Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = coordination graph

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3480 KB  
Article
Graphics-Guided Interactive Farmland Layout Design
by Guanlin Liu and Huijun Yang
Appl. Syst. Innov. 2025, 8(5), 140; https://doi.org/10.3390/asi8050140 - 25 Sep 2025
Abstract
The spatial layout of farmland involves coordinated planning across diverse functional zones. Irregular land boundaries and functional demands pose challenges to traditional CAD-based workflows and general optimization algorithms. To address these limitations, we propose an interactive farmland layout system based on the Graphic-Guided [...] Read more.
The spatial layout of farmland involves coordinated planning across diverse functional zones. Irregular land boundaries and functional demands pose challenges to traditional CAD-based workflows and general optimization algorithms. To address these limitations, we propose an interactive farmland layout system based on the Graphic-Guided Evolutionary Layout (GGEL) algorithm. GGEL not only introduces a graph-based spatial pruning and encoding strategy to improve search efficiency, but also performs real-time spatial overlap detection based on functional region boundaries to ensure layout feasibility. Additionally, an interactive module enables real-time user customization to accommodate specific planning needs. Experimental results demonstrate that the system can efficiently generate complete multi-region layouts, significantly enhancing design productivity. A user study with 20 agricultural park experts confirms the system’s usability and effectiveness. This study highlights the potential of integrating evolutionary algorithms with topological graph representations to address the complex spatial planning requirements of digital agricultural parks. Full article
(This article belongs to the Section Human-Computer Interaction)
Show Figures

Figure 1

11 pages, 695 KB  
Article
Group Attention Aware Coordination Graph
by Ziyan Fang, Wei Liu and Yu Zhang
Appl. Sci. 2025, 15(19), 10355; https://doi.org/10.3390/app151910355 - 24 Sep 2025
Viewed by 99
Abstract
Cooperative Multi-Agent Reinforcement Learning (MARL) relies on effective coordination among agents to maximize team performance in complex environments. However, existing coordination graph-based approaches often overlook dynamic group structures and struggle to accurately capture fine-grained inter-agent dependencies. In this paper, we introduce a novel [...] Read more.
Cooperative Multi-Agent Reinforcement Learning (MARL) relies on effective coordination among agents to maximize team performance in complex environments. However, existing coordination graph-based approaches often overlook dynamic group structures and struggle to accurately capture fine-grained inter-agent dependencies. In this paper, we introduce a novel method called the Group Attention Aware Coordination Graph (G2ACG), which builds upon the group modeling capabilities of the Group-Aware Coordination Graph (GACG). G2ACG incorporates a dynamic attention mechanism to dynamically compute edge weights in the coordination graph, enabling a more flexible and fine-grained representation of agent interactions. These learned edge weights guide a Graph Attention Network (GAT) to perform message passing and representation learning, and the resulting features are integrated into a global policy via QMIX for cooperative decision-making. Experimental results on the StarCraft II Multi-Agent Challenge (SMAC) benchmark show that G2ACG consistently outperforms strong baselines, including QMIX, DICG, and GACG, across various scenarios with diverse agent types and population sizes. Ablation studies further confirm the effectiveness of the proposed attention mechanism, demonstrating that both the number of attention heads and the number of GAT layers significantly affect performance, with a two-layer GAT and multi-head attention configuration yielding the best results. Full article
Show Figures

Figure 1

23 pages, 6010 KB  
Review
A Review and Design of Semantic-Level Feature Spatial Representation and Resource Spatiotemporal Mapping for Socialized Service Resources in Rural Characteristic Industries
by Yuansheng Wang, Huarui Wu, Cheng Chen and Gongming Wang
Sustainability 2025, 17(19), 8534; https://doi.org/10.3390/su17198534 - 23 Sep 2025
Viewed by 195
Abstract
Socialized services for rural characteristic industries are becoming a key support for promoting rural industries’ transformation and upgrading. They are permeating the development process of modern agricultural service technologies, achieving significant progress in specialized fields such as mechanized operations and plant-protection services. However, [...] Read more.
Socialized services for rural characteristic industries are becoming a key support for promoting rural industries’ transformation and upgrading. They are permeating the development process of modern agricultural service technologies, achieving significant progress in specialized fields such as mechanized operations and plant-protection services. However, challenges remain, including low efficiency in matching service resources and limited spatiotemporal coordination capabilities. With the deep integration of spatiotemporal information technology and knowledge graph technology, the enormous potential of semantic-level feature spatial representation in intelligent scheduling of service resources has been fully demonstrated, providing a new technical pathway to solve the above problem. This paper systematically analyzes the technological evolution trends of socialized services for rural characteristic industries and proposes a collaborative scheduling framework based on semantic feature space and spatiotemporal maps for characteristic industry service resources. At the technical architecture level, the paper aims to construct a spatiotemporal graph model integrating geographic knowledge graphs and temporal tree technology to achieve semantic-level feature matching between service demand and supply. Regarding implementation pathways, the model significantly improves the spatiotemporal allocation efficiency of service resources through cloud service platforms that integrate spatial semantic matching algorithms and dynamic optimization technologies. This paper conducts in-depth discussions and analyses on technical details such as agricultural semantic feature extraction, dynamic updates of rural service resources, and the collaboration of semantic matching and spatio-temporal matching of supply and demand relationships. It also presents relevant implementation methods to enhance technical integrity and logic, which is conducive to the engineering implementation of the proposed methods. The effectiveness of the proposed collaborative scheduling framework for service resources is proved by the synthesis of principal analysis, logical deduction and case comparison. We have proposed a practical “three-step” implementation path conducive to realizing the proposed method. Regarding application paradigms, this technical system will promote the transformation of rural industry services from traditional mechanical operations to an intelligent service model of “demand perception–intelligent matching–precise scheduling”. In the field of socialized services for rural characteristic industries, it is suggested that relevant institutions promote this technical framework and pay attention to the development trends of new technologies such as knowledge services, spatio-temporal services, the Internet of Things, and unmanned farms so as to promote the sustainable development of rural characteristic industries. Full article
Show Figures

Figure 1

24 pages, 8964 KB  
Article
Dynamic Siting and Coordinated Routing for UAV Inspection via Hierarchical Reinforcement Learning
by Qingyun Yang, Yewei Zhang and Shuyi Shao
Machines 2025, 13(9), 861; https://doi.org/10.3390/machines13090861 - 17 Sep 2025
Viewed by 381
Abstract
To enhance the efficiency and reduce the operational costs of large-scale Unmanned Aerial Vehicle (UAV) inspection missions limited by endurance, this paper addresses the coupled problem of dynamically positioning landing/takeoff sites and routing the UAVs. A novel Hierarchical Reinforcement Learning (H-DRL) framework is [...] Read more.
To enhance the efficiency and reduce the operational costs of large-scale Unmanned Aerial Vehicle (UAV) inspection missions limited by endurance, this paper addresses the coupled problem of dynamically positioning landing/takeoff sites and routing the UAVs. A novel Hierarchical Reinforcement Learning (H-DRL) framework is proposed, which decouples the problem into a high-level strategic deployment policy and a low-level tactical routing policy. The primary contribution of this work lies in two architectural innovations that enable globally coordinated, end-to-end optimization. First, a coordinated credit assignment mechanism is introduced, where the high-level policy communicates its strategic guidance to the low-level policy via a learned “intent vector,” facilitating intelligent collaboration. Second, an Energy-Aware Graph Attention Network (Ea-GAT) is designed for the low-level policy. By endogenously embedding an energy feasibility model into its attention mechanism, the Ea-GAT guarantees the generation of dynamically feasible flight paths. Comprehensive simulations and a physical experiment validate the proposed framework. The results demonstrate a significant improvement in mission efficiency, with the makespan reduced by up to 16.3%. This work highlights the substantial benefits of joint optimization for dynamic robotic applications. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

36 pages, 1495 KB  
Review
Decision-Making for Path Planning of Mobile Robots Under Uncertainty: A Review of Belief-Space Planning Simplifications
by Vineetha Malathi, Pramod Sreedharan, Rthuraj P R, Vyshnavi Anil Kumar, Anil Lal Sadasivan, Ganesha Udupa, Liam Pastorelli and Andrea Troppina
Robotics 2025, 14(9), 127; https://doi.org/10.3390/robotics14090127 - 15 Sep 2025
Viewed by 958
Abstract
Uncertainty remains a central challenge in robotic navigation, exploration, and coordination. This paper examines how Partially Observable Markov Decision Processes (POMDPs) and their decentralized variants (Dec-POMDPs) provide a rigorous foundation for decision-making under partial observability across tasks such as Active Simultaneous Localization and [...] Read more.
Uncertainty remains a central challenge in robotic navigation, exploration, and coordination. This paper examines how Partially Observable Markov Decision Processes (POMDPs) and their decentralized variants (Dec-POMDPs) provide a rigorous foundation for decision-making under partial observability across tasks such as Active Simultaneous Localization and Mapping (A-SLAM), adaptive informative path planning, and multi-robot coordination. We review recent advances that integrate deep reinforcement learning (DRL) with POMDP formulations, highlighting improvements in scalability and adaptability as well as unresolved challenges of robustness, interpretability, and sim-to-real transfer. To complement learning-driven methods, we discuss emerging strategies that embed probabilistic reasoning directly into navigation, including belief-space planning, distributionally robust control formulations, and probabilistic graph models such as enhanced probabilistic roadmaps (PRMs) and Canadian Traveler Problem-based roadmaps. These approaches collectively demonstrate that uncertainty can be managed more effectively by coupling structured inference with data-driven adaptation. The survey concludes by outlining future research directions, emphasizing hybrid learning–planning architectures, neuro-symbolic reasoning, and socially aware navigation frameworks as critical steps toward resilient, transparent, and human-centered autonomy. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

27 pages, 12819 KB  
Article
A CPS-Based Architecture for Mobile Robotics: Design, Integration, and Localisation Experiments
by Dominika Líšková, Anna Jadlovská and Filip Pazdič
Sensors 2025, 25(18), 5715; https://doi.org/10.3390/s25185715 - 12 Sep 2025
Viewed by 489
Abstract
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, [...] Read more.
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, and multi-level coordination. The robotic platform, named MapBot, is structured according to a five-layer CPS model encompassing component, control, coordination, supervisory, and management layers. This structure facilitates modular development, system scalability, and integration of advanced features such as a digital twin. The platform is implemented using embedded computing elements, diverse sensors, and communication protocols including Ethernet and I2C. The system operates within the ROS2 framework, supporting flexible task distribution across processing nodes. As a use case, two localization techniques—Adaptive Monte Carlo Localization (AMCL) and pose graph SLAM—are deployed and evaluated, highlighting the performance trade-offs in map quality, update frequency, and computational load. The results demonstrate that CPS-based design principles offer clear advantages for robotic platforms in terms of modularity, maintainability, and real-time integration. The proposed approach can be generalised for other robotic or mechatronic systems requiring structured, layered control and embedded intelligence. Full article
Show Figures

Figure 1

25 pages, 1258 KB  
Article
Algebraic Modeling of Social Systems Evolution: Application to Sustainable Development Strategy
by Jerzy Michnik
Sustainability 2025, 17(18), 8192; https://doi.org/10.3390/su17188192 - 11 Sep 2025
Viewed by 436
Abstract
This paper presents ALMODES, a discrete-time modeling approach for social systems that uses matrix algebra and directed graphs. The method bridges the gap between static network analysis and continuous System Dynamics, offering a transparent framework that reduces data requirements. The method enables clear [...] Read more.
This paper presents ALMODES, a discrete-time modeling approach for social systems that uses matrix algebra and directed graphs. The method bridges the gap between static network analysis and continuous System Dynamics, offering a transparent framework that reduces data requirements. The method enables clear causal mapping, rapid simulation, straightforward sensitivity analysis, and natural hybridization with agent-based or discrete-event models. Two case studies illustrate its utility for sustainable-development strategy: in an urban public-health setting, modernization and sanitation policies drive sustained declines in disease despite growth, whereas reversing the population-to-modernization link triggers a morbidity rebound that can be prevented by strengthening the modernization-to-sanitation pathway; in a high-tech services Balanced Scorecard model, a baseline backlog spike depresses customer satisfaction, aggressive hiring shortens the spike but erodes income, and coordinated boosts to training and incentives (about twelve percent productivity gain) remove the backlog early, stabilize customers, and improve income, highlighting human-capital policy as a robust lever. ALMODES thus supports pragmatic policy design under limited, expert-elicited parameters. Future research will address uncertainty quantification, time-varying structures and shocks, automated calibration and empirical validation at scale, optimization and control design, richer integration with hybrid simulation, participatory interfaces for stakeholders, and standardized benchmarks across domains. Full article
Show Figures

Figure 1

24 pages, 840 KB  
Article
Adaptive Event-Triggered Full-State Constrained Control of Multi-Agent Systems Under Cyber Attacks
by Jinxia Wu, Pengfei Cui, Juan Wang and Yuanxin Li
Actuators 2025, 14(9), 448; https://doi.org/10.3390/act14090448 - 11 Sep 2025
Viewed by 297
Abstract
For multi-agent systems under Denial-of-Service (DoS) attacks, a relative threshold strategy for event triggering and a state-constrained control method with prescribed performance are proposed. Within the framework of combining graph theory with the leader–follower approach, coordinate transformation is utilized to decouple the multi-agent [...] Read more.
For multi-agent systems under Denial-of-Service (DoS) attacks, a relative threshold strategy for event triggering and a state-constrained control method with prescribed performance are proposed. Within the framework of combining graph theory with the leader–follower approach, coordinate transformation is utilized to decouple the multi-agent system. Inspired by the three-way handshake technology of TCP communication, a DoS detection system is designed based on event-triggering. This system is used to detect DoS attacks, prevent the impacts brought by DoS attacks, and reduce the update frequency of the controller. Fuzzy logic systems are employed to approximate the unknown nonlinear functions within the system. By using a first-order filter to approximate the derivative of the virtual controller, the computational complexity issue in the backstepping method is addressed. Furthermore, The Barrier Lyapunov Function (BLF) possesses unique mathematical properties. When the system state approaches the pre-set boundary, it can exhibit a special variation trend, thereby imposing a restrictive effect on the system state. The Prescribed Performance Function (PPF), on the other hand, defines the expected performance standards that the system aims to achieve in the tracking task, covering key indicators such as tracking accuracy and response speed. By organically integrating these two functions, the system can continuously monitor and adjust its own state during operation. When there is a tendency for the tracking error to deviate from the specified range, the combined function mechanism will promptly come into play. Through the reasonable adjustment of the system’s control input, it ensures that the tracking error always remains within the pre-specified range. Finally, through Lyapunov analysis, the proposed control protocol ensures that all closed-loop signals remain bounded under attacks, with the outputs of all followers synchronizing with the leader’s output in the communication graph. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

21 pages, 1791 KB  
Article
Multi-Objective Black-Start Planning for Distribution Networks with Grid-Forming Storage: A Control-Constrained NSGA-III Framework
by Linlin Wu, Yinchi Shao, Yu Gong, Yiming Zhao, Zhengguo Piao and Yuntao Cao
Processes 2025, 13(9), 2875; https://doi.org/10.3390/pr13092875 - 9 Sep 2025
Viewed by 383
Abstract
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of [...] Read more.
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of distributed energy resources and limited system inertia. This paper proposes a novel multi-layered black-start planning framework that explicitly incorporates the dynamic capabilities and operational constraints of grid-forming energy storage systems (GFESs). The approach formulates a multi-objective optimization problem solved via the Non-Dominated Sorting Genetic Algorithm III (NSGA-III), jointly minimizing total restoration time, voltage–frequency deviations, and maximizing early-stage load recovery. A graph-theoretic partitioning module identifies restoration subgrids based on topological cohesion, critical load density, and GFES proximity, enabling localized energization and autonomous island formation. Restoration path planning is embedded as a mixed-integer constraint layer, enforcing synchronization stability, surge current thresholds, voltage drop limits, and dispatch-dependent GFES constraints such as SoC evolution and droop-based frequency support. The model is evaluated on a modified IEEE 123-bus system with five distributed GFES units under multiple blackout scenarios. Simulation results show that the proposed method achieves up to 31% faster restoration and 46% higher voltage compliance compared to MILP and heuristic baselines, while maintaining strict adherence to dynamic safety constraints. The framework yields a diverse Pareto frontier of feasible restoration strategies and provides actionable insights into the coordination of distributed grid-forming resources for decentralized black-start planning. These results demonstrate that control-aware, partition-driven optimization is essential for scalable, safe, and fast restoration in the next generation of resilient power systems. Full article
Show Figures

Figure 1

14 pages, 15180 KB  
Article
A Neural-Operator Surrogate for Platelet Deformation Across Capillary Numbers
by Marco Laudato
Bioengineering 2025, 12(9), 958; https://doi.org/10.3390/bioengineering12090958 - 6 Sep 2025
Cited by 1 | Viewed by 530
Abstract
Reliable multiscale models of thrombosis require platelet-scale fidelity at organ-scale cost, a gap that scientific machine learning has the potential to narrow. We trained a DeepONet surrogate on platelet dynamics generated with LAMMPS for platelets spanning ten elastic moduli and capillary numbers (0.07–0.77). [...] Read more.
Reliable multiscale models of thrombosis require platelet-scale fidelity at organ-scale cost, a gap that scientific machine learning has the potential to narrow. We trained a DeepONet surrogate on platelet dynamics generated with LAMMPS for platelets spanning ten elastic moduli and capillary numbers (0.07–0.77). The network takes as input the wall shear stress, bond stiffness, time, and initial particle coordinates and returns the full three-dimensional deformation of the membrane. Mean-squared-error minimization with Adam and adaptive learning-rate decay yields a median displacement error below 1%, a 90th percentile below 3%, and a worst case below 4% over the entire calibrated range while accelerating computation by four to five orders of magnitude. Leave-extremes-out retraining shows acceptable extrapolation: the held-out stiffest and most compliant platelets retain sub-3% median error and an 8% maximum. Error peaks coincide with transient membrane self-contact, suggesting improvements via graph neural trunks and physics-informed torque regularization. These results represent a first demonstration of how the surrogate has the potential for coupling with continuum CFD, enabling future platelet-resolved hemodynamic simulations in patient-specific geometries and opening new avenues for predictive thrombosis modeling. Full article
Show Figures

Figure 1

24 pages, 11782 KB  
Article
Research on Joint Game-Theoretic Modeling of Network Attack and Defense Under Incomplete Information
by Yifan Wang, Xiaojian Liu and Xuejun Yu
Entropy 2025, 27(9), 892; https://doi.org/10.3390/e27090892 - 23 Aug 2025
Viewed by 715
Abstract
In the face of increasingly severe cybersecurity threats, incomplete information and environmental dynamics have become central challenges in network attack–defense scenarios. In real-world network environments, defenders often find it difficult to fully perceive attack behaviors and network states, leading to a high degree [...] Read more.
In the face of increasingly severe cybersecurity threats, incomplete information and environmental dynamics have become central challenges in network attack–defense scenarios. In real-world network environments, defenders often find it difficult to fully perceive attack behaviors and network states, leading to a high degree of uncertainty in the system. Traditional approaches are inadequate in dealing with the diversification of attack strategies and the dynamic evolution of network structures, making it difficult to achieve highly adaptive defense strategies and efficient multi-agent coordination. To address these challenges, this paper proposes a multi-agent network defense approach based on joint game modeling, termed JG-Defense (Joint Game-based Defense), which aims to enhance the efficiency and robustness of defense decision-making in environments characterized by incomplete information. The method integrates Bayesian game theory, graph neural networks, and a proximal policy optimization framework, and it introduces two core mechanisms. First, a Dynamic Communication Graph Neural Network (DCGNN) is used to model the dynamic network structure, improving the perception of topological changes and attack evolution trends. A multi-agent communication mechanism is incorporated within the DCGNN to enable the sharing of local observations and strategy coordination, thereby enhancing global consistency. Second, a joint game loss function is constructed to embed the game equilibrium objective into the reinforcement learning process, optimizing both the rationality and long-term benefit of agent strategies. Experimental results demonstrate that JG-Defense outperforms the Cybermonic model by 15.83% in overall defense performance. Furthermore, under the traditional PPO loss function, the DCGNN model improves defense performance by 11.81% compared to the Cybermonic model. These results verify that the proposed integrated approach achieves superior global strategy coordination in dynamic attack–defense scenarios with incomplete information. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

23 pages, 7049 KB  
Article
Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration
by Song Liu, Yongwang Cao, Qi Gao and Weitao Liu
Land 2025, 14(8), 1691; https://doi.org/10.3390/land14081691 - 21 Aug 2025
Viewed by 574
Abstract
Under the advancing urban–rural integration strategy, last-mile logistics, and their spatial accessibility, have become key indicators for measuring regional coordination. Focusing on Guangzhou as the case study area, this study constructs an urban–rural spatial accessibility assessment model integrating multimodal convolutional neural networks and [...] Read more.
Under the advancing urban–rural integration strategy, last-mile logistics, and their spatial accessibility, have become key indicators for measuring regional coordination. Focusing on Guangzhou as the case study area, this study constructs an urban–rural spatial accessibility assessment model integrating multimodal convolutional neural networks and Graph Neural Networks (GNN) to systematically examine the evolving accessibility patterns in last-mile logistics distribution across urban and rural spaces. The study finds that Guangzhou’s urban space continues to expand while rural space gradually decreases during this period, showing an overall development trend from centralized single-core to multi-polar networked patterns. The spatial accessibility of last-mile logistics in Guangzhou exhibits higher levels in urban core areas and lower levels in peripheral rural areas, but the overall accessibility is progressively expanding and improving in outlying regions. These accessibility changes not only reflect the optimization path of logistics infrastructure but also reveal the practical progress of urban–rural integration development. Through spatial distribution analysis and dynamic simulation of logistics networks, this study establishes a novel explanatory framework for understanding the spatial mechanisms of urban–rural integration. The findings provide decision-making support for optimizing last-mile logistics network layouts while offering both theoretical foundations and practical approaches for promoting co-construction and sharing of urban–rural infrastructure and achieving integrated regional spatial governance. Full article
Show Figures

Figure 1

35 pages, 3129 KB  
Article
Spatiotemporal Meta-Reinforcement Learning for Multi-USV Adversarial Games Using a Hybrid GAT-Transformer
by Yang Xiong, Shangwen Wang, Hongjun Tian, Guijie Liu, Zihao Shan, Yijie Yin, Jun Tao, Haonan Ye and Ying Tang
J. Mar. Sci. Eng. 2025, 13(8), 1593; https://doi.org/10.3390/jmse13081593 - 20 Aug 2025
Viewed by 508
Abstract
Coordinating Multi-Unmanned Surface Vehicle (USV) swarms in complex, adversarial maritime environments is a significant challenge, as existing multi-agent reinforcement learning (MARL) methods often fail to capture intricate spatiotemporal dependencies, leading to suboptimal policies. To address this, we propose Adv-TransAC, a novel Spatio-Temporal Meta-Reinforcement [...] Read more.
Coordinating Multi-Unmanned Surface Vehicle (USV) swarms in complex, adversarial maritime environments is a significant challenge, as existing multi-agent reinforcement learning (MARL) methods often fail to capture intricate spatiotemporal dependencies, leading to suboptimal policies. To address this, we propose Adv-TransAC, a novel Spatio-Temporal Meta-Reinforcement Learning framework. Its core innovation is a hybrid GAT-transformer architecture that decouples spatial and temporal reasoning: a Graph Attention Network (GAT) models instantaneous tactical formations, while a transformer analyzes their temporal evolution to infer intent. This is combined with an adversarial meta-learning mechanism to enable rapid adaptation to opponent tactics. In high-fidelity escort and defense simulations, Adv-TransAC significantly outperforms state-of-the-art MARL baselines in task success rate and policy robustness. The learned policies demonstrate the emergence of complex cooperative behaviors, such as intelligent risk-aware coordination and proactive interception maneuvers. The framework’s practicality is further validated by a communication-efficient federated optimization architecture. By effectively modeling spatiotemporal dynamics and enabling rapid adaptation, Adv-TransAC provides a powerful solution that moves beyond reactive decision-making, establishing a strong foundation for next-generation, intelligent maritime platforms. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

21 pages, 10005 KB  
Article
Improved Genetic Algorithm-Based Path Planning for Multi-Vehicle Pickup in Smart Transportation
by Zeyu Liu, Chengyu Zhou, Junxiang Li, Chenggang Wang and Pengnian Zhang
Smart Cities 2025, 8(4), 136; https://doi.org/10.3390/smartcities8040136 - 14 Aug 2025
Cited by 1 | Viewed by 595
Abstract
With the rapid development of intelligent transportation systems and online ride-hailing platforms, the demand for promptly responding to passenger requests while minimizing vehicle idling and travel costs has grown substantially. This paper addresses the challenges of suboptimal vehicle path planning and partially connected [...] Read more.
With the rapid development of intelligent transportation systems and online ride-hailing platforms, the demand for promptly responding to passenger requests while minimizing vehicle idling and travel costs has grown substantially. This paper addresses the challenges of suboptimal vehicle path planning and partially connected pickup stations by formulating the task as a Capacitated Vehicle Routing Problem (CVRP). We propose an Improved Genetic Algorithm (IGA)-based path planning model designed to minimize total travel distance while respecting vehicle capacity constraints. To handle scenarios where certain pickup points are not directly connected, we integrate graph-theoretic techniques to ensure route continuity. The proposed model incorporates a multi-objective fitness function, a rank-based selection strategy with adjusted weights, and Dijkstra-based path estimation to enhance convergence speed and global optimization performance. Experimental evaluations on four benchmark maps from the Carla simulation platform demonstrate that the proposed approach can rapidly generate optimized multi-vehicle path planning solutions and effectively coordinate pickup tasks, achieving significant improvements in both route quality and computational efficiency compared to traditional methods. Full article
Show Figures

Figure 1

19 pages, 1619 KB  
Article
Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking
by Jiahao Zhang, Lei Wang, Zhengguo Cui, Hao Li, Jianlei Chen, Yong Xu, Haixiang Zhao, Zhenming Huang, Keming Qu and Hongwu Cui
Fishes 2025, 10(8), 406; https://doi.org/10.3390/fishes10080406 - 14 Aug 2025
Viewed by 486
Abstract
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis [...] Read more.
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis framework integrating detection, tracking, and behavioral interpretation. Specifically, the YOLOv8 model was employed for precise shrimp detection, ByteTrack with a dual-threshold matching strategy ensured continuous individual trajectory tracking in complex water environments, and Kalman filtering corrected coordinate offsets caused by water refraction. Under typical recirculating aquaculture system conditions, three water circulation rates (2.0, 5.0, and 10.0 cycles/day) were established to simulate varying flow velocities. High-frequency imaging (30 fps) was used to simultaneously record and analyze the movement trajectories of Litopenaeus vannamei during feeding and non-feeding periods, from which two-dimensional behavioral parameters—velocity and turning angle—were extracted. Key experimental results indicated that water circulation rates significantly affected shrimp movement velocity but had no significant effect on turning angle. Importantly, under only the moderate circulation rate (5.0 cycles/day), the average movement velocity during feeding was significantly lower than during non-feeding periods (p < 0.05). This finding reveals that moderate water velocity constitutes a critical hydrodynamic window for eliciting specific feeding behavior in shrimp. These results provide core parameters for an intelligent Litopenaeus vannamei feeding intensity assessment model based on spatiotemporal graph convolutional networks and offer theoretically valuable and practically applicable guidance for optimizing hydrodynamics and formulating precision feeding strategies in recirculating aquaculture systems. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Aquaculture)
Show Figures

Figure 1

Back to TopTop