Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,954)

Search Parameters:
Keywords = conversion products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1465 KB  
Article
Growth Performances and Nutritional Values of Tenebrio molitor Larvae: Influence of Different Agro-Industrial By-Product Diets
by Giuseppe Serra, Francesco Corrias, Mattia Casula, Maria Leonarda Fadda, Stefano Arrizza, Massimo Milia, Nicola Arru and Alberto Angioni
Foods 2026, 15(2), 393; https://doi.org/10.3390/foods15020393 (registering DOI) - 22 Jan 2026
Abstract
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects [...] Read more.
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects like the yellow mealworm (Tenebrio molitor) have the greatest potential to become a valid alternative source of proteins. This study evaluated the growth performance and nutritional profile of yellow mealworm larvae reared under laboratory conditions on eight different agro-industrial by-products: wheat middling, durum wheat bran, rice bran, hemp cake, thistle cake, dried brewer’s spent grains, dried tomato pomace, and dried distilled grape marc. The quantitative and qualitative impacts of rearing substrates on larvae were compared. The results showed that larvae adapt well to different substrates with different nutritional compositions, including the fibrous fraction. However, substrates affect larval growth feed conversion and larval macro composition. Hemp cake stood out for its superior nutritional value, as reflected by its high protein content and moderate NDF (Neutral Detergent Fiber) levels, which determine fast larval growth. On the contrary, imbalanced substrate lipid or carbohydrate content (rice bran), as well as the presence of potential antinutritional compounds (thistle cake), appeared to negatively affect growth performances. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

8 pages, 1453 KB  
Communication
Double-Sided Illuminated Electrospun PAN TiO2-Cu2O Membranes for Enhanced CO2 Photoreduction to Methanol
by Mathieu Grandcolas
Catalysts 2026, 16(1), 107; https://doi.org/10.3390/catal16010107 (registering DOI) - 22 Jan 2026
Abstract
Photocatalytic reduction of CO2 into value-added chemicals offers a sustainable route to mitigate greenhouse gas emissions while producing renewable fuels. However, conventional TiO2-based systems suffer from limited visible-light activity and inefficient reactor configurations. Here, we developed electrospun polyacrylonitrile (PAN) membranes [...] Read more.
Photocatalytic reduction of CO2 into value-added chemicals offers a sustainable route to mitigate greenhouse gas emissions while producing renewable fuels. However, conventional TiO2-based systems suffer from limited visible-light activity and inefficient reactor configurations. Here, we developed electrospun polyacrylonitrile (PAN) membranes embedded with TiO2-Cu2O heterojunction nanoparticles and integrated them into a custom crossflow photocatalytic membrane reactor. The reactor employed bifacial illumination using a solar simulator (front) and a xenon/mercury lamp (back), each calibrated to 1 Sun (100 mW·cm−2). Membrane morphology was characterized by SEM, and chemical composition was confirmed by XPS. Photocatalytic performance was evaluated in CO2-saturated 0.5 M potassium bicarbonate solution under continuous flow. The PAN/ TiO2-Cu2O membrane exhibited a methanol production rate of approximately 300 μmol·g−1·h−1 under dual-light illumination, outperforming single illumination, PAN-TiO2, and PAN controls. Enhanced activity is attributed to extended visible-light absorption, improved charge separation at the TiO2-Cu2O heterojunction, and optimized photon flux through bifacial illumination. The electrospun architecture provided high surface area and porosity, facilitating CO2 adsorption and catalyst dispersion. Combining heterojunction engineering with bifacial reactor design significantly improves solar-driven CO2 conversion. This approach offers a scalable pathway for integrating photocatalysis and membrane technology into sustainable fuel synthesis. Full article
(This article belongs to the Special Issue Advanced Semiconductor Photocatalysts)
Show Figures

Figure 1

15 pages, 4702 KB  
Article
Alkaline Element Leaching from Fly Ash for Direct CO2 Fixation
by Lingjin Zhu, Yahu Yao, Chuncheng Cai, Rongqiang Qiao, Xilin Ji, Yazhou Zhang, Zhennan Niu, Shengqi Zhou, Yingshuang Zhang, Baiye Li and Zhiyi Zhang
Processes 2026, 14(2), 370; https://doi.org/10.3390/pr14020370 - 21 Jan 2026
Abstract
Fly ash (FA), a major by-product of coal combustion, has long been regarded as a challenging industrial solid waste. Its inherent abundance of alkaline-earth oxides positioned it as a promising candidate for CO2 sequestration through mineral carbonation. This study systematically investigated the [...] Read more.
Fly ash (FA), a major by-product of coal combustion, has long been regarded as a challenging industrial solid waste. Its inherent abundance of alkaline-earth oxides positioned it as a promising candidate for CO2 sequestration through mineral carbonation. This study systematically investigated the effects of key operational parameters, including time, stirring rate, ultrasonic treatment, and solid-to-liquid ratio, on the leaching efficiency of calcium ions and subsequent CO2 fixation. Ultrasonic treatment, a solid-to-liquid ratio of 1:7, a stirring speed of 600 rpm, and 7% monoethanolamine (MEA) collectively enhanced the calcium leaching efficiency (χe) to 16.7%, thereby supplying a substantial reservoir of calcium ions for CO2 fixation. Additionally, the CO2 injection into fly ash slurry and the slurry spraying into CO2 gas were investigated to optimize reactor configurations. The latter method demonstrated superior performance, attaining a CO2 fixation efficiency of 7.23%. This corresponds to a carbonation conversion efficiency (ηc) of approximately 44.5%, indicating that nearly half of the leached calcium ions were successfully converted into stable carbonates. Advanced characterization techniques (SEM-EDS, XRD, FTIR) confirmed the formation of stable carbonates and highlighted the role of additives in enhancing reactivity. The environmental benefit of this approach is addressing fly ash wastes and transforming fly ash into a CO2 fixation material. These findings provided critical insights for calcium leaching and CO2 fixation of fly ash. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

22 pages, 5687 KB  
Article
A Cascade Process for CO2 to Methanol Driven by Non-Thermal Plasma: A Techno-Economic Assessment
by Shiwei Qin, Xiangbo Zou, Yunfei Ma, Yunfeng Ma, Zirong Shen, Angjian Wu and Xiaoqing Lin
Catalysts 2026, 16(1), 104; https://doi.org/10.3390/catal16010104 - 21 Jan 2026
Abstract
The non-thermal plasma-driven cascade process for CO2-to-methanol conversion shows significant potential in the field of green methanol synthesis. This process innovatively couples a plasma activation module with a catalytic synthesis module via a multi-stage pressurization device, establishing an efficient two-step pathway [...] Read more.
The non-thermal plasma-driven cascade process for CO2-to-methanol conversion shows significant potential in the field of green methanol synthesis. This process innovatively couples a plasma activation module with a catalytic synthesis module via a multi-stage pressurization device, establishing an efficient two-step pathway that converts CO2 into methanol via a CO intermediate. Such an arrangement establishes an energy conversion system characterized by both low carbon emissions and high efficiency. This work involved an initial technical evaluation employing a custom-built, lab-scale apparatus. The optimum parameters determined through this assessment were a plasma input voltage of 40 V combined with a subsequent reaction temperature of 240 °C. Operation at these specified parameters yielded a CO2 conversion of 48%, with the methanol selectivity and production rate reaching 40% and 502 gMeOH·kg−1 cat·h−1, respectively. Furthermore, industrial-scale process design and scale-up were performed, accompanied by process simulation using Aspen Plus and a subsequent techno-economic evaluation. The results indicate that, compared to the conventional direct CO2 hydrogenation process, the proposed cascade route can reduce the capital investment by approximately 17%. Full article
(This article belongs to the Special Issue Catalysts for CO2 Conversions)
25 pages, 295 KB  
Article
TSRS-Aligned Sustainability Reporting in Turkey’s Agri-Food Sector: A Qualitative Content Analysis Based on GRI 13 and the SDGs
by Efsun Dindar
Sustainability 2026, 18(2), 1085; https://doi.org/10.3390/su18021085 - 21 Jan 2026
Abstract
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such [...] Read more.
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such as the Turkish Sustainability Reporting Standards (TSRSs). This article searches for the sustainability reports of agri-business firms listed in BIST in Turkey. Although TSRS reporting is not yet mandatory for the agribusiness sector, this study examines the first TSRS-aligned sustainability reports published by eight agri-food companies, excluding the retail sector. The analysis assesses how effectively these reports address sector-specific environmental and social challenges defined in the GRI 13 Agriculture, Aquaculture and Fishing Sector Standard and their alignment with the United Nations Sustainable Development Goals (SDGs). Using a structured content analysis approach, disclosure patterns were examined at both thematic and company levels. The findings indicate that TSRS-aligned reports place strong emphasis on environmental and climate-related disclosures, particularly emissions, climate adaptation and resilience, water management, and waste. In contrast, agro-ecological and land-based impacts—such as soil health, pesticide use, and ecosystem conversion—are weakly addressed. Economic disclosures are predominantly framed around climate-related financial risks and supply chain traceability, while social reporting focuses mainly on occupational health and safety, employment practices, and food safety, with limited attention to labor and equity issues across the broader value chain. Company-level results reveal marked heterogeneity, with internationally active firms demonstrating deeper alignment with GRI 13 requirements. From an SDG alignment perspective, high levels of coverage are observed across all companies for SDG 13 (Climate Action), SDG 12 (Responsible Consumption and Production), and SDG 6 (Clean Water and Sanitation). By contrast, SDGs critical to agro-ecological integrity and social equity—namely SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 10 (Reduced Inequalities), and SDG 15 (Life on Land)—are weakly represented or entirely absent. Overall, the results suggest that while TSRS-aligned reporting enhances transparency in climate-related domains, it achieves only selective alignment with the SDG agenda. This underscores the need for a stronger integration of sector-specific sustainability priorities into mandatory sustainability reporting frameworks. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
20 pages, 4131 KB  
Article
Calcium Nitrate Supplementation Improves Meat Quality in Hu Sheep via Microbial and Transcriptomic Regulation
by Yuanshu Zheng, Chen Zheng, Kang Sun, Huihui Liu, Huiyu Fan, Yi Wang, Xuan Nan, Lijing An, Faming Pan, Xinji Wang, Guoyan Xu and Ting Liu
Animals 2026, 16(2), 325; https://doi.org/10.3390/ani16020325 - 21 Jan 2026
Abstract
Research has demonstrated that incorporating nitrate into animal feed can effectively decrease methane production in ruminants, though its impact on carcass characteristics and meat attributes in Hu sheep requires further investigation. This experiment examined how a dietary inclusion of 3% calcium nitrate (CN) [...] Read more.
Research has demonstrated that incorporating nitrate into animal feed can effectively decrease methane production in ruminants, though its impact on carcass characteristics and meat attributes in Hu sheep requires further investigation. This experiment examined how a dietary inclusion of 3% calcium nitrate (CN) influenced slaughter parameters, meat properties, gut microbial populations, and host gene regulation in Hu sheep. The study involved sixty healthy male Hu sheep aged 120 days with comparable body weights (31.11 ± 3.39 kg), randomly allocated into two groups: a control group receiving standard feed (CON) and a CN-supplemented group. The trial lasted 60 days, including a 15-day adaptation period and a 45-day formal trial period. They were housed individually and fed twice daily (at 8:00 and 18:00). The findings revealed that CN supplementation notably reduced the water loss rate in the longissimus dorsi muscle (LD), elevated meat color brightness, and enhanced the proportion of polyunsaturated fatty acids (PUFA), particularly n-6 PUFA, along with the n-3/n-6 PUFA ratio. Conversely, it reduced the levels of saturated fatty acids such as myristic acid (C14:0) and oleic acid (C18:1n9t). Additionally, the treatment boosted ruminal Ammoniacal nitrogen content and total short-chain fatty acid production, thereby contributing to energy metabolism in the animals. Microbiological examination demonstrated that CN supplementation led to a decrease in Fibrobacterota and Methanobrevibacter populations within the ruminal environment, while promoting the growth of Proteobacteria in the duodenal region. The gene expression profiling of digestive tract tissues showed an increased activity in nitrogen processing genes (including CA4) and oxidative phosphorylation pathways (such as ATP6), indicating an improved metabolic efficiency and acid–base homeostasis in the host animals. These findings demonstrate that CN-enriched diets enhance the carcass characteristics of Hu sheep by modifying intramuscular lipid profiles through gastrointestinal microbial community restructuring and metabolic pathway adjustments. Such modifications affect energy utilization and acid–base equilibrium, ultimately impacting muscle characteristics and adipose tissue distribution, presenting viable approaches for eco-friendly livestock farming practices. Full article
Show Figures

Graphical abstract

14 pages, 9871 KB  
Article
Sugar and Ethanol Conversion of Recovered Whole and Degermed Corn Kernel Fibers Pretreated with Sodium Carbonate
by Valerie García-Negrón and David B. Johnston
Fermentation 2026, 12(1), 61; https://doi.org/10.3390/fermentation12010061 - 21 Jan 2026
Abstract
Corn fermentation in biorefineries produces residual biomass and by-products, particularly corn kernel fiber and outgassed carbon dioxide (CO2), that have value-added potential for improving sugar and bioethanol conversions. Recovered corn kernel fiber contains lignocellulosic components which can be made accessible by [...] Read more.
Corn fermentation in biorefineries produces residual biomass and by-products, particularly corn kernel fiber and outgassed carbon dioxide (CO2), that have value-added potential for improving sugar and bioethanol conversions. Recovered corn kernel fiber contains lignocellulosic components which can be made accessible by pretreating the biomass with an alkaline sodium carbonate solution made with captured CO2 and then used as supplemental biomass in corn ethanol production. In this work, different ratios of whole and degermed corn kernel fibers are pretreated and mixed with corn to be evaluated as beneficial ingredients in bioethanol co-fermentation. Sugar yields from enzymatic hydrolysis demonstrate the pretreatment promotes saccharification reaching over 70% total sugar conversion for the whole corn fibers. During co-fermentation, 10 and 20% corn solid loadings significantly increased ethanol yields while additional corn fiber loadings increased sugar yields. Conversion rates and yields were similar between the whole and degermed corn fibers supporting how a single recovery design can benefit multiple corn streams. Full article
Show Figures

Figure 1

20 pages, 1644 KB  
Article
Food Waste to Biogas: Continuous Operation of a Low-Cost Laboratory-Scale Anaerobic Digestion System Under Real-World Operating Constraints
by Caela Kleynhans, Hendrik G. Brink, Nils Haneklaus and Willie Nicol
Clean Technol. 2026, 8(1), 15; https://doi.org/10.3390/cleantechnol8010015 - 20 Jan 2026
Abstract
This study evaluated low-cost food waste anaerobic digestion (FWAD) designed for African urban informal settlements, where electricity and process control are limited. Eight small-scale reactors were operated under varying mixing, pH control, and temperature conditions to assess the feasibility of stable operation with [...] Read more.
This study evaluated low-cost food waste anaerobic digestion (FWAD) designed for African urban informal settlements, where electricity and process control are limited. Eight small-scale reactors were operated under varying mixing, pH control, and temperature conditions to assess the feasibility of stable operation with minimal input. Results showed no significant difference in methane yield between continuously mixed and minimally mixed (48-hourly) systems, nor between reactors with continuous pH dosing and those adjusted every 48 h (ANOVA p > 0.05 for all comparisons). The highest mean methane yield, 0.267 L CH4 g VS−1, was achieved by the minimally mixed reactor with 48-hourly pH control at 30 °C, while the controlled reactor at 37 °C produced a comparable 0.247 L CH4 g VS−1. Total methane production was similar at both temperatures, although gas generation was faster during the first 24 h at 37 °C. Compared to gas recovery achieved by extended batch operation following semi-continuous feeding, 58–73% of total methane was produced within the 48-h cycle, suggesting conversion could increase by 30–40% with extended liquid retention. Microbial analyses showed compositional differences but consistent performance, indicating functional redundancy within the microbial consortia. These results confirm the capacity of FWAD for stable, efficient biogas production without continuous energy input. Full article
(This article belongs to the Collection Bioenergy Technologies)
Show Figures

Figure 1

13 pages, 2006 KB  
Article
Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water
by Sari Rautiainen, Tyko Viertiö, Niko Vuorio, Felix Hyppönen, Luděk Meca, Pavel Kukula and Juha Lehtonen
Reactions 2026, 7(1), 7; https://doi.org/10.3390/reactions7010007 - 20 Jan 2026
Abstract
Black liquor, the side stream from Kraft pulping, is a promising feedstock for the production of renewable fuels via hydrothermal liquefaction (HTL). However, further upgrading of the black liquor HTL oil is required to reduce the oxygen content for fuel use. In this [...] Read more.
Black liquor, the side stream from Kraft pulping, is a promising feedstock for the production of renewable fuels via hydrothermal liquefaction (HTL). However, further upgrading of the black liquor HTL oil is required to reduce the oxygen content for fuel use. In this work, the hydrodeoxygenation (HDO) of black liquor HTL oil model compounds was investigated to enhance the understanding of catalyst activity and selectivity under hydrothermal conditions. The study focused on isoeugenol and 4-methylcatechol as model compounds, representing different functionalities in black liquor-derived HTL-oil. Sulfided NiMo catalysts supported on titania, zirconia, activated carbon, and α-alumina were evaluated in batch mode at subcritical and supercritical upgrading using hydrogen gas. The results show that isoeugenol was fully converted in all experiments, while 4-methylcatechol conversion varied depending on the catalyst and reaction conditions. Phenols were obtained as the main products and the maximum degree of deoxygenation achieved was around 40%. This research provides insights into the potential of hydrothermal HDO for upgrading BL-derived biocrudes, emphasising the importance of catalyst selection and reaction conditions in hydrothermal conditions. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

22 pages, 6317 KB  
Article
High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021
by Ziqi Mai, Pan Li, Xiaomin Sun, Qian Chen, Chongbin Xu, Buli Cui, Yu Wu, Bin Wang and Zhongen Niu
Land 2026, 15(1), 184; https://doi.org/10.3390/land15010184 - 20 Jan 2026
Abstract
Tracking ecosystem productivity in fast-evolving estuarine wetlands is often constrained by the trade-off between spatial detail and temporal continuity in satellite observations. To address this, we developed a reproducible fusion–VPM framework that integrates multi-sensor data to map Gross Primary Production (GPP) at a [...] Read more.
Tracking ecosystem productivity in fast-evolving estuarine wetlands is often constrained by the trade-off between spatial detail and temporal continuity in satellite observations. To address this, we developed a reproducible fusion–VPM framework that integrates multi-sensor data to map Gross Primary Production (GPP) at a high spatiotemporal resolution. By combining the Flexible Spatiotemporal Data Fusion (FSDAF) method with a Time-Series Linear Fitting Model (TSLFM), we constructed a continuous 30 m, 8-day vegetation index record for China’s Yellow River Delta (YRD) from 2000 to 2021. This record was propagated through the Vegetation Photosynthesis Model (VPM) to simulate GPP and quantify the relative contributions of land-use/land-cover change (LUCC) versus environmental factors. The results show a marginally significant increase in total GPP (9.74 Gg C a−1, p = 0.074) over the last two decades. Deconvolution of driving factors reveals that 87.45% of the GPP increase occurred in stable land-cover areas, where the Enhanced Vegetation Index (EVI) was the dominant driver (explaining 79.97% of the variability). In areas undergoing LUCC, the net effect on GPP primarily reflected the combined influences of artificial saline–alkali wetland expansion and cropland expansion: water-to-vegetation conversions enhanced GPP, whereas vegetation-to-water conversions fully offset these gains. This study demonstrates the efficacy of spatiotemporal data fusion in overcoming observational gaps and provides a transferable analytical framework for diagnosing carbon dynamics in complex, dynamic deltaic ecosystems. This study not only provides a critical, high-resolution assessment of carbon dynamics for the YRD but also delivers a generalizable analytical framework for mapping and attributing GPP trends in complex deltaic ecosystems worldwide. Full article
Show Figures

Figure 1

10 pages, 632 KB  
Proceeding Paper
Simulation of Green Diesel by Hydrotreatment of Waste Vegetable Oil
by Pascal Mwenge, Thubelihle Mahlangu and Andani Munonde
Eng. Proc. 2025, 117(1), 27; https://doi.org/10.3390/engproc2025117027 - 20 Jan 2026
Abstract
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined [...] Read more.
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined the simulation of the hydrotreatment process of waste cooking oil (WCO) to produce green diesel. ChemCAD version 8.1 was used to develop the simulation, along with a kinetic model based on the Langmuir–Hinshelwood mechanism (an LH-C-ND model), where fatty acids, such as oleic, stearic, and palmitic acid, in WCO are converted into long-chain hydrocarbons (C15, C16, C17, and C18). The influence of process parameters on green diesel yield was assessed at various temperatures, pressures, and H2/oil ratios. The best process conditions for green diesel production were identified as a temperature of 275 °C, a pressure of 30 bars, and an H2/oil ratio of 0.3. Minimising the formation of CO2, CO, and water. Under these conditions, a high green diesel yield was achieved, with WCO conversion exceeding 90%, and over 80% of the products were suitable for green diesel. This research supports SDG 7, which aims for universal access to affordable, reliable, sustainable, and modern energy, by exploring cleaner energy options, such as green diesel from waste vegetable oil. It is recommended to perform a life cycle assessment to evaluate the overall environmental impact. Full article
Show Figures

Figure 1

19 pages, 2136 KB  
Article
Biosynthesis of Glycine from One-Carbon Resources Using an Engineered Escherichia coli Whole-Cell Catalyst
by Muran Fu, Hongling Shi, Xueyang Bai, Qian Gao, Fei Liu, Dandan Li, Yunchao Kan, Chuang Xue, Lunguang Yao and Cunduo Tang
Microorganisms 2026, 14(1), 236; https://doi.org/10.3390/microorganisms14010236 - 20 Jan 2026
Abstract
Carbon dioxide (CO2) is a cost-effective, abundant, and renewable carbon source, but its utilization technologies face several issues. The reductive glycine pathway (RGP) is recognized as one of the most efficient one-carbon (C1) assimilation routes in nature, with its core component—the [...] Read more.
Carbon dioxide (CO2) is a cost-effective, abundant, and renewable carbon source, but its utilization technologies face several issues. The reductive glycine pathway (RGP) is recognized as one of the most efficient one-carbon (C1) assimilation routes in nature, with its core component—the glycine cleavage system (GCS: GcvP, GcvH, GcvT, and GcvL)—playing an essential role in C1 metabolism. To develop efficient CO2 conversion and utilization pathways, we identified NhFtfL and AmFchA-MtdA with high catalytic efficiency through gene mining and constructed a four-plasmid co-expression system in E. coli BL21(DE3) using Gibson Assembly. This system integrated GcvP-GcvH, GcvT-GcvL, NhFtfL-AmFchA-MtdA, and RsPPK2, thereby reconstituting the complete RGP while enhancing ATP supply. The engineered strain functioned as an efficient whole-cell biocatalyst, achieving a glycine space–time productivity of 0.125 mmol/L/h via one-pot conversion of formate. Furthermore, we expanded the application scope by developing a whole-cell electrocatalysis system that directly synthesized glycine from CO2 and NH4Cl, achieving a glycine space–time productivity of 0.135 mmol/L/h. This study demonstrates the potential of the engineered RGP system for upgrading C1 resources and supports the transition toward carbon neutrality. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

18 pages, 2428 KB  
Article
Streamlined Radiosynthesis of [18F]Fluproxadine (AF78): An Unprotected Guanidine Precursor Enables Efficient One-Step, Automation-Ready Labeling for Clinical Use
by Xinyu Chen, Kaito Ohta, Hiroyuki Kimura, Yusuke Yagi, Takanori Sasaki, Naoko Nose, Masaru Akehi, Tomohiko Yamane, Rudolf A. Werner and Takahiro Higuchi
Pharmaceutics 2026, 18(1), 123; https://doi.org/10.3390/pharmaceutics18010123 - 19 Jan 2026
Viewed by 30
Abstract
Background/Objectives: [18F]Fluproxadine (formerly [18F]AF78) is a PET radiotracer targeting the norepinephrine transporter (NET) with potential applications in cardiac, neurological, and oncological imaging. Its guanidine moiety, while essential for NET binding, presents major radiosynthetic challenges due to high basicity and [...] Read more.
Background/Objectives: [18F]Fluproxadine (formerly [18F]AF78) is a PET radiotracer targeting the norepinephrine transporter (NET) with potential applications in cardiac, neurological, and oncological imaging. Its guanidine moiety, while essential for NET binding, presents major radiosynthetic challenges due to high basicity and the harsh deprotection conditions required for protected precursors. Previous methods relied on multistep procedures, strong acids, and complex purification, limiting clinical translation. This study aimed to develop a practical one-step radiosynthesis suitable for routine and automated production. Methods: A direct SN2-type nucleophilic [18F]fluorination was performed using an unprotected guanidine precursor to eliminate deprotection steps. Reaction parameters, including the base system, solvent composition, precursor concentration, and temperature, were optimized under conventional and microwave heating. Radiochemical conversion (RCC) and operational robustness were evaluated, and purification strategies were assessed for automation compatibility. Results: Direct [18F]fluorination using the unprotected precursor reduced the total synthesis time to 60–70 min. Optimal conditions employed a tert-butanol/acetonitrile (4:1) solvent system with K2CO3/Kryptofix222, affording RCC up to 33% under conventional heating. Microwave irradiation further improved efficiency, achieving RCC of up to 64% within 1.5 min at 140 °C. The method showed broad tolerance to variations in the base molar ratio and precursor concentration and enabled isocratic HPLC purification. Conclusions: This one-step radiosynthesis overcomes longstanding challenges in [18F]fluproxadine production by eliminating harsh deprotection and enabling high-yield, automation-ready synthesis, thereby improving clinical feasibility. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

12 pages, 1419 KB  
Article
Alpha Therapy Beyond TOC and TATE—Production, Quality Control, and In-Human Results for the SSTR2 Antagonist DOTA-LM3
by Lukas Greifenstein, Marcel Martin, Sarah Stephan, Aleksandr Eismant, Carsten S. Kramer, Christian Landvogt, Corinna Mueller, Frank Rösch and Richard P. Baum
Pharmaceuticals 2026, 19(1), 172; https://doi.org/10.3390/ph19010172 - 19 Jan 2026
Viewed by 41
Abstract
Objectives: Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) commonly relies on somatostatin receptor subtype 2 (SSTR2) agonists such as DOTA-TOC/TATE, which may show limited efficacy due to high hepatic uptake and therapy resistance in some patients. SSTR2 antagonists have demonstrated [...] Read more.
Objectives: Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) commonly relies on somatostatin receptor subtype 2 (SSTR2) agonists such as DOTA-TOC/TATE, which may show limited efficacy due to high hepatic uptake and therapy resistance in some patients. SSTR2 antagonists have demonstrated superior tumor targeting. This study aimed to establish the production and quality control of the Actinium-225-labeled SSTR2 antagonist [225Ac]Ac-DOTA-LM3 and to report in-human clinical experience with targeted alpha therapy (TAT). Methods: [225Ac]Ac-DOTA-LM3 was produced by radiolabeling DOTA-LM3 with Actinium-225 under validated conditions. Radiochemical conversion, purity, yield, and stability were assessed using radio-TLC, fractionated radio-HPLC combined with gamma spectroscopy, and in vitro serum stability testing. Clinical feasibility and therapeutic response were evaluated in a patient with metastatic neuroendocrine pancreatic neoplasm refractory to prior 177Lu-based PRRT. Results: Radiolabeling achieved reproducibly high radiochemical purity (>97%) and decay-corrected yields exceeding 80%. The radiopharmaceutical showed high in vitro stability with minimal release of free Actinium-225 over five days. Fractionated radio-HPLC enabled indirect purity assessment. In the reported patient, [225Ac]Ac-DOTA-LM3 therapy resulted in partial remission without clinically relevant hematologic, renal, or hepatic toxicity and was associated with marked clinical improvement. Conclusions: [225Ac]Ac-DOTA-LM3 can be produced with high purity and stability using clinically applicable procedures. In-human results suggest promising efficacy and safety, supporting further clinical investigation of Actinium-225-labeled SSTR2 antagonists for advanced NETs. Full article
(This article belongs to the Special Issue Advancements in Radiopharmaceutical Theranostics)
Show Figures

Figure 1

19 pages, 2268 KB  
Article
The Efficacy of Multicomponent Preparation for Detoxification of Mycotoxins in the Presence of AFB1 and OTA Added to Broiler Feed
by Jelena Nedeljković Trailović, Branko Petrujkić, Saša Trailović, Dragoljub Jovanović, Milutin Đorđević, Darko Stefanović, Nataša Tolimir, Darko Marinković and Stamen Radulović
Poultry 2026, 5(1), 9; https://doi.org/10.3390/poultry5010009 - 19 Jan 2026
Viewed by 42
Abstract
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, [...] Read more.
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, pathohistological (PH) changes, and residues of these toxins in the tissues of broiler chicks. A total of 88 broilers were divided into eight equal groups: group C, the control group (fed a commercial diet without any additives); group MS, which received the mycotoxin detoxification agent (MS) (supplemented with 0.2%); group E I (0.2 mg AFB1/kg of diet); group E II (0.2 mg AFB1/kg of diet + MS 0.2%); group E III (1.5 mg OTA/kg of diet); group E IV (1.5 mg OTA/kg of diet + 0.2% MS); group E V (combination of 0.2 mg AFB1/kg, 1.5 mg OTA/kg of diet); and group E VI (combination of 0.2 mg AFB1/kg, 1.5 mg OTA toxin + 0.2% MS). Results show that feed containing AFB1 and OTA, individually or in combination, negatively affects health, production results, and PH changes in tissues, as well as the presence of mycotoxin residues in the liver and breast muscles of poultry. The addition of a new multicomponent preparation for the detoxification of MS mycotoxins in feed with AFB1 and OTA individually and in combination had a positive effect on TM (BW), growth (BWG), consumption and FCR conversion coefficient, and microscopic lesions in organs. The concentration of OTA residues in the liver and chest muscles was significantly lower in chickens fed a diet with the addition of 0.2% MS of the mycotoxin detoxification preparation. Full article
Show Figures

Figure 1

Back to TopTop