Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = cooperative sensor networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Viewed by 156
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

18 pages, 3506 KiB  
Review
A Review of Spatial Positioning Methods Applied to Magnetic Climbing Robots
by Haolei Ru, Meiping Sheng, Jiahui Qi, Zhanghao Li, Lei Cheng, Jiahao Zhang, Jiangjian Xiao, Fei Gao, Baolei Wang and Qingwei Jia
Electronics 2025, 14(15), 3069; https://doi.org/10.3390/electronics14153069 - 31 Jul 2025
Viewed by 163
Abstract
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a [...] Read more.
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a systematic and comprehensive review of spatial positioning techniques tailored to magnetic climbing robots. This paper addresses this gap by categorizing and evaluating current spatial positioning approaches. Initially, single-sensor-based methods are analyzed with a focus on external sensor approaches. Then, multi-sensor fusion methods are explored to overcome the shortcomings of single-sensor-based approaches. Multi-sensor fusion methods include simultaneous localization and mapping (SLAM), integrated positioning systems, and multi-robot cooperative positioning. To address non-uniform noise and environmental interference, both analytical and learning-based reinforcement approaches are reviewed. Common analytical methods include Kalman-type filtering, particle filtering, and correlation filtering, while typical learning-based approaches involve deep reinforcement learning (DRL) and neural networks (NNs). Finally, challenges and future development trends are discussed. Multi-sensor fusion and lightweight design are the future trends in the advancement of spatial positioning technologies for magnetic climbing robots. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 319
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

11 pages, 902 KiB  
Article
A Fuzzy-Based Relay Security Algorithm for Wireless Sensor Networks
by Nan-I Wu, Tung-Huang Feng and Min-Shiang Hwang
Sensors 2025, 25(14), 4422; https://doi.org/10.3390/s25144422 - 16 Jul 2025
Viewed by 300
Abstract
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best [...] Read more.
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best transmissible node among the candidate nodes to fully exploit the limited resources of the sense nodes and extend the network lifecycle. A wireless sensor network relay selection algorithm based on a fuzzy inference system often uses sorting methods or random methods as the selection mechanism to choose when the fuzzy system outputs the same result. However, in the state of communication, networks often face the retransmission of lost packets, which consumes excess electricity. This study proposes a contraindicated safety selection mechanism algorithm to address equal output values in fuzzy systems. The proposed algorithm effectively reduces the retransmission probability to achieve benefits that isolate destructive or malicious nodes, thereby maintaining a higher network lifespan and safety. Full article
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 606
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

20 pages, 1179 KiB  
Article
Conv1D-GRU-Self Attention: An Efficient Deep Learning Framework for Detecting Intrusions in Wireless Sensor Networks
by Kenan Honore Robacky Mbongo, Kanwal Ahmed, Orken Mamyrbayev, Guanghui Wang, Fang Zuo, Ainur Akhmediyarova, Nurzhan Mukazhanov and Assem Ayapbergenova
Future Internet 2025, 17(7), 301; https://doi.org/10.3390/fi17070301 - 4 Jul 2025
Viewed by 433
Abstract
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and [...] Read more.
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and evaluate a deep learning-based Intrusion Detection System (IDS) that is both accurate and efficient for real-time threat detection in WSNs. This study proposes a hybrid IDS model combining one-dimensional Convolutional Neural Networks (Conv1Ds), Gated Recurrent Units (GRUs), and Self-Attention mechanisms. A Conv1D extracts spatial features from network traffic, GRU captures temporal dependencies, and Self-Attention emphasizes critical sequence components, collectively enhancing detection of subtle and complex intrusion patterns. The model was evaluated using the WSN-DS dataset and demonstrated superior performance compared to traditional machine learning and simpler deep learning models. It achieved an accuracy of 98.6%, precision of 98.63%, recall of 98.6%, F1-score of 98.6%, and an ROC-AUC of 0.9994, indicating strong predictive capability even with imbalanced data. In addition to centralized training, the model was tested under cooperative, node-based learning conditions, where each node independently detects anomalies and contributes to a collective decision-making framework. This distributed approach improves detection efficiency and robustness. The proposed IDS offers a scalable and resilient solution tailored to the unique challenges of WSN security. Full article
Show Figures

Figure 1

19 pages, 5602 KiB  
Article
PnPDA+: A Meta Feature-Guided Domain Adapter for Collaborative Perception
by Liang Xin, Guangtao Zhou, Zhaoyang Yu, Danni Wang, Tianyou Luo, Xiaoyuan Fu and Jinglin Li
World Electr. Veh. J. 2025, 16(7), 343; https://doi.org/10.3390/wevj16070343 - 21 Jun 2025
Viewed by 309
Abstract
Although cooperative perception enhances situational awareness by enabling vehicles to share intermediate features, real-world deployment faces challenges due to heterogeneity in sensor modalities, architectures, and encoder parameters across agents. These domain gaps often result in semantic inconsistencies among the shared features, thereby degrading [...] Read more.
Although cooperative perception enhances situational awareness by enabling vehicles to share intermediate features, real-world deployment faces challenges due to heterogeneity in sensor modalities, architectures, and encoder parameters across agents. These domain gaps often result in semantic inconsistencies among the shared features, thereby degrading the quality of feature fusion. Existing approaches either necessitate the retraining of private models or fail to adapt to newly introduced agents. To address these limitations, we propose PnPDA+, a unified and modular domain adaptation framework designed for heterogeneous multi-vehicle cooperative perception. PnPDA+ consists of two key components: a Meta Feature Extraction Network (MFEN) and a Plug-and-Play Domain Adapter (PnPDA). MFEN extracts domain-aware and frame-aware meta features from received heterogeneous features, encoding domain-specific knowledge and spatial-temporal cues to serve as high-level semantic priors. Guided by these meta features, the PnPDA module performs adaptive semantic conversion to enhance cross-agent feature alignment without modifying existing perception models. This design ensures the scalable integration of emerging vehicles with minimal fine-tuning, significantly improving both semantic consistency and generalization. Experiments on OPV2V show that PnPDA+ outperforms state-of-the-art methods by 4.08% in perception accuracy while preserving model integrity and scalability. Full article
Show Figures

Figure 1

20 pages, 2661 KiB  
Article
Cooperative Jamming for RIS-Assisted UAV-WSN Against Aerial Malicious Eavesdropping
by Juan Li, Gang Wang, Weijia Wu, Jing Zhou, Yingkun Liu, Yangqin Wei and Wei Li
Drones 2025, 9(6), 431; https://doi.org/10.3390/drones9060431 - 13 Jun 2025
Viewed by 430
Abstract
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, [...] Read more.
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, particularly when legitimate UAVs (UAV-L) receive confidential information from ground sensor nodes (SNs), which is vulnerable to interception by eavesdropping UAVs (UAV-E). In response to this challenge, this study presents a cooperative jamming (CJ) scheme for Reconfigurable Intelligent Surfaces (RIS)-assisted UAV-WSN to combat aerial malicious eavesdropping. The multi-dimensional optimization problem (MDOP) of system security under quality of service (QoS) constraints is addressed by collaboratively optimizing the transmit power (TP) of SNs, the flight trajectories (FT) of the UAV-L, the frame length (FL) of time slots, and the phase shift matrix (PSM) of the RIS. To address the challenge, we put forward a Cooperative Jamming Joint Optimization Algorithm (CJJOA) scheme. Specifically, we first apply the block coordinate descent (BCD) to decompose the original MDOP into several subproblems. Then, each subproblem is convexified by successive convex approximation (SCA). The numerical results demonstrate that the designed algorithm demonstrates extremely strong stability and reliability during the convergence process. At the same time, it shows remarkable advantages compared with traditional benchmark testing methods, effectively and practically enhancing security. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

33 pages, 917 KiB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 572
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

21 pages, 498 KiB  
Article
Cooperative Detection-Oriented Formation Design and Optimization of USV Swarms via an Improved Genetic Algorithm
by Rui Liang, Dingzhao Li, Haixin Sun and Liangpo Hong
Sensors 2025, 25(10), 3179; https://doi.org/10.3390/s25103179 - 18 May 2025
Viewed by 431
Abstract
Efficient and adaptive formation planning is critical for unmanned surface vehicle (USV) swarms equipped with sensor networks and smart sensors to perform cooperative detection tasks in complex marine environments. Existing formation optimization methods often overlook the nonlinear coupling between sensor-based detection performance, communication [...] Read more.
Efficient and adaptive formation planning is critical for unmanned surface vehicle (USV) swarms equipped with sensor networks and smart sensors to perform cooperative detection tasks in complex marine environments. Existing formation optimization methods often overlook the nonlinear coupling between sensor-based detection performance, communication constraints, and obstacle avoidance. We propose a multi-objective formation optimization framework based on an improved genetic algorithm that simultaneously considers the detection coverage area, forward detection width, inter-agent communication, and static obstacle avoidance. We formulate a probabilistic cooperative detection model, introduce normalized detection efficiency indicators, and embed multiple geometric and environmental constraints into the optimization process. Simulation results show that the proposed method significantly improves the spatial efficiency of cooperative sensing, yielding a 32.76% increase in effective coverage area and 20.97% improvement in forward detection width compared to unoptimized formations. This strategy, supported by multi-sensor positioning and navigation, offers a robust and generalizable approach for intelligent maritime USV deployment in dynamic, multi-constraint scenarios. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

33 pages, 10200 KiB  
Review
Unmanned Surface Vessels in Marine Surveillance and Management: Advances in Communication, Navigation, Control, and Data-Driven Research
by Zhichao Lv, Xiangyu Wang, Gang Wang, Xuefei Xing, Chenlong Lv and Fei Yu
J. Mar. Sci. Eng. 2025, 13(5), 969; https://doi.org/10.3390/jmse13050969 - 16 May 2025
Cited by 1 | Viewed by 1441
Abstract
Unmanned Surface Vehicles (USVs) have emerged as vital tools in marine monitoring and management due to their high efficiency, low cost, and flexible deployment capabilities. This paper presents a systematic review focusing on four core areas of USV applications: communication networking, navigation, control, [...] Read more.
Unmanned Surface Vehicles (USVs) have emerged as vital tools in marine monitoring and management due to their high efficiency, low cost, and flexible deployment capabilities. This paper presents a systematic review focusing on four core areas of USV applications: communication networking, navigation, control, and data-driven operations. First, the characteristics and challenges of acoustic, electromagnetic, and optical communication methods for USV networking are analyzed, with an emphasis on the future trend toward multimodal communication integration. Second, a comprehensive review of global navigation, local navigation, cooperative navigation, and autonomous navigation technologies is provided, highlighting their applications and limitations in complex environments. Third, the evolution of USV control systems is examined, covering group control, distributed control, and adaptive control, with particular attention given to fault tolerance, delay compensation, and energy optimization. Finally, the application of USVs in data-driven marine tasks is summarized, including multi-sensor fusion, real-time perception, and autonomous decision-making mechanisms. This study aims to reveal the interaction and coordination mechanisms among communication, navigation, control, and data-driven operations from a system integration perspective, providing insights and guidance for the intelligent operations and comprehensive applications of USVs in marine environments. Full article
Show Figures

Figure 1

20 pages, 7183 KiB  
Article
A Two-Stage Strategy Integrating Gaussian Processes and TD3 for Leader–Follower Coordination in Multi-Agent Systems
by Xicheng Zhang, Bingchun Jiang, Fuqin Deng and Min Zhao
J. Sens. Actuator Netw. 2025, 14(3), 51; https://doi.org/10.3390/jsan14030051 - 14 May 2025
Viewed by 1296
Abstract
In mobile multi-agent systems (MASs), achieving effective leader–follower coordination under unknown dynamics poses significant challenges. This study proposes a two-stage cooperative strategy that integrates Gaussian Processes (GPs) for modeling and a Twin Delayed Deep Deterministic Policy Gradient (TD3) for policy optimization (GPTD3), aiming [...] Read more.
In mobile multi-agent systems (MASs), achieving effective leader–follower coordination under unknown dynamics poses significant challenges. This study proposes a two-stage cooperative strategy that integrates Gaussian Processes (GPs) for modeling and a Twin Delayed Deep Deterministic Policy Gradient (TD3) for policy optimization (GPTD3), aiming to enhance adaptability and multi-objective optimization. Initially, GPs are utilized to model the uncertain dynamics of agents based on sensor data, providing a stable and noiseless training virtual environment for the first phase of TD3 strategy network training. Subsequently, a TD3-based compensation learning mechanism is introduced to reduce consensus errors among multiple agents by incorporating the position state of other agents. Additionally, the approach employs an enhanced dual-layer reward mechanism tailored to different stages of learning, ensuring robustness and improved convergence speed. Experimental results using a differential drive robot simulation demonstrate the superiority of this method over traditional controllers. The integration of the TD3 compensation network further improves the cooperative reward among agents. Full article
Show Figures

Figure 1

20 pages, 2741 KiB  
Article
Intelligent Firefighting Technology for Drone Swarms with Multi-Sensor Integrated Path Planning: YOLOv8 Algorithm-Driven Fire Source Identification and Precision Deployment Strategy
by Bingxin Yu, Shengze Yu, Yuandi Zhao, Jin Wang, Ran Lai, Jisong Lv and Botao Zhou
Drones 2025, 9(5), 348; https://doi.org/10.3390/drones9050348 - 3 May 2025
Cited by 1 | Viewed by 1345
Abstract
This study aims to improve the accuracy of fire source detection, the efficiency of path planning, and the precision of firefighting operations in drone swarms during fire emergencies. It proposes an intelligent firefighting technology for drone swarms based on multi-sensor integrated path planning. [...] Read more.
This study aims to improve the accuracy of fire source detection, the efficiency of path planning, and the precision of firefighting operations in drone swarms during fire emergencies. It proposes an intelligent firefighting technology for drone swarms based on multi-sensor integrated path planning. The technology integrates the You Only Look Once version 8 (YOLOv8) algorithm and its optimization strategies to enhance real-time fire source detection capabilities. Additionally, this study employs multi-sensor data fusion and swarm cooperative path-planning techniques to optimize the deployment of firefighting materials and flight paths, thereby improving firefighting efficiency and precision. First, a deformable convolution module is introduced into the backbone network of YOLOv8 to enable the detection network to flexibly adjust its receptive field when processing targets, thereby enhancing fire source detection accuracy. Second, an attention mechanism is incorporated into the neck portion of YOLOv8, which focuses on fire source feature regions, significantly reducing interference from background noise and further improving recognition accuracy in complex environments. Finally, a new High Intersection over Union (HIoU) loss function is proposed to address the challenge of computing localization and classification loss for targets. This function dynamically adjusts the weight of various loss components during training, achieving more precise fire source localization and classification. In terms of path planning, this study integrates data from visual sensors, infrared sensors, and LiDAR sensors and adopts the Information Acquisition Optimizer (IAO) and the Catch Fish Optimization Algorithm (CFOA) to plan paths and optimize coordinated flight for drone swarms. By dynamically adjusting path planning and deployment locations, the drone swarm can reach fire sources in the shortest possible time and carry out precise firefighting operations. Experimental results demonstrate that this study significantly improves fire source detection accuracy and firefighting efficiency by optimizing the YOLOv8 algorithm, path-planning algorithms, and cooperative flight strategies. The optimized YOLOv8 achieved a fire source detection accuracy of 94.6% for small fires, with a false detection rate reduced to 5.4%. The wind speed compensation strategy effectively mitigated the impact of wind on the accuracy of material deployment. This study not only enhances the firefighting efficiency of drone swarms but also enables rapid response in complex fire scenarios, offering broad application prospects, particularly for urban firefighting and forest fire disaster rescue. Full article
Show Figures

Figure 1

28 pages, 6222 KiB  
Article
IoTBystander: A Non-Intrusive Dual-Channel-Based Smart Home Security Monitoring Framework
by Haotian Chi, Qi Ma, Yuwei Wang, Jing Yang and Haijun Geng
Appl. Sci. 2025, 15(9), 4795; https://doi.org/10.3390/app15094795 - 25 Apr 2025
Viewed by 681
Abstract
The increasing prevalence of IoT technology in smart homes has significantly enhanced convenience but also introduced new security and safety challenges. Traditional security solutions, reliant on sequences of IoT-generated event data (e.g., notifications of device status changes and sensor readings), are vulnerable to [...] Read more.
The increasing prevalence of IoT technology in smart homes has significantly enhanced convenience but also introduced new security and safety challenges. Traditional security solutions, reliant on sequences of IoT-generated event data (e.g., notifications of device status changes and sensor readings), are vulnerable to cyberattacks, such as message forgery and interception and delaying attacks, and fail to monitor non-smart devices. Moreover, fragmented smart home ecosystems require vendor cooperation or system modifications for comprehensive monitoring, limiting the practicality of the existing approaches. To address these issues, we propose IoTBystander, a non-intrusive dual-channel smart home security monitoring framework that utilizes two ubiquitous platform-agnostic signals, i.e., audio and network, to monitor user and device activities. We introduce a novel dual-channel aggregation mechanism that integrates insights from both channels and cross-verifies the integrity of monitoring results. This approach expands the monitoring scope to include non-smart devices and provides richer context for anomaly detection, failure diagnosis, and configuration debugging. Empirical evaluations on a real-world testbed with nine smart and eleven non-smart devices demonstrate the high accuracy of IoTBystander in event recognition: 92.86% for recognizing events of smart devices, 95.09% for non-smart devices, and 94.27% for all devices. A case study on five anomaly scenarios further shows significant improvements in anomaly detection performance by combining the strengths of both channels. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

38 pages, 4044 KiB  
Article
Trustworthy AI and Federated Learning for Intrusion Detection in 6G-Connected Smart Buildings
by Rosario G. Garroppo, Pietro Giuseppe Giardina, Giada Landi and Marco Ruta
Future Internet 2025, 17(5), 191; https://doi.org/10.3390/fi17050191 - 23 Apr 2025
Viewed by 987
Abstract
Smart building applications require robust security measures to ensure system functionality, privacy, and security. To this end, this paper proposes a Federated Learning Intrusion Detection System (FL-IDS) composed of two convolutional neural network (CNN) models to detect network and IoT device attacks simultaneously. [...] Read more.
Smart building applications require robust security measures to ensure system functionality, privacy, and security. To this end, this paper proposes a Federated Learning Intrusion Detection System (FL-IDS) composed of two convolutional neural network (CNN) models to detect network and IoT device attacks simultaneously. Collaborative training across multiple cooperative smart buildings enables model development without direct data sharing, ensuring privacy by design. Furthermore, the design of the proposed method considers three key principles: sustainability, adaptability, and trustworthiness. The proposed data pre-processing and engineering system significantly reduces the amount of data to be processed by the CNN, helping to limit the processing load and associated energy consumption towards more sustainable Artificial Intelligence (AI) techniques. Furthermore, the data engineering process, which includes sampling, feature extraction, and transformation of data into images, is designed considering its adaptability to integrate new sensor data and to fit seamlessly into a zero-touch system, following the principles of Machine Learning Operations (MLOps). The designed CNNs allow for the investigation of AI reasoning, implementing eXplainable AI (XAI) techniques such as the correlation map analyzed in this paper. Using the ToN-IoT dataset, the results show that the proposed FL-IDS achieves performance comparable to that of its centralized counterpart. To address the specific vulnerabilities of FL, a secure and robust aggregation method is introduced, making the system resistant to poisoning attacks from up to 20% of the participating clients. Full article
Show Figures

Figure 1

Back to TopTop