Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,268)

Search Parameters:
Keywords = contact sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 78
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

16 pages, 2107 KiB  
Article
Determination of Spatiotemporal Gait Parameters Using a Smartphone’s IMU in the Pocket: Threshold-Based and Deep Learning Approaches
by Seunghee Lee, Changeon Park, Eunho Ha, Jiseon Hong, Sung Hoon Kim and Youngho Kim
Sensors 2025, 25(14), 4395; https://doi.org/10.3390/s25144395 - 14 Jul 2025
Viewed by 197
Abstract
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm [...] Read more.
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm enables estimation of spatiotemporal gait parameters such as cadence, stride length, loading response (LR), pre-swing (PSw), single limb support (SLS), double limb support (DLS), and swing phase and symmetry. Gait data were collected from 20 healthy individuals and 13 hemiparetic stroke patients. To reduce sensitivity to sensor orientation and suppress noise, sum vector magnitude (SVM) features were extracted and filtered using a second-order Butterworth low-pass filter at 3 Hz. A deep learning model was further compressed using knowledge distillation, reducing model size by 96% while preserving accuracy. The proposed method achieved error rates in event detection below 2% of the gait cycle for healthy gait and a maximum of 4.4% for patient gait in event detection, with corresponding parameter estimation errors also within 4%. These results demonstrated the feasibility of accurate and real-time gait monitoring using a smartphone. In addition, statistical analysis of gait parameters such as symmetry and DLS revealed significant differences between the normal and patient groups. While this study is not intended to provide or guide rehabilitation treatment, it offers a practical means to regularly monitor patients’ gait status and observe gait recovery trends over time. Full article
(This article belongs to the Special Issue Wearable Devices for Physical Activity and Healthcare Monitoring)
Show Figures

Figure 1

29 pages, 7197 KiB  
Review
Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing
by Jinyue Tian, Jiaxun Zhang, Yujie Zhang, Jing Liu, Yun Hu, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Nanomaterials 2025, 15(14), 1080; https://doi.org/10.3390/nano15141080 - 11 Jul 2025
Viewed by 317
Abstract
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high [...] Read more.
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high sensitivity, mechanical flexibility, lightweight structure, and biocompatibility, enabling their integration into wearable electronics and biomedical interfaces. This review presents a comprehensive overview of recent progress in electrospun nanofiber-based TENGs, covering their working principles, operating modes, and material composition. Both pure polymer and composite nanofibers are discussed, along with various electrospinning techniques that enable control over morphology and performance at the nanoscale. We explore their practical implementations in both contact-type and non-contact-type sensing, such as human–machine interaction, physiological signal monitoring, gesture recognition, and voice detection. These applications demonstrate the potential of TENGs to enable intelligent, low-power, and real-time sensing systems. Furthermore, this paper points out critical challenges and future directions, including durability under long-term operation, scalable and cost-effective fabrication, and seamless integration with wireless communication and artificial intelligence technologies. With ongoing advancements in nanomaterials, fabrication techniques, and system-level integration, electrospun nanofiber-based TENGs are expected to play a pivotal role in shaping the next generation of self-powered, intelligent sensing platforms across diverse fields such as healthcare, environmental monitoring, robotics, and smart wearable systems. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

18 pages, 15953 KiB  
Review
Development of Objective Measurements of Scratching as a Proxy of Atopic Dermatitis—A Review
by Cheuk-Yan Au, Neha Manazir, Huzhaorui Kang and Ali Asgar Saleem Bhagat
Sensors 2025, 25(14), 4316; https://doi.org/10.3390/s25144316 - 10 Jul 2025
Viewed by 258
Abstract
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and [...] Read more.
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and sleep disturbances. This review explores current technological approaches for detecting and monitoring scratching and itching in AD patients, categorising them into contact-based and non-contact-based methods. Contact-based methods primarily involve wearable sensors, such as accelerometers, electromyography (EMG), and piezoelectric sensors, which track limb movements and muscle activity associated with scratching. Non-contact methods include video-based motion tracking, thermal imaging, and acoustic analysis, commonly employed in sleep clinics and controlled environments to assess nocturnal scratching. Furthermore, emerging artificial intelligence (AI)-driven approaches leveraging machine learning for automated scratch detection are discussed. The advantages, limitations, and validation challenges of these technologies, including accuracy, user comfort, data privacy, and real-world applicability, are critically analysed. Finally, we outline future research directions, emphasizing the integration of multimodal monitoring, real-time data analysis, and patient-centric wearable solutions to improve disease management. This review serves as a comprehensive resource for clinicians, researchers, and technology developers seeking to advance objective itch and scratch monitoring in AD patients. Full article
Show Figures

Figure 1

30 pages, 5051 KiB  
Article
Design and Validation of an Active Headrest System with Integrated Sensing in Rear-End Crash Scenarios
by Alexandru Ionut Radu, Bogdan Adrian Tolea, Horia Beles, Florin Bogdan Scurt and Adrian Nicolaie Tusinean
Sensors 2025, 25(14), 4291; https://doi.org/10.3390/s25144291 - 9 Jul 2025
Viewed by 192
Abstract
Rear-end collisions represent a major concern in automotive safety, particularly due to the risk of whiplash injuries among vehicle occupants. The accurate simulation of occupant kinematics during such impacts is critical for the development of advanced safety systems. This paper presents an enhanced [...] Read more.
Rear-end collisions represent a major concern in automotive safety, particularly due to the risk of whiplash injuries among vehicle occupants. The accurate simulation of occupant kinematics during such impacts is critical for the development of advanced safety systems. This paper presents an enhanced multibody simulation model specifically designed for rear-end crash scenarios, incorporating integrated active headrest mechanisms and sensor-based activation logic. The model combines detailed representations of vehicle structures, suspension systems, restraint systems, and occupant biomechanics, allowing for the precise prediction of crash dynamics and occupant responses. The system was developed using Simscape Multibody, with CAD-derived components interconnected through physical joints and validated using controlled experimental crash tests. Special attention was given to modelling contact forces, suspension behaviour, and actuator response times for the active headrest system. The model achieved a root mean square error (RMSE) of 4.19 m/s2 and a mean absolute percentage error (MAPE) of 0.71% when comparing head acceleration in frontal collision tests, confirming its high accuracy. Validation results demonstrate that the model accurately reproduces occupant kinematics and head acceleration profiles, confirming its reliability and effectiveness as a predictive tool. This research highlights the critical role of integrated sensor-actuator systems in improving occupant safety and provides a flexible platform for future studies on intelligent vehicle safety technologies. Full article
(This article belongs to the Special Issue Intelligent Sensors for Smart and Autonomous Vehicles)
Show Figures

Figure 1

17 pages, 980 KiB  
Article
Non-Contact Current Measurement Method Based on Field-Source Inversion for DC Rectangular Busbars
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Yufeng Wu, Jie Li, Zhao Zhang, Xiaohu Liu and Shisong Li
Energies 2025, 18(14), 3606; https://doi.org/10.3390/en18143606 - 8 Jul 2025
Viewed by 162
Abstract
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints [...] Read more.
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints make the deployment of conventional sensors challenging, highlighting the urgent need for miniaturized, non-contact current measurement technologies to meet the integration requirements of smart distribution systems. This paper proposes a field-source inversion-based contactless DC measurement method for rectangular busbars. The mathematical model of the magnetic field near the surface of the DC rectangular busbar is first established, incorporating the busbar eccentricity, rotation, and geomagnetic interference into the model framework. Subsequently, a magnetic field–current inversion model is constructed, and the DC measurement of the rectangular busbar is achieved by performing an inverse calculation. The effectiveness of the proposed method is validated by both simulation studies and physical experiments. Full article
(This article belongs to the Special Issue Electrical Equipment State Measurement and Intelligent Calculation)
Show Figures

Figure 1

12 pages, 1443 KiB  
Article
The Influence of School Backpack Load on Dynamic Gait Parameters in 7-Year-Old Boys and Girls
by Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński and Lechosław B. Dworak
Sensors 2025, 25(13), 4219; https://doi.org/10.3390/s25134219 - 6 Jul 2025
Viewed by 384
Abstract
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate [...] Read more.
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children’s backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 726 KiB  
Article
Comparative Analysis of Pressure Platform and Insole Devices for Plantar Pressure Assessment
by Catarina M. Amaro, Maria F. Paulino, Sara Valvez, Luis Roseiro, Maria António Castro and Ana M. Amaro
Appl. Sci. 2025, 15(13), 7575; https://doi.org/10.3390/app15137575 - 6 Jul 2025
Viewed by 327
Abstract
Foot plantar pressure refers to the pressure or force that the foot generates in contact with the ground, varying across different regions of the foot. This parameter is essential in static and dynamic analyses to access accurate diagnoses, study the human body biomechanics, [...] Read more.
Foot plantar pressure refers to the pressure or force that the foot generates in contact with the ground, varying across different regions of the foot. This parameter is essential in static and dynamic analyses to access accurate diagnoses, study the human body biomechanics, create functional footwear designs, aid in rehabilitation and physiotherapy, and prevent injuries in athletes during sports practice. This study presents an experimental comparison between two different plantar pressure measurement devices, Pedar® (sensorized insoles) and Physiosensing® (pressure platform). The devices were selected based on their capacity to measure contact area and peak pressure points. Results showed that Physiosensing® provided a more uniform measurement of the contact area, proving its efficiency for weight distribution and stability analysis applications, particularly in posture assessment and balance studies. The Pedar® system showed higher capacity in peak pressure point detection. Therefore, the insole system is more suitable for applications requiring precise high-pressure zone localization. Comparative analysis highlights the strengths and limitations of each device and offers insights regarding its optimal usage in clinical, sports, and research settings. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 4065 KiB  
Article
Using the Spark Plug as a Sensor for Analyzing the State of the Combustion System
by Matej Kučera, Miroslav Gutten, Daniel Korenčiak and Jozef Kúdelčík
Sensors 2025, 25(13), 4198; https://doi.org/10.3390/s25134198 - 5 Jul 2025
Viewed by 251
Abstract
This article presents a method that uses a spark plug as a sensor to monitor an internal combustion engine. In addition, the voltage sensors measured the high voltage at the spark plugs using a non-contact method. Monitoring can now be performed in a [...] Read more.
This article presents a method that uses a spark plug as a sensor to monitor an internal combustion engine. In addition, the voltage sensors measured the high voltage at the spark plugs using a non-contact method. Monitoring can now be performed in a simple way in real time, along with data processing. This method can be effectively used for the monitoring of all cylinders in an internal combustion engine as well as supplementing other measurement methods to optimize engine maintenance and enable correct diagnostic decisions to be made. Experimental analysis focused on the effect of the spark plug gap on the arc duration, flashover voltage, and high-voltage waveforms. It was found that with an increasing gap, the arc duration is shortened, and the breakdown voltage increases linearly, indicating wear of the spark gap. With increasing temperature, the breakdown voltage value decreased. Non-contact measurements at different frequencies showed a relationship between the magnitude of the electric field and the spark plug gap. Full article
Show Figures

Figure 1

14 pages, 3394 KiB  
Article
Raman Gas Sensor for Hydrogen Detection via Non-Dispersive and Dispersive Approaches
by Fabio Melison, Lorenzo Cocola and Luca Poletto
Sensors 2025, 25(13), 4190; https://doi.org/10.3390/s25134190 - 5 Jul 2025
Viewed by 268
Abstract
The current solicitude in hydrogen production and its utilization as a greenhouse-neutral energy vector pushed deep interest in developing new and reliable systems intended for its detection. Most sensors available on the market offer reliable performance; however, their limitations, such as restricted dynamic [...] Read more.
The current solicitude in hydrogen production and its utilization as a greenhouse-neutral energy vector pushed deep interest in developing new and reliable systems intended for its detection. Most sensors available on the market offer reliable performance; however, their limitations, such as restricted dynamic range, hysteresis, reliance on consumables, transducer–sample interaction, and sample dispersion into the environment, are not easily overcome. In this paper, a non-dispersive Raman effect-based system is presented and compared with its dispersive alternative. This approach intrinsically guarantees no sample dispersion or preparation, as no direct contact is required between the sample and the transducer. Moreover, the technique does not suffer from hysteresis and recovering time issues. The results, evaluated in terms of sample pressures and camera integration time, demonstrate promising signal-to-noise ratio (SNR) and limit of detection (LOD) values, indicating strong potential for direct field application. Full article
Show Figures

Figure 1

20 pages, 6286 KiB  
Article
Near-Field Microwave Sensing for Chip-Level Tamper Detection
by Maryam Saadat Safa and Shahin Tajik
Sensors 2025, 25(13), 4188; https://doi.org/10.3390/s25134188 - 5 Jul 2025
Viewed by 270
Abstract
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical [...] Read more.
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical limitations in terms of scalability, accuracy, or applicability. This work introduces a non-invasive, contactless tamper detection method employing a complementary split-ring resonator (CSRR). CSRRs, which are typically deployed for non-destructive material characterization, can be placed on the surface of the chip’s package to detect subtle variations in the impedance of the chip’s power delivery network (PDN) caused by tampering. The changes in the PDN’s impedance profile perturb the local electric near field and consequently affect the sensor’s impedance. These changes manifest as measurable variations in the sensor’s scattering parameters. By monitoring these variations, our approach enables robust and cost-effective physical integrity verification requiring neither physical contact with the chips or printed circuit board (PCB) nor activation of the underlying malicious circuits. To validate our claims, we demonstrate the detection of various chip-level tamper events on an FPGA manufactured with 28 nm technology. Full article
(This article belongs to the Special Issue Sensors in Hardware Security)
Show Figures

Figure 1

13 pages, 2884 KiB  
Article
Entropy-Based Human Activity Measure Using FMCW Radar
by Hak-Hoon Lee and Hyun-Chool Shin
Entropy 2025, 27(7), 720; https://doi.org/10.3390/e27070720 - 3 Jul 2025
Viewed by 225
Abstract
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods [...] Read more.
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods that rely solely on distance variations, the proposed method incorporates both distance and velocity information, enhancing measurement accuracy. The algorithm quantifies activity levels using Shannon entropy to reflect the spatial–temporal variation in range signatures. The proposed method was validated through experiments comparing estimated activity levels with motion sensor-based ground truth data. The results demonstrate that the proposed approach significantly improves accuracy, achieving a lower Root Mean Square Error (RMSE) and higher correlation with ground truth values than conventional methods. This study highlights the potential of FMCW radar for non-contact, unrestricted activity monitoring and suggests future research directions using multi-channel radar systems for enhanced motion analysis. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

22 pages, 6123 KiB  
Article
Real-Time Proprioceptive Sensing Enhanced Switching Model Predictive Control for Quadruped Robot Under Uncertain Environment
by Sanket Lokhande, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen and Hao Xu
Electronics 2025, 14(13), 2681; https://doi.org/10.3390/electronics14132681 - 2 Jul 2025
Viewed by 353
Abstract
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors [...] Read more.
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors like cameras or LiDAR, which are susceptible to occlusions, poor lighting, and environmental interference. To address these limitations, this paper proposes a novel sensor-enhanced hierarchical switching model predictive control (MPC) framework that integrates proprioceptive sensing with a bi-level hybrid dynamic model. Unlike existing methods that either rely on handcrafted controllers or deep learning-based control pipelines, our approach introduces three core innovations: (1) a situation-aware, bi-level hybrid dynamic modeling strategy that hierarchically combines single-body rigid dynamics with distributed multi-body dynamics for modeling agility and scalability; (2) a three-layer hybrid control framework, including a terrain-aware switching MPC layer, a distributed torque controller, and a fast PD control loop for enhanced robustness during contact transitions; and (3) a multi-IMU-based proprioceptive feedback mechanism for terrain classification and adaptive gait control under sensor-occluded or GPS-denied environments. Together, these components form a unified and computationally efficient control scheme that addresses practical challenges such as limited onboard processing, unstructured terrain, and environmental uncertainty. A series of experimental results demonstrate that the proposed method outperforms existing vision- and learning-based controllers in terms of stability, adaptability, and control efficiency during high-speed locomotion over irregular terrain. Full article
(This article belongs to the Special Issue Smart Robotics and Autonomous Systems)
Show Figures

Figure 1

8 pages, 10733 KiB  
Article
Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides
by Yifan Zhao, Shihan Ding, Shuo Wang, Yiming Hu, Hongliang Liu, Zhen Shang and Yongjian Gu
Sensors 2025, 25(13), 4123; https://doi.org/10.3390/s25134123 - 2 Jul 2025
Viewed by 304
Abstract
Color centers in solids, such as nitrogen-vacancy (NV) centers in diamonds, have gained significant attention in recent years due to their exceptional properties for quantum sensing. In this work, we demonstrate an NV center-based temperature sensor integrated into an optical waveguide to enable [...] Read more.
Color centers in solids, such as nitrogen-vacancy (NV) centers in diamonds, have gained significant attention in recent years due to their exceptional properties for quantum sensing. In this work, we demonstrate an NV center-based temperature sensor integrated into an optical waveguide to enable internal temperature sensing. A surface-cladding optical waveguide was fabricated in a diamond wafer containing NV centers using femtosecond laser direct writing. By analyzing the resonant peaks of optically detected magnetic resonance (ODMR) spectra, we established a precise correlation between temperature changes induced by the pump laser and shifts in the ODMR peak positions. This approach enabled temperature monitoring with a sensitivity of 1.1 mK/Hz. These results highlight the significant potential of color centers in solids for non-contact, micro-scale temperature monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 1666 KiB  
Article
Line-Structured Light-Based Three-Dimensional Reconstruction Measurement System with an Improved Scanning-Direction Calibration Method
by Jia Chen, Shantao Ping, Xiaowei Liang, Xulong Ma, Shiyan Pang and Ying He
Remote Sens. 2025, 17(13), 2236; https://doi.org/10.3390/rs17132236 - 29 Jun 2025
Viewed by 250
Abstract
Three-dimensional (3D) reconstruction measurement technology utilizing line-structured light offers non-contact operation, making it widely applicable in industrial production. An effective scanning-direction calibration method in a line-structured light-based 3D measurement system can not only enhance the system accuracy but also mitigate the production inefficiencies [...] Read more.
Three-dimensional (3D) reconstruction measurement technology utilizing line-structured light offers non-contact operation, making it widely applicable in industrial production. An effective scanning-direction calibration method in a line-structured light-based 3D measurement system can not only enhance the system accuracy but also mitigate the production inefficiencies caused by measurement errors. Consequently, developing a high-efficiency and high-precision scanning-direction calibration technique is a pivotal challenge for advancing structured light-based 3D measurement systems. In this study, we propose an improved method to calibrate the sensor’s scanning direction that iteratively optimizes control points via plane transformation while leveraging the rotational invariance of the rotation matrix during translation. By minimizing the reprojection error, an optimized rotation matrix is identified, and the Levenberg–Marquardt (LM) algorithm is subsequently employed to iteratively refine the displacement vector, enabling precise estimation of the scanning direction. Usually, in line-structured light-based 3D reconstruction measurement, a 5 mm standard gauge block is first reconstructed, and then, the reconstruction error of the standard gauge block is used to compare the accuracy of the scanning-direction calibration (other quantities remain unchanged). Hence, we conducted a comparison experiment using the constructed line-structured light-based 3D reconstruction measurement system, and the experimental results demonstrated that the proposed method reduces the reconstruction errors by 29% compared to the classical independent estimation method and by 5% compared to the current joint estimation method. Furthermore, our method eliminates strict distance constraints, thereby enhancing its adaptability in practical applications. Full article
Show Figures

Graphical abstract

Back to TopTop