Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = controlled gelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Viewed by 134
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 321
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

33 pages, 7665 KiB  
Review
A Comprehensive Review of Thermosensitive Hydrogels: Mechanism, Optimization Strategies, and Applications
by Tianyang Lv, Yuzhu Chen, Ning Li, Xiaoyu Liao, Yumin Heng, Yayuan Guo and Kaijin Hu
Gels 2025, 11(7), 544; https://doi.org/10.3390/gels11070544 - 14 Jul 2025
Viewed by 656
Abstract
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. [...] Read more.
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. This review systematically summarizes the gelation mechanisms of thermosensitive hydrogels and optimization strategies to enhance their performance for broader application requirements. In particular, we highlight recent advances in injectable thermosensitive hydrogels as a carrier within stem cells, bioactive substances, and drug delivery for treating various tissue defects and diseases involving bone, cartilage, and other tissues. Furthermore, we propose challenges and directions for the future development of thermosensitive hydrogels. These insights provide new ideas for researchers to explore novel thermosensitive hydrogels for tissue repair and disease treatment. Full article
Show Figures

Figure 1

14 pages, 4114 KiB  
Article
Effect of Silica Sol on the Preparation and Oxidation Resistance of MoSi2@SiO2
by Linlin Guo, Jinjun Zhang, Chengpeng Miao, Shuang Feng, Xiaozhen Fan, Haiyan Du, Jiachen Liu and Mingchao Wang
Materials 2025, 18(13), 3203; https://doi.org/10.3390/ma18133203 - 7 Jul 2025
Viewed by 246
Abstract
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic [...] Read more.
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic silica sols were systematically applied to coat MoSi2 powders through sol-adsorption encapsulation. Two pathways were used, one was ethanol-mediated dispersion, and the other was direct dispersion of MoSi2 particles in silica sol. Analysis demonstrated that ethanol-mediated dispersion significantly influenced the coating efficiency and oxidation resistance, exhibited significantly decreased coating weight gains (maximum 27%) and increased oxidation weight gains (10–20%) between 340 °C and 600 °C compared with direct dispersion of MoSi2 particles with silica sol, ascribe to the kinetic inhibition of hydroxyl group condensation and steric hindrance of MoSi2-silica sol interface interactions of ethanol. Systematic investigation of silica sol encapsulation of MoSi2 revealed critical correlations between colloid properties and oxidation resistance of MoSi2@SiO2. Basic silica sol coated MoSi2 (BS-MoSi2) exhibits the lowest coating efficiency (coating weight gain of 7.74 ± 0.06%) as well as lowest oxidation weight gain (18.45%) between 340 °C and 600 °C compared with those of acid and neutral silica sol coated MoSi2 (AS-MoSi2 and NS-MoSi2), arises from optimal gelation kinetics, enhanced surface coverage via reduced agglomeration, and suppressed premature nucleation through controlled charge interactions under alkaline conditions. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

22 pages, 2464 KiB  
Article
Development and Characterization of LL37 Antimicrobial-Peptide-Loaded Chitosan Nanoparticles: An Antimicrobial Sustained Release System
by Fazilet Canatan Ergün, Meltem Demirel Kars and Gökhan Kars
Polymers 2025, 17(13), 1884; https://doi.org/10.3390/polym17131884 - 7 Jul 2025
Viewed by 527
Abstract
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded [...] Read more.
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded CSNPs, designed to enhance antibacterial efficacy while maintaining biocompatibility. This study pioneers a systematic loading optimization approach by evaluating the encapsulation efficiency (%EE) of antimicrobial peptide LL37 across multiple concentrations (7.5, 15, and 30 µg/mL), thereby identifying the formulation that maximizes peptide incorporation while preserving controlled release characteristics. The multi-concentration analysis establishes a new methodological benchmark for peptide delivery system development. To achieve this, CSNPs were optimized for size and stability by adjusting parameters such as the chitosan concentration, pH, and stabilizer. LL37, a potent antimicrobial peptide, was successfully encapsulated into CSNPs at concentrations of 7.5, 15, and 30 µg/mL, yielding formulations with favorable physicochemical properties. Dynamic light scattering (DLS) and Zeta sizer analyses revealed that blank CSNPs exhibited an average particle size of 180.40 ± 2.16 nm, a zeta potential (ZP) of +40.57 ± 1.82 mV, and a polydispersity index (PDI) of 0.289. In contrast, 15-LL37-CSNPs demonstrated an increased size of 210.9 ± 2.59 nm with an enhanced zeta potential of +51.21 ± 0.93 mV, indicating an improved stability and interaction potential. Field emission scanning electron microscopy (FE-SEM) analyses exhibited the round shaped morphology of nanoparticles. The release profile of LL37 exhibited a concentration-dependent rate and showed the best fit with the first-order kinetic model. Cytocompatibility assessments using the XTT assay confirmed that both blank and LL37-loaded CSNPs did not exhibit cytotoxicity on keratinocyte cells across a range of concentrations (150 µg/mL to 0.29 µg/mL). Notably, LL37-loaded CSNPs demonstrated significant antibacterial activity against E. coli and S. aureus, with the 15-LL37-CSNP formulation exhibiting superior efficacy. Overall, these findings highlight the potential of LL37-CSNPs as a versatile antibacterial delivery system with applications in drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Graphical abstract

21 pages, 3863 KiB  
Article
Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions
by Hiroshi Kimura, Haruka Tanabe and Susumu Shinoki
Fluids 2025, 10(7), 178; https://doi.org/10.3390/fluids10070178 - 6 Jul 2025
Viewed by 235
Abstract
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains [...] Read more.
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains insufficiently understood. In this study, we systematically investigated the relationships between particle size, cation exchange capacity, and zeta potential, and the rheological behavior of aqueous dispersions of four synthetic smectites. After thorough deionization, dispersions were prepared at controlled NaCl concentrations. We found that the zeta potential strongly correlates with the fineness of the network structure and governs macroscopic rheological responses such as viscosity, yield stress, and gelation behavior. Even under identical conditions, gel transparency and structural coarseness varied significantly among clay types. Furthermore, the storage modulus was influenced not only by network density but also by the intrinsic stiffness of the clay branches. These findings demonstrate that zeta potential serves as a unified indicator of structure and function in smectite dispersions and offer useful insights for gel design in colloidal and soft matter systems. Full article
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
Recycling Sargassum spp. Biomass for Sustainable Biocontrol in Agriculture: A Circular Approach
by Mislén Gómez-Matos, Dariellys Martínez-Balmori, Yamilet Coll-García, Yamilé Baró-Robaina and Yaneris Mirabal-Gallardo
Sustainability 2025, 17(13), 6107; https://doi.org/10.3390/su17136107 - 3 Jul 2025
Viewed by 368
Abstract
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic [...] Read more.
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic Sargassum spp. collected from the Havana coast was processed to obtain an alginate-rich extract, which was used to encapsulate Beauveria bassiana conidia via ionic gelation. FTIR confirmed characteristic carboxylate absorption bands, indicating structural similarities with commercial alginate, while TGA demonstrated comparable thermal behavior. Beads exhibited consistent dimensions (0.5–3 mm) with irregular post-drying shapes. Encapsulation efficiency yielded a conidial concentration of 1.43 × 108 conidia per mL, ensuring retention within the matrix. Long-term viability was confirmed as conidia remained viable and able to grow after six months, potentially benefiting from extract-derived compounds. These findings highlight the potential of repurposing Sargassum spp. for sustainable agricultural applications, advancing environmentally friendly pest management while addressing the ecological burden of excessive Sargassum accumulation. Full article
Show Figures

Figure 1

19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 384
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

19 pages, 2575 KiB  
Article
Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery
by Arianna Chiappa, Alice Fusari, Marco Uboldi, Fabiana Cavarzan, Paola Petrini, Lucia Zema, Alice Melocchi and Francesco Briatico Vangosa
Gels 2025, 11(7), 510; https://doi.org/10.3390/gels11070510 - 1 Jul 2025
Viewed by 337
Abstract
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and [...] Read more.
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and its interaction with the hydrogel matrix. In drug delivery applications, solid particles can be added to hydrogels to improve drug loading capacity, enable the inclusion of poorly soluble drugs, and modulate release kinetics. This work focuses on the case of alginate (ALG)-based hydrogels, obtained following an internal gelation procedure using CaCO3 as the Ca2+ source and containing a high solid volume fraction (up to 50%) of metronidazole (MTZ), a drug with low water solubility, as a potential extrusion-based drug delivery system. The impact of the hydrogel precursor composition (ALG and MTZ content) on the rheological behavior of the filled hydrogel and precursor suspension were investigated, as well as the hydrogel stability and MTZ dissolution. In the absence of solid MTZ, the precursor solutions showed a slightly shear thinning behavior, more accentuated with the increase in ALG concentration. The addition of drugs exceeding the saturation concentration in the precursor suspension resulted in a substantial increase (about one order of magnitude) in the low-shear viscosity and, for the highest MTZ loadings, a yield stress. Despite the significant changes, precursor formulations retained their extrudability, as confirmed by both numerical estimates and experimental validation. MTZ particles did not affect the crosslinking of the precursors to form the hydrogel, but they did control its viscoelastic behavior. In unfilled hydrogels, the ALG concentration controls stability (from 70 h for the lowest concentration to 650 h for the highest) upon immersion in acetate buffer at pH 4.5, determining the MTZ release/hydrogel dissolution behavior. The correlations between composition and material properties offer a basis for building predictive models for fine-tuning their composition of highly filled hydrogel systems. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Figure 1

14 pages, 3148 KiB  
Article
Polymorphic Control in Pharmaceutical Gel-Mediated Crystallization: Exploiting Solvent–Gelator Synergy in FmocFF Organogels
by Dong Chen, Koen Robeyns, Tom Leyssens, Basanta Saikia and Stijn Van Cleuvenbergen
Gels 2025, 11(7), 509; https://doi.org/10.3390/gels11070509 - 1 Jul 2025
Viewed by 375
Abstract
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling [...] Read more.
FmocFF is a highly versatile gelator whose π–π-stacking fluorenyl group and hydrogen-bonded peptide backbone permit gelation in a wide spectrum of solvents, providing a rich scaffold for crystal engineering. This study explores the synergistic effects of FmocFF organogels and solvent selection on controlling the polymorphic outcomes of nilutamide, a nonsteroidal antiandrogen drug with complex polymorphism. By systematically varying process parameters such as solvent type and concentration, we demonstrate remarkable control over crystal nucleation and growth pathways. Most significantly, we report the first ambient-temperature isolation of pure nilutamide Form II through acetonitrile-based FmocFF organogel, highlighting the unique interplay between solvent properties and gel fiber networks. Thermal analysis reveals that the organogel not only selectively templates Form II but also affects its thermal pathway. We also present compelling evidence for a new polymorph exhibiting second-harmonic generation (SHG) activity. This would represent the first non-centrosymmetric nilutamide form discovered, suggesting the gel matrix induces symmetry breaking during crystallization. We also characterize a previously unreported nilutamide–chloroform solvate through multiple analytical techniques including PXRD, DSC, FTIR, SXRD, and SHG microscopy. Our findings demonstrate that solvent-specific molecular recognition within gel matrices enables access to entirely new regions of polymorphic space, establishing gel-mediated crystallization as a broadly applicable platform technology for pharmaceutical solid form discovery under mild conditions. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

22 pages, 1419 KiB  
Article
Effect of Lactic Acid Bacteria Concentration and Flaxseed Cake Flour on the Formation and Stability of Bovine Blood Plasma Gels
by Assem Shulenova, Amirzhan Kassenov, Mukhtarbek Kakimov, Gulnara Kokayeva, Ayaulym Mustafayeva, Maigul Mursalykova, Yelena Krasnopyorova, Diana Sviderskaya, Bakhtiyar Rzayev and Bauyrzhan Iskakov
Processes 2025, 13(7), 2024; https://doi.org/10.3390/pr13072024 - 26 Jun 2025
Viewed by 400
Abstract
The protein fraction of slaughterhouse blood remains underutilized primarily due to challenges associated with its instability during processing and storage. This study aimed to develop stable bovine blood plasma gels using selected lactic acid bacteria and flaxseed oil cake flour. Various lactic acid [...] Read more.
The protein fraction of slaughterhouse blood remains underutilized primarily due to challenges associated with its instability during processing and storage. This study aimed to develop stable bovine blood plasma gels using selected lactic acid bacteria and flaxseed oil cake flour. Various lactic acid bacteria strains were incorporated at concentrations of 5–20% (w/w), and gel properties such as pH, gelation time, yield stress, and freeze–thaw syneresis were evaluated. Optimal gelation was achieved at 20% inoculum, producing fibrin networks with yield stresses (372 Pa) comparable to recalcified controls (410 Pa), but accompanied by high serum loss and undesired acidic aromas at higher bacterial densities. Incorporating 5% hydrated flaxseed oil cake flour successfully reduced syneresis below 10%, improved water-holding capacity (135%), and prevented development of off-flavors, demonstrating beneficial interactions between flaxseed polysaccharides and blood plasma proteins. Thus, combining a 20% mixed lactic starter with 5% flaxseed cake flour yielded a stable plasma gel suitable for meat product applications, balancing rapid gel formation, high moisture retention, desirable rheological properties, and neutral sensory characteristics. Full article
Show Figures

Figure 1

35 pages, 3359 KiB  
Article
GSH/pH-Responsive Chitosan–PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses
by Ahmed M. Albasiony, Amr M. Beltagi, Mohamed M. Ibrahim, Shaban Y. Shaban and Rudi van Eldik
Int. J. Mol. Sci. 2025, 26(13), 6070; https://doi.org/10.3390/ijms26136070 - 24 Jun 2025
Viewed by 522
Abstract
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/ [...] Read more.
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/o/w emulsion techniques: LED@CS NPs with a size of 143 nm, a zeta potential of +43.5 mV, and a loading capacity of 44.1%, and LED-PLA@CS NPs measuring 394 nm, with a zeta potential of +33.3 mV and a loading capacity of 89.3%, with the latter demonstrating significant drug payload capacity. Since most drugs work through interaction with DNA, the in vitro affinity of DNA to LED and its encapsulated forms was assessed using stopped-flow and other approaches. They bind through multi-modal electrostatic and intercalative modes via two reversible processes: a fast complexation followed by a slow isomerization. The overall binding activation parameters for LED (cordination affinity, Ka = 128.4 M−1, Kd = 7.8 × 10−3 M, ΔG = −12.02 kJ mol−1), LED@CS NPs (Ka = 2131 M−1, Kd = 0.47 × 10−3 M, ΔG = −18.98 kJ mol−1) and LED-PLA@CS NPs (Ka = 22026 M−1, Kd = 0.045 × 10−3 M, ΔG = −24.79 kJ mol−1) were obtained with a reactivity ratio of 1/16/170 (LED/LED@CS NPs/LED-PLA@CS NPs). This indicates that encapsulation enhanced the interaction between the DNA and the LED-loaded nanoparticle systems, without changing the mechanism, and formed thermodynamically stable complexes. The drug release kinetics were assessed under tumor-mimetic conditions (pH 5.5, 10 mM GSH) and physiological settings (pH 7.4, 2 μM GSH). The LED@CS NPs and LED-PLA@CS NPs exhibited drug release rates of 88.0% and 73%, respectively, under dual stimuli over 50 h, exceeding the release rates observed under physiological conditions, which were 58% and 54%, thereby indicating that the LED@CS NPs and LED-PLA@CS NPs systems specifically target malignant tissue. Release regulated by Fickian diffusion facilitates tumor-specific payload delivery. Although encapsulation did not enhance the immediate cytotoxicity compared to free LED, as demonstrated by an in vitro cytotoxicity in HepG2 cancer cell lines, it significantly enhanced the therapeutic index (2.1-fold for LED-PLA@CS NPs) by protecting non-cancerous cells. Additionally, the nanoparticles demonstrated broad-spectrum antibacterial effects, suggesting efficacy in the prevention of chemotherapy-related infections. The dual-responsive LED-PLA@CS NPs allowed controlled tumor-targeted LED delivery with better selectivity and lower off-target toxicity, making LED-PLA@CS NPs interesting candidates for repurposing HCV treatments into safer cancer nanomedicines. Furthermore, this thorough analysis offers useful reference information for comprehending the interaction between drugs and DNA. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

22 pages, 8987 KiB  
Article
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water
by Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Alexandra-Cătălina Bîrcă, Denisa Alexandra Florea, Marius Rădulescu, Bogdan-Ștefan Vasile, Roxana Trușcă, Dan-Eduard Mihaiescu, Tony Hadibarata and Alexandru-Mihai Grumezescu
Gels 2025, 11(6), 463; https://doi.org/10.3390/gels11060463 - 17 Jun 2025
Cited by 1 | Viewed by 866
Abstract
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly [...] Read more.
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly correlated to their morpho-structural features, special consideration must be allocated to the fabrication method. An emerging technique for producing nanostructured materials with tailored morphology and dimensions is represented by continuous-flow microfluidics. In this context, this work explores the synergic combination of aerogel-based materials with microfluidic synthesis platforms to generate advanced nanocomposite adsorbents for water decontamination. Specifically, this study presents the novel synthesis of a magnetic silica-based aerogel using a custom-designed 3D microfluidic platform, offering enhanced control over nanoparticle incorporation and gelation compared to conventional sol–gel techniques. The resulting gel was further dried via supercritical CO2 extraction to preserve its unique nanostructure. The multi-faceted physicochemical investigations (XRD, DLS, FT-IR, RAMAN, SEM, and TEM) confirmed the material’s uniform morphology, high porosity, and surface functionalization. The HR-MS FT-ICR analysis has also demonstrated the advanced material’s adsorption capacity for various pesticides, suggesting its adequacy for further environmental applications. An exceptional 93.7% extraction efficiency was registered for triazophos, underscoring the potential of microfluidic synthesis approaches in engineering advanced, eco-friendly adsorbent materials for water decontamination of relevant organic pollutants. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

14 pages, 3844 KiB  
Article
Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking
by Xiaoyu Xie, Zilin Zhu, Yu Meng, Lijia Wang, Fuquan Zhao, Lingqing Chen, Lijie Jiang, Ming Yan and Xiaofan Zhou
Gels 2025, 11(6), 462; https://doi.org/10.3390/gels11060462 - 16 Jun 2025
Viewed by 460
Abstract
Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca2+ incorporation (optimal at [...] Read more.
Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca2+ incorporation (optimal at 6 wt.%) accelerates gelation kinetics while establishing a hybrid network through ionic complexation and hydrogen bonding. The resulting xerogels achieve exceptional compressive strength (30.8 MPa) while maintaining uniform mesoporosity (50–90 nm pore size). Remarkably, the as-prepared silica xerogels demonstrate outstanding thermal insulation, maintaining a 220 °C temperature differential in 300 °C environments. These results prove that the ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy can enhance the mechanical performance and thermal insulation performance of silica xerogels with the dual actions of Ca2+-induced network reinforcement via silanol coordination and glycerol-mediated stress relief during ambient drying. Overall, this work can offer a scalable, energy-efficient approach to produce high-performance silica xerogels with huge potential in building envelopes and aerospace systems. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

17 pages, 3068 KiB  
Article
Alginate Microencapsulation as a Tool to Improve Biostimulant Activity Against Water Deficits
by David Jiménez-Arias, Sarai Morales-Sierra, Ana L. García-García, Antonio J. Herrera, Rayco Pérez Schmeller, Emma Suárez, Álvaro Santana-Mayor, Patrícia Silva, João Paulo Borges and Miguel Â. A. Pinheiro de Carvalho
Polymers 2025, 17(12), 1617; https://doi.org/10.3390/polym17121617 - 10 Jun 2025
Viewed by 694
Abstract
Climate change is reducing agricultural productivity through altered weather patterns and extreme events, potentially decreasing yields by 10–25%. Biostimulants like pyroglutamic acid can enhance plant tolerance to water stress, but their rapid degradation in the soil limits effectiveness. Encapsulation in alginate matrices promises [...] Read more.
Climate change is reducing agricultural productivity through altered weather patterns and extreme events, potentially decreasing yields by 10–25%. Biostimulants like pyroglutamic acid can enhance plant tolerance to water stress, but their rapid degradation in the soil limits effectiveness. Encapsulation in alginate matrices promises to be a good solution, protecting the compound and enabling controlled release. This study reports, for the first time, that encapsulated pyroglutamic acid markedly enhances drought tolerance in tomato and maize plants. The encapsulation strategy reduces effective concentration by an order of magnitude while significantly improving water use efficiency, photo-synthetic performance, and overall stress resilience. These findings demonstrate that alginate-based encapsulation substantially increases biostimulant uptake and efficacy, providing a novel and efficient strategy to mitigate water stress in crops, with important implications for climate-resilient agriculture. Two encapsulation methods for generating the alginate microcapsules are compared: ionic gelation with Nisco® system and the electrospray technique. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop