Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (172)

Search Parameters:
Keywords = contaminated polymeric materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 244
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

15 pages, 2927 KiB  
Article
Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
by Xiaoyu Du, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma and Boyu Du
Nanomaterials 2025, 15(15), 1157; https://doi.org/10.3390/nano15151157 - 26 Jul 2025
Viewed by 288
Abstract
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red [...] Read more.
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red dye removal capabilities remains a substantial challenge. In this study, a stable linear polymer network structure was constructed on the surface of melamine sponges via an in situ polymerization strategy based on the Schiff base reaction mechanism. Characterization analyses reveal that the modified sponge not only retained the original porous skeleton structure but also significantly enhanced the density of surface active sites. Experimental data demonstrate that the modified sponge exhibited excellent adsorption performance for Congo red dye, with the adsorption process conforming to the pseudo-second-order kinetic model and achieving a practical maximum adsorption capacity of 380.4 mg/g. Notably, the material also displayed favorable cyclic stability. This study provides an efficient adsorbent for Congo red dye-contaminated wastewater treatment through the development of a novel surface-functionalized sponge material while also offering new solutions for advancing the practical applications of melamine-based porous materials and environmental remediation technologies. Full article
Show Figures

Figure 1

16 pages, 2948 KiB  
Article
Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities
by Catherine Doyle, Diego Combita, Matthew J. Dunlop and Marya Ahmed
Polymers 2025, 17(15), 2007; https://doi.org/10.3390/polym17152007 - 22 Jul 2025
Viewed by 345
Abstract
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, [...] Read more.
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, self-healing, and super hydrophilic materials. This study combines the hydrophilic and antifouling properties of vitamin B5 analogous methacrylamide (B5AMA)-based polymers with stimuli-responsive anthocyanin-dye-loaded cellulose nanocrystals (CNCs) to develop antifouling materials with colour changing capabilities upon bacterial contamination. Poly(B5AMA)-grafted CNCs were prepared through surface-initiated photoiniferter reversible addition fragmentation chain transfer (SP-RAFT) polymerization and characterized through proton nuclear magnetic resonance (1H-NMR), transmission electron microscopy (SEM/TEM), and X-ray photon spectroscopy (XPS) to confirm the formation of surface-grafted polymer chains. The bare CNCs and poly(B5AMA)-grafted CNCs were loaded with anthocyanin dye and evaluated for pH-dependent colour changing capabilities. Interestingly, anthocyanin-loaded CNCs demonstrated vibrant colour changes in both solution and dried film form upon bacterial contamination; however, limited colour changing capabilities of the composites, specifically in dried film form, were attributed to the enhanced dispersibility and antifouling capabilities of the polymer-coated CNCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

8 pages, 2222 KiB  
Proceeding Paper
Advanced 3D Polymeric Sponges Offer Promising Solutions for Addressing Environmental Challenges in Qatar’s Marine Ecosystems
by Mohamed Helally, Mostafa H. Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 4; https://doi.org/10.3390/materproc2025022004 - 18 Jul 2025
Viewed by 209
Abstract
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene [...] Read more.
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene and chitosan-based three-dimensional (3D) polymeric sponges. These materials have demonstrated potential due to their high porosity and surface area, which can be enhanced through surface treatment to improve hydrophobicity and oleophilicity. This study introduces a new technique dependent on the optimization of the graphene oxide (GO) concentration within the composite sponge to achieve a superior oil uptake capacity (51.4 g oil/g sponge at 3% GO), and the detailed characterization of the material’s performance in separating heavy oil-water emulsions. Our study seeks to answer key questions regarding the performance of these modified sponges and their scalability for industrial applications. This research directly aligns with Qatar’s environmental goals and develops sustainable oil-water separation technologies. It addresses the pressing challenges of oil spills, ultimately contributing to improved marine ecosystem protection and efficient resource recovery. Full article
Show Figures

Figure 1

24 pages, 7709 KiB  
Article
Quaternized Polysulfones as Matrix for the Development of Broad-Spectrum Antimicrobial Coatings for Medical Devices
by Oana Dumbrava, Irina Rosca, Daniela Ailincai and Luminita Marin
Polymers 2025, 17(13), 1869; https://doi.org/10.3390/polym17131869 - 3 Jul 2025
Viewed by 493
Abstract
The development and application of antimicrobial coatings has become increasingly important in both medical and industrial settings due to the rising threat of microbial contamination and antibiotic resistance. This paper focuses on the formulation, characterization, and investigation of coatings based on quaternized polysulfone, [...] Read more.
The development and application of antimicrobial coatings has become increasingly important in both medical and industrial settings due to the rising threat of microbial contamination and antibiotic resistance. This paper focuses on the formulation, characterization, and investigation of coatings based on quaternized polysulfone, which are designed to encapsulate two broad-spectrum antimicrobial drugs with complementary activity, amphotericin B (AmB) and norfloxacin (NFX), with the primary aim of inhibiting pathogen colonization on surgical instruments. Structural characterization using FTIR, 1H-NMR, and UV-Vis spectroscopy, along with supramolecular analysis via X-ray diffraction and polarized optical microscopy (POM), revealed strong physical interactions between the drugs and the quaternized polysulfone matrix. Scanning electron microscopy (SEM) confirmed a uniform distribution of the antimicrobial agents within the polymeric matrix. Surface wettability, assessed through water contact angle measurements, indicated moderate hydrophilicity (70–90°). The coatings also exhibited notable antioxidant activity, showing a 12-fold increase in DPPH radical inhibition compared to the control. Furthermore, all formulations demonstrated strong antimicrobial efficacy against three reference strains frequently associated with hospital-acquired infections, S. aureus, E. coli, and C. albicans, with inhibition zones ranging from 32 to 39.67 mm for bacterial strains and 13.86 to 20.86 mm for C. albicans. These data points indicate that these materials may be useful as antimicrobial coatings. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Graphical abstract

29 pages, 1499 KiB  
Review
Frontiers in Innovative Materials and Technologies for Oil–Water Separation
by Jikun Jiang, Shunda Wan, Cheng Wen, Li Tang and Ning Xu
Polymers 2025, 17(12), 1635; https://doi.org/10.3390/polym17121635 - 12 Jun 2025
Viewed by 2037
Abstract
Oil-contaminated wastewater represents a major source of industrial pollution, posing significant risks to both the environment and human health. Traditional oil–water separation methods, including gravity separation, centrifugal separation, and air flotation, are limited by their processing efficiency and scope of applicability. In recent [...] Read more.
Oil-contaminated wastewater represents a major source of industrial pollution, posing significant risks to both the environment and human health. Traditional oil–water separation methods, including gravity separation, centrifugal separation, and air flotation, are limited by their processing efficiency and scope of applicability. In recent years, innovative oil–water separation technologies have gained considerable attention, particularly those utilizing adsorption, filtration, and membrane separation, owing to their high efficiency and environmental sustainability. Separation materials derived from biomass substrates—such as cellulose, chitosan, and lignin—along with metal-based membranes and polymeric filters, have shown remarkable performance. This is especially true for superhydrophobic/superoleophilic and stimuli-responsive materials, which excel in separating complex emulsified oil systems. This paper provides a comprehensive overview of the strengths and limitations of current separation technologies and explores the potential applications of multifunctional materials in treating oil-contaminated wastewater, offering both theoretical insights and practical guidance for advancing green, efficient oil–water separation solutions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 6112 KiB  
Article
Development and Validation of Molecularly Imprinted Polymers with Bio-Based Monomers to Adsorb Carbamazepine from Wastewater
by Elettra Savigni, Elisa Girometti, Laura Sisti, Frank Benstoem, Davide Pinelli and Dario Frascari
Molecules 2025, 30(12), 2533; https://doi.org/10.3390/molecules30122533 - 10 Jun 2025
Viewed by 465
Abstract
The removal of pharmaceutical contaminants like the anticonvulsant carbamazepine (CBZ) from water sources is a growing environmental challenge. This study explores the development of molecularly imprinted polymers (MIPs) tailored for CBZ adsorption using a bulk polymerization approach. Initially, this study focused on selecting [...] Read more.
The removal of pharmaceutical contaminants like the anticonvulsant carbamazepine (CBZ) from water sources is a growing environmental challenge. This study explores the development of molecularly imprinted polymers (MIPs) tailored for CBZ adsorption using a bulk polymerization approach. Initially, this study focused on selecting the optimal cross-linker, comparing a trifunctional (trimethylolpropane triacrylate, TRIM) and a bifunctional cross-linker (ethylene glycol dimethacrylate, EGDMA) in combination with two common monomers (2-vinylpyridine and methacrylic acid). TRIM-based MIPs demonstrated superior adsorption efficiency and stability due to their higher cross-linking density. To improve sustainability, six bio-based monomers were investigated; of these, eugenol (EUG) and coumaric acid (COU) showed the best CBZ affinity due to π-π interactions and hydrogen bonding. Adsorption tests conducted in pharmaceutical-spiked real wastewater demonstrated that MIPs exhibit a high selectivity for CBZ over other pharmaceuticals like the anti-inflammatory drugs diclofenac (DCF) and ibuprofen (IBU), even at high concentrations. Reaction conditions were further optimized by adjusting the reaction time and the ratio between reagents to enhance selectivity and adsorption performance. These results highlight the potential of bio-based MIPs as efficient and selective materials for the removal of pharmaceutical pollutants from wastewater. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Adsorbents for Pollutant Removal)
Show Figures

Graphical abstract

13 pages, 7111 KiB  
Article
Utilization of High Iron Content Sludge and Ash as Partial Substitutes for Portland Cement
by Hui Gu, Zhenyong Zhang, Wen Li, Zhaobo Meng and Jianxiong Sheng
Materials 2025, 18(10), 2309; https://doi.org/10.3390/ma18102309 - 15 May 2025
Viewed by 412
Abstract
Sludge is a semi-solid waste generated during the process of wastewater treatment. Due to the addition of polymerized ferric chloride in the flocculation process, the sludge produced by the sewage treatment plant in Liaocheng Jiaming Industrial Park contains a high content of iron [...] Read more.
Sludge is a semi-solid waste generated during the process of wastewater treatment. Due to the addition of polymerized ferric chloride in the flocculation process, the sludge produced by the sewage treatment plant in Liaocheng Jiaming Industrial Park contains a high content of iron oxide. In this paper, chemical analysis and particle size analysis of local sludge and sludge ash were conducted. In order to assess the potential of substituting cement as cementitious material with different dosages of sludge or sludge ash with high iron oxide content, setting time, compressive strength, microscopic analysis using microscopic testing (XRD, TG/DTG, SEM) and a toxicity characteristic leaching procedure (TCLP) were analyzed. These procedures determined the physical properties, compressive strength, hydration products, microstructure, and heavy metal contaminants of cement slurries replaced by local sludge or sludge ash with different dosages of high iron oxide content. The results show that less than 5% of local sludge or sludge ash can be incorporated into cement slurry as an alternative cementitious material for solid waste disposal. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

22 pages, 1837 KiB  
Review
Analytical Methods for In-Depth Assessment of Recycled Plastics: A Review
by Joseph Patrick Dzoh Fonkou, Giovanni Beggio, Gabriella Salviulo and Maria Cristina Lavagnolo
Environments 2025, 12(5), 154; https://doi.org/10.3390/environments12050154 - 7 May 2025
Cited by 1 | Viewed by 1532
Abstract
Assessing the detailed characteristics of recycled plastics is essential for evaluating their quality and suitability for high-value applications compared to virgin polymers. This review provides a comprehensive overview of advanced analytical techniques used for characterizing the chemical, structural, morphological, and physical properties of [...] Read more.
Assessing the detailed characteristics of recycled plastics is essential for evaluating their quality and suitability for high-value applications compared to virgin polymers. This review provides a comprehensive overview of advanced analytical techniques used for characterizing the chemical, structural, morphological, and physical properties of recycled polymeric materials. The techniques examined include Fourier Transform Infrared Spectroscopy (FTIR), Micro-Raman spectroscopy, X-ray Fluorescence (XRF), Inductively Coupled Plasma (ICP) techniques, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). These methods are critically assessed for their effectiveness in detecting polymer degradation, surface and structural alterations, and the presence of contaminants—factors frequently introduced during mechanical recycling processes. For each technique, this review outlines the working principles, sample preparation protocols, and illustrative case studies while discussing their advantages, limitations, and operational challenges. By synthesizing current knowledge and methodological advancements, this review aims to support the development of robust and standardized quality assessment protocols. Enhancing the reliability and precision of recycled plastic characterization will improve their acceptance as high-quality secondary raw materials, thereby facilitating their upcycling and contributing to the broader goals of the circular economy. Full article
Show Figures

Figure 1

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Cited by 2 | Viewed by 718
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

22 pages, 3662 KiB  
Review
Resorcinarene-Based Polymer Conjugated for Pharmaceutical Applications
by Carlos Matiz, Karen Castellanos and Mauricio Maldonado
Processes 2025, 13(5), 1325; https://doi.org/10.3390/pr13051325 - 26 Apr 2025
Viewed by 601
Abstract
Resorcinarenes are polyhydroxylated platforms consisting of 4, 5, 8, or more units of resorcinol. The numbers refer to the number of resorcinol units, with 4-unit platforms being the most stable. Investigation into their use in pharmaceutical applications has increased due to high versatility [...] Read more.
Resorcinarenes are polyhydroxylated platforms consisting of 4, 5, 8, or more units of resorcinol. The numbers refer to the number of resorcinol units, with 4-unit platforms being the most stable. Investigation into their use in pharmaceutical applications has increased due to high versatility and functionalization. They exhibit significant flexibility due to their methylene bridges and to the interactions of hydrogen bridges and van der Waals forces. These platforms can be used in an increasing number of applications, which include the functionalization of nanoparticles and relevant materials, the synthesis of catalysts, the removal of contaminants, and analytical separations in analytes such as benzodiazepines and norepinephrine. For this last application, resorcinarenes are functionalized with specific important functional groups. Polymers were developed in the 20th century for the development of materials with significant improvements in thermal and mechanical properties. They are cross-linked polymeric structures, mainly made up of monomers such as styrene, divinylbenzene acrylate, vinylpyridine, and vinyl acetate, among others. They often have a homogeneous, porous structure, but this structure can vary significantly depending on the type of solvent used. Therefore, they have been applied in the functionalization of the polyhydroxylated platforms. In this review, the structure, properties, and synthesis of resorcinarenes, as well as the use of polymeric matrices, are analyzed, emphasizing the functionalization of organic polymers using resorcinarenes. Furthermore, the respective applications in controlled drug delivery, pharmaceutical transport, and therapeutics, which are diverse and show promising growth, will be explored. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

6 pages, 205 KiB  
Editorial
Recent Advances in Molecularly Imprinted Polymers and Emerging Polymeric Technologies for Hazardous Compounds
by Ana-Mihaela Gavrilă, Mariana Ioniță and Gabriela Toader
Polymers 2025, 17(8), 1092; https://doi.org/10.3390/polym17081092 - 18 Apr 2025
Viewed by 550
Abstract
Addressing hazards from dangerous pollutants requires specialized techniques and risk-control strategies, including detection, neutralization and disposal of contaminants. Smart polymers, designed for specific contaminants, provide powerful solutions for hazardous compound challenges. Their remarkable performance capabilities and potential applications present exciting opportunities for further [...] Read more.
Addressing hazards from dangerous pollutants requires specialized techniques and risk-control strategies, including detection, neutralization and disposal of contaminants. Smart polymers, designed for specific contaminants, provide powerful solutions for hazardous compound challenges. Their remarkable performance capabilities and potential applications present exciting opportunities for further exploration and development in this field. This editorial aims to provide a comprehensive overview of smart materials with unique features and emerging polymeric technologies that are being developed for isolation, screening, removal, and decontamination of hazardous compounds (e.g., heavy metals, pharmaceutically active contaminants, hormones, endocrine-disrupting chemicals, pathogens, and energetic materials). It highlights recent advancements in synthesis methods, characterization, and the applications of molecularly imprinted polymers (MIPs), along with alternative smart polymeric platforms including hydrogels, ion-imprinted composites, screen-printed electrodes, nanoparticles, and nanofibers. MIPs offer highly selective recognition properties, reusability, long-term stability, and low production costs. Various MIP types, including particles and films, are used in applications like sensing/diagnostic devices for hazardous chemicals, biochemicals, pharmaceuticals, and environmental safety. Full article
20 pages, 6249 KiB  
Article
Preparation of Cellulose-Grafted Acrylic Acid Stabilized Jujube Branch Biochar-Supported Nano Zero-Valent Iron Composite for Cr(VI) Removal from Water
by Xiaoxue Wang, Zhe Tan, Shuang Shi, Shanyuan Zhang, Shuang Yang, Xingyu Zhang, Pingqiang Gao and Yan Zhang
Nanomaterials 2025, 15(6), 441; https://doi.org/10.3390/nano15060441 - 14 Mar 2025
Viewed by 575
Abstract
A stabilized biochar (BC)–nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, [...] Read more.
A stabilized biochar (BC)–nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, BET, TEM, and XPS. According to the batch experiments, under optimized conditions (Cr(VI) concentration of 50 mg/L, pH = 3, and dosage of 2 g/L), the BC-nZVI@Cell-g-PAA composite achieved maximum Cr(VI) removal efficiency (99.69%) within 120 min. Notably, BC, as a carrier, achieved a high dispersion of nZVI through its porous structure, effectively preventing particle agglomeration and improving reaction activity. Simultaneously, the functional groups on the surface of Cell-g-PAA provided excellent protection for nZVI, significantly suppressing its oxidative deactivation. Furthermore, the composite effectively reduced Cr(VI) to insoluble trivalent chromium(Cr(III)) species and stabilized them on its surface through immobilization. The synergistic effects of physical adsorption and chemical reduction greatly contributed to the removal efficiency of Cr(VI). Remarkably, the composite exhibited excellent reusability with a removal efficiency of 62.4% after five cycles, demonstrating its potential as a promising material for remediating Cr(VI)-contaminated water. In conclusion, the BC-nZVI@Cell-g-PAA composite not only demonstrated remarkable efficiency in Cr(VI) removal but also showcased its potential for practical applications in environmental remediation, as evidenced by its sustained performance over multiple reuse cycles. Moreover, Cr(VI), a toxic and carcinogenic substance, poses significant risks to aquatic ecosystems and human health, underscoring the importance of developing effective methods for its removal from contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

25 pages, 1532 KiB  
Review
Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control
by Fabrizia Sepe, Anna Valentino, Loredana Marcolongo, Orsolina Petillo, Anna Calarco, Sabrina Margarucci, Gianfranco Peluso and Raffaele Conte
Gels 2025, 11(3), 198; https://doi.org/10.3390/gels11030198 - 12 Mar 2025
Cited by 3 | Viewed by 1326
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell [...] Read more.
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy. Full article
Show Figures

Figure 1

24 pages, 1362 KiB  
Review
Pressure-Driven Membrane Processes for Removing Microplastics
by Priscila Edinger Pinto, Alexandre Giacobbo, Gabriel Maciel de Almeida, Marco Antônio Siqueira Rodrigues and Andréa Moura Bernardes
Membranes 2025, 15(3), 81; https://doi.org/10.3390/membranes15030081 - 5 Mar 2025
Cited by 2 | Viewed by 2502
Abstract
The intense consumption of polymeric materials combined with poor waste management results in the dissemination of their fragments in the environment as micro- and nanoplastics. They are easily dispersed in stormwater, wastewater, and landfill leachate and carried towards rivers, lakes, and oceans, causing [...] Read more.
The intense consumption of polymeric materials combined with poor waste management results in the dissemination of their fragments in the environment as micro- and nanoplastics. They are easily dispersed in stormwater, wastewater, and landfill leachate and carried towards rivers, lakes, and oceans, causing their contamination. In aqueous matrices, the use of membrane separation processes has stood out for the efficiency of removing these particulate contaminants, achieving removals of up to 100%. For this review article, we researched the removal of microplastics and nanoplastics by membrane processes whose driving force is the pressure gradient. The analysis focuses on the challenges found in the operation of microfiltration, ultrafiltration, nanofiltration, and reverse-osmosis systems, as well as on the innovations applied to the membranes, with comparisons of treatment systems and the peculiarities of each system and each aqueous matrix. We also point out weaknesses and opportunities for future studies so that these techniques, known to be capable of removing many other contaminants of emerging concern, can subsequently be widely applied in the removal of micro- and nanoplastics. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

Back to TopTop