02 | 0.06 | 0.77 | 0.06 | 0.36 | 0.12 | 0.03 | 0.03 | 0.05 | 0.26 |
Th | 7.54 | 7.09 | 11.55 | 8.45 | 4.25 | 10.45 | 8.94 | 7.7 | 12.65 | 11.05 |
U | 2.5 | 2.5 | 33 | 4.3 | 5.8 | 8.2 | 2.7 | 4.3 | 3.6 | 8.1 |
Saprolite Sample | CuO (Wt.%) | Bhf (T) | δ/Fe (mm s−1) | QS (mm s−1) | RA (%) | Mineral |
---|---|---|---|---|---|---|
505-23 | 1.65 | - | 0.2552 | 0.5031 | 21.648 | Goethite |
- | 1.1155 | 2.6800 | 44.746 | Chlorite | ||
- | 0.2498 | 0.8654 | 33.114 | Ferrihydrite | ||
51.569 | 0.2922 | −0.1655 | 0.4913 | Hematite | ||
505-25 | 1.15 | - | 0.2509 | 0.55402 | 10.115 | Goethite |
48.952 | 0.26086 | −0.2019 | 25.830 | Hematite | ||
- | 0.24238 | 1.074 | 5.010 | Ferrihydrite | ||
- | 1.2 | 2.7731 | 59.045 | Chlorite | ||
505-30 | 4.79 | - | 0.2554 | 0.6145 | 61.453 | Goethite |
- | 1.0256 | 2.6022 | 11.152 | Chlorite | ||
- | 0.2724 | 1.0609 | 7.723 | Ferrihydrite | ||
51.16 | 0.2662 | −0.1826 | 19.672 | Hematite | ||
505-35 | 2.95 | - | 0.2129 | 0.7961 | 23.997 | Goethite |
- | 1.0166 | 2.6294 | 21.414 | Chlorite | ||
48.05 | 0.2684 | −0.2212 | 35.341 | Hematite | ||
51.24 | 0.2624 | 0.1740 | 13.226 | Magnetite | ||
- | 0.4707 | 1.0099 | 6.021 | Ferrihydrite | ||
505-39 | 1.51 | - | 0.2163 | 0.8132 | 36.747 | Goethite |
- | 1.0287 | 2.6278 | 40.573 | Chlorite | ||
47.073 | 0.2946 | 0.2809 | 18.339 | Hematite | ||
- | 0.5051 | 1.0743 | 4.341 | Ferrihydrite | ||
505-43 | 0.91 | 49.425 | 0.2725 | −0.1966 | 13.231 | Magnetite |
45.964 | 0.2746 | −0.2172 | 34.004 | Hematite | ||
- | 0.1832 | 0.6557 | 13.231 | Ferrihydrite | ||
- | 1.2413 | 2.5101 | 26.782 | Chlorite | ||
- | 0.3642 | 0.672 | 12.751 | Goethite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.H.C.d.; da Costa, M.L.; Ferreira, N.S.; Camarena, M.A.; Souza da Silva, R.d.S. Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil. Minerals 2025, 15, 501. https://doi.org/10.3390/min15050501
Santos PHCd, da Costa ML, Ferreira NS, Camarena MA, Souza da Silva RdS. Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil. Minerals. 2025; 15(5):501. https://doi.org/10.3390/min15050501
Chicago/Turabian StyleSantos, Pabllo Henrique Costa dos, Marcondes Lima da Costa, Nilson S Ferreira, Mariella Alzamora Camarena, and Rayara do Socorro Souza da Silva. 2025. "Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil" Minerals 15, no. 5: 501. https://doi.org/10.3390/min15050501
APA StyleSantos, P. H. C. d., da Costa, M. L., Ferreira, N. S., Camarena, M. A., & Souza da Silva, R. d. S. (2025). Weathering-Controlled Copper Retention in the Saprolite of the Alvo 118 Deposit, Carajás, Brazil. Minerals, 15(5), 501. https://doi.org/10.3390/min15050501