Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Land Use Data
2.2.2. Night-Time Light (NTL) Data
2.2.3. Last-Mile Logistics Facility Distribution Data
2.3. Methods
2.3.1. Multi-Modal Convolutional Neural Network (Multi-Modal CNN)
2.3.2. Graph Neural Networks (GNN)
3. Results
3.1. Urban–Rural Spatial Identification
3.2. Spatial Accessibility Analysis of Last-Mile Logistics Delivery
3.3. Analysis of Last-Mile Logistics Spatial Accessibility and Urban–Rural Integration Development
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, J.; Li, G.; Sun, W.; He, N.; Du, G. Geo–visualisation of the community structure of intercity express delivery network in China based on waybill big data. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1380–1383. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, C.; Zhang, Z. Analysis and empirical study of factors influencing urban residents’ acceptance of routine drone deliveries. Sustainability 2023, 15, 13335. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.; Du, Z.; Zhang, F.; Liu, R.; Ye, X. Where urban youth work and live: A data–driven approach to identify urban functional areas at a fine scale. ISPRS Int. J. Geo-Inf. 2020, 9, 42. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Arsenovic, J.; Hellström, D.; Shams, P. Does delivery service differentiation matter? Comparing rural to urban e-consumer satisfaction and retention. J. Bus. Res. 2022, 142, 476–484. [Google Scholar] [CrossRef]
- He, Q.; Sun, S. Examining influencing factors of express delivery stations’ spatial distribution using the gradient boosting decision trees: A case study of Nanjing, China. PLoS ONE 2023, 18, e0288716. [Google Scholar] [CrossRef]
- Hsieh, S.C. Analyzing urbanization data using rural–urban interaction model and logistic growth model. Comput. Environ. Urban Syst. 2014, 45, 89–100. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, G.; Chen, Y.; Du, Y.; Liu, S.; Wu, B.; Ge, Y.; Chang, J. Spatial inequality of shopping opportunities under the boom of express deliveries in China. Sustain. Cities Soc. 2023, 91, 104434. [Google Scholar] [CrossRef]
- Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of urban–rural difference and integration based on quality of life. Sustain. Cities Soc. 2020, 54, 101877. [Google Scholar] [CrossRef]
- Zheng, Y.; Tan, J.; Huang, Y.; Wang, Z. The governance path of urban–rural integration in changing urban–rural relationships in the metropolitan area: A case study of Wuhan, China. Land 2022, 11, 1334. [Google Scholar] [CrossRef]
- Niu, K.; Xu, H. Urban–rural integration and poverty: Different roles of urban–rural integration in reducing rural and urban poverty in China. Soc. Indic. Res. 2023, 165, 737–757. [Google Scholar] [CrossRef]
- Yang, G.; Wang, L.; Huang, H. Characteristics of urban–rural integration at the county–scale interface: The case of Linqu county, China. Land 2024, 13, 1999. [Google Scholar] [CrossRef]
- He, Y.; Wen, C.; Fang, X.; Sun, X. Impacts of urban–rural integration on landscape patterns and their implications for landscape sustainability: The case of Changsha, China. Landsc. Ecol. 2024, 39, 129. [Google Scholar] [CrossRef]
- Zhan, L.; Wang, S.; Xie, S.; Zhang, Q.; Qu, Y. Spatial path to achieve urban–rural integration development–analytical framework for coupling the linkage and coordination of urban–rural system functions. Habitat Int. 2023, 142, 102953. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Chen, Y.; Liu, B.; Shen, Y.; Zheng, M. Investigating the influence of transport accessibility on urban–rural income gaps. Appl. Econ. 2024, 56, 8650–8665. [Google Scholar] [CrossRef]
- Zhao, P.; Wan, J. Land use and travel burden of residents in urban fringe and rural areas: An evaluation of urban–rural integration initiatives in Beijing. Land Use Policy 2021, 103, 105309. [Google Scholar] [CrossRef]
- Haiyirete, X.; Xu, Q.; Wang, J.; Liu, X.; Zeng, K. Comprehensive evaluation of the development level of China’s characteristic towns under the perspective of an urban–rural integration development strategy. Land 2024, 13, 1069. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, M. Research on spatial correlations and influencing factors of logistics industry development level. Sustainability 2019, 11, 1356. [Google Scholar] [CrossRef]
- Li, G.; Jin, F.; Chen, Y.; Jiao, J.; Liu, S. Location characteristics and differentiation mechanism of logistics nodes and logistics enterprises based on points of interest (POI): A case study of Beijing. J. Geogr. Sci. 2017, 27, 879–896. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Spatial reorganization of urban logistics system and its impacts: Case of Tokyo. J. Transp. Geogr. 2017, 60, 110–118. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P. Patterns and influencing factors of express outlets in China. Sustainability 2022, 14, 8061. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, J.; Shen, H.; Li, G.; Wang, H.; He, F.; Bi, F. Connectivity and centrality: Geovisualization of express networks in China. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 281–283. [Google Scholar] [CrossRef]
- Kou, Z. Research on the spatial agglomeration characteristics and influencing factors of express delivery station based on DNN. Comput. Intell. Neurosci. 2022, 2022, 3817066. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Zhang, R.; Cao, Y.; Li, M.; Zikirya, B.; Zhou, C. Heterogeneity of spatial distribution and factors influencing unattended locker points in Guangzhou, China: The case of Hive Box. ISPRS Int. J. Geo-Inf. 2021, 10, 409. [Google Scholar] [CrossRef]
- Morganti, E.; Dablanc, L.; Fortin, F. Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef]
- Baldi, M.M.; Manerba, D.; Perboli, G.; Tadei, R. A generalized bin packing problem for parcel delivery in last–mile logistics. Eur. J. Oper. Res. 2019, 274, 990–999. [Google Scholar] [CrossRef]
- Dell Amico, M.; Hadjidimitriou, S. Innovative logistics model and containers solution for efficient last mile delivery. Procedia-Soc. Behav. Sci. 2012, 48, 1505–1514. [Google Scholar] [CrossRef]
- Song, L.; Cherrett, T.; McLeod, F.; Guan, W. Addressing the last mile problem: Transport impacts of collection and delivery points. Transp. Res. Rec. 2009, 2097, 9–18. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Optimizing the changing locations of mobile parcel lockers in last–mile distribution. Eur. J. Oper. Res. 2020, 285, 1077–1094. [Google Scholar] [CrossRef]
- Lee, H.; Chen, M.; Pham, H.T.; Choo, S. Development of a decision making system for installing unmanned parcel lockers: Focusing on residential complexes in Korea. KSCE J. Civ. Eng. 2019, 23, 2713–2722. [Google Scholar] [CrossRef]
- Zheng, Z.; Morimoto, T.; Murayama, Y. Optimal location analysis of delivery parcel–pickup points using AHP and network huff model: A case study of shiweitang sub-district in Guangzhou city, China. ISPRS Int. J. Geo-Inf. 2020, 9, 193. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Kong, N.; Campy, K.S.; Xu, G.; Zhu, G.; Cao, X.; Wang, S. Understanding consumers’ behavior to adopt self–service parcel services for last–mile delivery. J. Retail. Consum. Serv. 2020, 52, 101911. [Google Scholar] [CrossRef]
- Wang, X.; Yuen, K.F.; Wong, Y.D.; Teo, C.C. An innovation diffusion perspective of e–consumers’ initial adoption of self–collection service via automated parcel station. Int. J. Logist. Manag. 2018, 29, 237–260. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ng, L.T.W.; Wong, Y.D. An investigation of customers’ intention to use self–collection services for last–mile delivery. Transp. Policy 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Susilo, Y.O. Assessing the impacts of collection–delivery points to individual’s activity–travel patterns: A greener last mile alternative? Transp. Res. Part E Logist. Transp. Rev. 2019, 121, 84–99. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The impact of E–Commerce-related last–mile logistics on cities: A systematic literature review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, J.J.; Liu, Q. The impacts of final delivery solutions on e–shopping usage behaviour: The case of Shenzhen, China. Int. J. Retail Distrib. Manag. 2018, 46, 2–20. [Google Scholar] [CrossRef]
- Strikuliene, O.; Sarkauskas, K.K.; Gelsvartas, J.; Balasevicius, L.; Baranauskas, V.; Derviniene, A. Path Planning of Logistic Robot Using Method of Vector Marks Tree Generation. Mathematics 2023, 12, 73. [Google Scholar] [CrossRef]
- Lagorio, A.; Pinto, R.; Golini, R. Research in urban logistics: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 908–931. [Google Scholar] [CrossRef]
- Amaral, J.C.; Cunha, C.B. An exploratory evaluation of urban street networks for last mile distribution. Cities 2020, 107, 102916. [Google Scholar] [CrossRef]
- Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al. Understanding the impact of e–commerce on last–mile light goods vehicle activity in urban areas: The case of London. Transp. Res. Part D Transp. Environ. 2018, 61, 325–338. [Google Scholar] [CrossRef]
- Xie, F.; Lin, J.; Cui, W. Exploring express delivery networks in China based on complex network theory. Complexity 2015, 21, 166–179. [Google Scholar] [CrossRef]
- Boschetti, M.; Maniezzo, V. A set covering based matheuristic for a real-world city logistics problem. Int. Trans. Oper. Res. 2015, 22, 169–195. [Google Scholar] [CrossRef]
- Ren, S.; Guo, B.; Cao, L.; Li, K.; Liu, J.; Yu, Z. DeepExpress: Heterogeneous and coupled sequence modeling for express delivery prediction. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 1–22. [Google Scholar] [CrossRef]
- Li, W.; Xin, Y.; Yang, G. Regional express delivery network planning: A location–routing model and two–tier adaptive GA. Inf. Sci. 2025, 712, 122133. [Google Scholar] [CrossRef]
- Chung, K.H.; Ko, S.Y.; Lee, C.U.; Ko, C.S. Sustainable collaboration model with monopoly of service centers in express delivery services based on shapley value allocation. Int. J. Ind. Eng. 2016, 23, 2947–2952. [Google Scholar] [CrossRef]
- Verdonck, L.; Caris, A.N.; Ramaekers, K.; Janssens, G.K. Collaborative logistics from the perspective of road transportation companies. Transp. Rev. 2013, 33, 700–719. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar] [CrossRef]
- Tiezzi, M.; Ciravegna, G.; Gori, M. Graph neural networks for graph drawing. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 4668–4681. [Google Scholar] [CrossRef] [PubMed]
- Marić, I.; Šiljeg, A.; Domazetović, F.; Panđa, L.; Milošević, R.; Šiljeg, S.; Marinović, R. How to delineate urban gravitational zones? GIS-based multicriteria decision analysis and Huff’s model in urban hierarchy modeling. Pap. Reg. Sci. 2024, 103, 100015. [Google Scholar] [CrossRef]
- Blumenberg, E.; Yao, Z.; Wander, M. Variation in child care access across neighborhood types: A two-step floating catchment area (2SFCA) approach. Appl. Geogr. 2023, 158, 103054. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar] [CrossRef]
- He, X.; Zhang, R.; Yuan, X.; Cao, Y.; Zhou, C. The role of planning policy in the evolution of the spatial structure of the Guangzhou metropolitan area in China. Cities 2023, 137, 104284. [Google Scholar] [CrossRef]
- Yaprak, B.; Gedikli, E. Different gait combinations based on multi–modal deep CNN architectures. Multimed. Tools Appl. 2024, 83, 83403–83425. [Google Scholar] [CrossRef]
- Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ayed, I.B. HyperDense-Net: A hyper–densely connected CNN for multi–modal image segmentation. IEEE Trans. Med. Imaging 2019, 38, 1116–1126. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Yuan, Y. Exploring the relationship between urban polycentricity and consumer amenity development: An empirical study using Dianping Data in China. Cities 2025, 166, 106197. [Google Scholar] [CrossRef]
- Hanberry, B.B. Imposing consistent global definitions of urban populations with gridded population density models: Irreconcilable differences at the national scale. Landsc. Urban Plan. 2022, 226, 104493. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Zhu, Y. Identification and evaluation of the polycentric urban structure: An empirical analysis based on multi-source big data fusion. Remote Sens. 2022, 14, 2705. [Google Scholar] [CrossRef]
- Rastogi, K.; Sharma, S.A. Deep Learning Based Urban Built-Up Extraction for Scattered Development and Coastal Cities. J. Indian Soc. Remote Sens. 2025, 1–10. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Yuan, X.; Zhu, M. The coordination relationship between urban development and urban life satisfaction in Chinese cities: An empirical analysis based on multi–source data. Cities 2024, 150, 105016. [Google Scholar] [CrossRef]
- Kazmi, S.N.; Akber, S.M.A. GRouteNet: A GNN-based model to optimize pathfinding and smart charging management for autonomous guided vehicles. Symmetry 2024, 16, 1573. [Google Scholar] [CrossRef]
- Karaağaç, A. A novel dynamic path planning method TD learning supported modified spatiotemporal GNN-LSTM model on large urban networks. Transportation 2025, 1–34. [Google Scholar] [CrossRef]
- Tang, B.; Huang, Z. Research on the spatial characteristics of urban integration from multi-dimensions: A case study in the Guangzhou-Qingyuan metropolitan area. Front. Earth Sci. 2023, 10, 1022982. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, J.; Wang, L. Village classification in metropolitan suburbs from the perspective of urban–rural integration and improvement strategies: A case study of Wuhan, central China. Land Use Policy 2021, 111, 105748. [Google Scholar] [CrossRef]
- Lu, S.; Huang, Y.; Wu, X.; Ding, Y. Evaluation, recognition and implications of urban–rural integration development: A township–level analysis of Hanchuan city in Wuhan metropolitan area. Land 2023, 12, 14. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, C.; Song, Y. How do population flows promote urban–rural integration? Addressing migrants’ farmland arrangement and social integration in China’s urban agglomeration regions. Land 2022, 11, 86. [Google Scholar] [CrossRef]
- Abbas, T.; McNeil-Willson, R. Beyond the urban-rural binary: Spatial dynamics of integration, segregation, and radicalisation in Northwest Europe. Ethn. Racial Stud. 2025, 1–22. [Google Scholar] [CrossRef]
- De Dominicis, L.; Dijkstra, L.; Pontarollo, N. Why are cities less opposed to European integration than rural areas? Factors affecting the Eurosceptic vote by degree of urbanization. Cities 2022, 130, 103937. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Wang, Y.; Liu, Y. Measurement of urban-rural integration level and its spatial differentiation in China in the new century. Habitat Int. 2021, 117, 102420. [Google Scholar] [CrossRef]
- Xu, H.; Lian, R.; Niu, K.; Wei, S. Does the digital economy promote the high–quality development of urban–rural integration? experience analysis based on panel data of 30 provinces in China. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Li, Y. Urban–rural interaction patterns and dynamic land use: Implications for urban–rural integration in China. Reg. Environ. Change 2012, 12, 803–812. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Wang, Z.; Wang, C.; Gao, Y. Effects of transfer of land development rights on urban–rural integration: Theoretical framework and evidence from Chongqing, China. Land 2023, 12, 2045. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Xu, M.; Zhang, X.; Shan, B.; Wang, A. Spatial patterns and driving factors of rural population loss under urban–rural integration development: A micro–scale study on the village level in a hilly region. Land 2022, 11, 99. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, J.; Cai, Z.; Xu, S. Evaluating the accessibility of seniors to urban park green spaces. J. Urban Plan. Dev. 2024, 150, 05024021. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Y.; Cao, M.; Wang, R.; Chen, J. Assessing accessibility to peri–urban parks considering supply, demand, and traffic conditions. Landsc. Urban Plan. 2025, 257, 105313. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Zhao, X.; Wang, Z.; Chen, Y. Examining accessibility to medical resources for urban older adults with common diseases using multisource data: A case study of Beijing. J. Urban Plan. Dev. 2023, 149, 05023031. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, Z.; Chen, S.; Xu, Y.; Xin, Z.; Yang, S.; Jian, H.; Wang, Q. Spatial accessibility of urban emergency shelters based on Ga2SFCA and its improved method: A case study of Kunming, China. J. Urban Plan. Dev. 2023, 149, 05023013. [Google Scholar] [CrossRef]
- Neutens, T.; Schwanen, T.; Witlox, F.; De Maeyer, P. Equity of urban service delivery: A comparison of different accessibility measures. Environ. Plan. A Econ. Space 2010, 42, 1613–1635. [Google Scholar] [CrossRef]
- Kapoor, S. Explainable and context-aware Graph Neural Networks for dynamic electric vehicle route optimization to optimal charging station. Expert Syst. Appl. 2025, 283, 127331. [Google Scholar] [CrossRef]
- Rusek, K.; Boryło, P.; Jaglarz, P.; Geyer, F.; Cabellos, A.; Chołda, P. RiskNet: Neural risk assessment in networks of unreliable resources. J. Netw. Syst. Manag. 2023, 31, 64. [Google Scholar] [CrossRef]
2015 | 2018 | 2021 | 2024 | Average Growth Rate (%) | |
---|---|---|---|---|---|
Urban Area (km2) | 1520.08 | 2243.92 | 2605.85 | 3040.15 | 26.80 |
Rural Area (km2) | 5818.38 | 4994.54 | 4560.23 | 4198.31 | −7.9 |
2015 | 2018 | 2021 | 2024 | Average Growth Rate (%) | |
---|---|---|---|---|---|
Urban Area | 68.74 | 73.65 | 79.01 | 85.09 | 7.37 |
Rural Area | 33.09 | 38.31 | 45.64 | 51.08 | 15.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Cao, Y.; Gao, Q.; Liu, W. Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration. Land 2025, 14, 1691. https://doi.org/10.3390/land14081691
Liu S, Cao Y, Gao Q, Liu W. Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration. Land. 2025; 14(8):1691. https://doi.org/10.3390/land14081691
Chicago/Turabian StyleLiu, Song, Yongwang Cao, Qi Gao, and Weitao Liu. 2025. "Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration" Land 14, no. 8: 1691. https://doi.org/10.3390/land14081691
APA StyleLiu, S., Cao, Y., Gao, Q., & Liu, W. (2025). Spatial Accessibility in Last-Mile Logistics: A New Dimension of Urban–Rural Integration. Land, 14(8), 1691. https://doi.org/10.3390/land14081691