Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = contact density dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 136
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

20 pages, 3625 KiB  
Article
Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions
by Willian Aperador and Giovany Orozco-Hernández
Coatings 2025, 15(8), 862; https://doi.org/10.3390/coatings15080862 - 22 Jul 2025
Viewed by 313
Abstract
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess [...] Read more.
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess its influence on the resulting coating properties. In response to the growing demand for biomedical implants with improved durability and biocompatibility, the objective was to develop coatings that enhance both wear and corrosion resistance in physiological environments. The effects of silver incorporation and oxygen concentration on the structural, tribological, and electrochemical behavior of the coatings were systematically analyzed. X-ray diffraction (XRD) was employed to identify crystalline phases, while atomic force microscopy (AFM) was used to characterize surface topography prior to wear testing. Wear resistance was evaluated using a ball-on-plane tribometer under simulated prosthetic motion, applying a 5 N load with a bone pin as the counter body. Corrosion resistance was assessed through electrochemical impedance spectroscopy (EIS) in a physiological solution. Additionally, tribocorrosive performance was investigated by coupling tribological and electrochemical tests in Ringer’s lactate solution, simulating dynamic in vivo contact conditions. The results demonstrate that Ag doping, combined with increased oxygen content in the sputtering atmosphere, significantly improves both wear and corrosion resistance. Notably, the ZrO2-Ag coating deposited with 50% O2 exhibited the lowest wear volume (0.086 mm3) and a minimum coefficient of friction (0.0043) under a 5 N load. This same coating also displayed superior electrochemical performance, with the highest charge transfer resistance (38.83 kΩ·cm2) and the lowest corrosion current density (3.32 × 10−8 A/cm2). These findings confirm the high structural integrity and outstanding tribocorrosive behavior of the coating, highlighting its potential for application in biomedical implant technology. Full article
Show Figures

Figure 1

36 pages, 6346 KiB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 157
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 9414 KiB  
Article
Influence of High-Speed Flow on Aerodynamic Lift of Pantograph at 400 km/h
by Zhao Xu, Hongwei Zhang, Wen Wang and Guobin Lin
Infrastructures 2025, 10(7), 188; https://doi.org/10.3390/infrastructures10070188 - 17 Jul 2025
Viewed by 256
Abstract
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at [...] Read more.
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at 300, 350, and 400 km/h showed lift fluctuation amplitude increases with speed, peaking near 50 N at 400 km/h. Power spectral density (PSD) energy, dominated by low frequencies, peaked around 10 dB/Hz in the low-frequency band, highlighting exacerbated lift instability. Component analysis revealed the smallest lift-to-drag ratio and most significant fluctuations at the head, primarily due to boundary-layer separation and vortex shedding from its non-streamlined design. Turbulence energy analysis identified the head and base as main turbulence sources; however, base vibrations are absorbed by the vehicle body, while the head causes pantograph–catenary vibrations due to direct contact. These findings confirm that aerodynamic instability at the head is the main cause of contact force fluctuations. Optimizing head design is necessary to suppress fluctuations, ensuring safe operation at 400 km/h and above. Results provide a theoretical foundation for aerodynamic optimization and improved dynamic performance of high-speed pantographs. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

20 pages, 15499 KiB  
Article
Molecular Dynamics Unveiled: Temperature–Pressure–Coal Rank Triaxial Coupling Mechanisms Governing Wettability in Gas–Water–Coal Systems
by Lixin Zhang, Songhang Zhang, Shuheng Tang, Zhaodong Xi, Jianxin Li, Qian Zhang, Ke Zhang and Wenguang Tian
Processes 2025, 13(7), 2209; https://doi.org/10.3390/pr13072209 - 10 Jul 2025
Viewed by 268
Abstract
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared [...] Read more.
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared with other geological formations, coals are characterized by a highly developed microporous structure, making the CO2 sequestration mechanism in coal seams closely linked to the microscale interactions among gas, water, and coal matrixes. However, the intrinsic mechanisms remain poorly understood. In this study, molecular dynamics simulations are employed to investigate the wettability behaviors of CO2, CH4, and water on different coal matrix surfaces under varying temperature and pressure conditions, for coal macromolecules representative of four coal ranks. The study reveals the evolution of water wettability in response to CO2 and CH4 injection, identifies wettability differences among coal ranks, and analyzes the microscopic mechanisms governing wettability. The results show the following: (1) The contact angle increases with gas pressure, and the variation in wettability is more pronounced in CO2 environments than in CH4. As pressure increases, the number of hydrogen bonds decreases, while the peak gas density of CH4 and CO2 increases, leading to larger contact angles. (2) Simulations under different temperatures for the four coal ranks indicate that temperature has minimal influence on low-rank Hegu coal, whereas for higher-rank coals, gas adsorption on the coal surface increases, resulting in reduced wettability. Interfacial tension analysis further suggests that higher temperatures reduce water surface tension, cause dispersion of water molecules, and consequently improve wettability. Understanding the wettability variations among different coal ranks under variable pressure–temperature conditions provides a fundamental model and theoretical basis for investigating deep coal seam gas–water interactions and CO2 geological sequestration mechanisms. These findings have significant implications for the advancement of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

19 pages, 1851 KiB  
Article
Industrial-Scale Wastewater Nano-Aeration and -Oxygenation and Dissolved Air Flotation: Electric Field Nanobubble and Machine Learning Approaches to Enhanced Nano-Aeration and Flotation
by Niall J. English
Environments 2025, 12(7), 228; https://doi.org/10.3390/environments12070228 - 5 Jul 2025
Viewed by 631
Abstract
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence [...] Read more.
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence times of the order of just 10–15 s). Both ambient air and O2 cylinders were used as gas sources. In both cases, it was found that the levels of dissolved oxygen (DO) were maintained far higher for much longer than those of conventionally aerated water in the AS lane—and at DO levels in the optimal operational WWTP oxygenation zone of about 2.5–3.5 mg/L. In the AS lanes themselves, there were also excellent conversions to nitrate from nitrite, owing to reactive oxygen species (ROS) and some improvements in BOD and E. coli profiles. Nanobubble-enhanced Dissolved Air Flotation (DAF) was found to be enhanced at shorter times for batch processes: settlement dynamics were slowed slightly initially upon contact with virgin NBs, although the overall time was not particularly affected, owing to faster settlement once the recruitment of micro-particulates took place around the NBs—actually making density-filtering ultimately more facile. The development of machine learning (ML) models predictive of NB populations was carried out in laboratory work with deionised water, in addition to WWTP influent water for a second class of field-oriented ML models based on a more narrow set of more easily and quickly measured data variables in the field, and correlations were found for a more facile prediction of important parameters, such as the NB generation rate and the particular dependent variable that is required to be correlated with the efficient and effective functioning of the nanobubble generator (NBG) for the task at hand—e.g., boosting dissolved oxygen (DO) or shifting Oxidative Reductive Potential (ORP). Full article
Show Figures

Figure 1

25 pages, 10381 KiB  
Article
Molecular Insights into the Interaction of Orexin 1 Receptor Antagonists: A Comprehensive Study Using Classical and Quantum Computational Methods
by Caio Sena, Pedro Albuquerque, Jonas Oliveira and Davi Vieira
Molecules 2025, 30(13), 2790; https://doi.org/10.3390/molecules30132790 - 28 Jun 2025
Viewed by 811
Abstract
Sleep disorders, such as insomnia and narcolepsy, significantly impact quality of life. They are often associated with long-term health consequences, including cardiovascular disease, immune dysfunction, and cognitive impairment. While traditional treatments, such as sedatives and hypnotics, can be effective, they are limited by [...] Read more.
Sleep disorders, such as insomnia and narcolepsy, significantly impact quality of life. They are often associated with long-term health consequences, including cardiovascular disease, immune dysfunction, and cognitive impairment. While traditional treatments, such as sedatives and hypnotics, can be effective, they are limited by issues of tolerance and dependence. The orexinergic system, particularly the orexin 1 receptor (OXR1), has emerged as a promising therapeutic target due to its central role in regulating sleep–wake cycles. In this study, we investigate the molecular interactions of three OXR1 antagonists—daridorexant, lemborexant, and suvorexant—using an integrated computational approach combining molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and the molecular fractionation with conjugate caps (MFCC) methodology. The MFCC approach enabled the precise quantification of interaction energies between ligands and key receptor residues, providing detailed insights into the contributions of specific amino acids to binding stability. Our results reveal that residues such as GLU204, HIS216, and ASN318 play critical roles in stabilizing ligand–receptor interactions, with a marked decrease in binding energy magnitude as dielectric constants increase. Daridorexant exhibited the strongest interaction energy, driven by hydrogen bonds and hydrophobic contacts, while lemborexant and suvorexant showed distinct stabilization patterns mediated by hydrophobic interactions. These findings provide a robust molecular basis for the rational design of next-generation OXR1 antagonists with improved efficacy and safety profiles. By elucidating drug–receptor interactions at the atomic level, this research underscores the impact of integrated computational approaches in drug discovery. It supports the development of precise targeted therapies for sleep disorders. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

18 pages, 1803 KiB  
Article
Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs)
by Thiago Caputti, Luan Pereira de Oliveira, Camila Rodrigues, Paulo Cremonez, Wheeler Foshee, Alvin M. Simmons and Andre Luiz Biscaia Ribeiro da Silva
Drones 2025, 9(7), 461; https://doi.org/10.3390/drones9070461 - 27 Jun 2025
Viewed by 576
Abstract
The use of unmanned aerial application systems (UAASs) for precision pesticide applications has increased alongside the demand for sustainable agricultural practices. However, limited studies have standardized the necessary flight parameters ensuring the optimal use of UAASs in specialty crops (e.g., fruits and vegetables). [...] Read more.
The use of unmanned aerial application systems (UAASs) for precision pesticide applications has increased alongside the demand for sustainable agricultural practices. However, limited studies have standardized the necessary flight parameters ensuring the optimal use of UAASs in specialty crops (e.g., fruits and vegetables). Thus, the objective of this study was to evaluate the effects of flight speed, droplet size, and application volume on the spray deposition of UAASs, creating guidelines to facilitate their use in specialty crops. Field experiments were conducted in a three-factorial experimental design of three flight speeds (i.e., 4, 7, and 10 m/s), three droplet sizes (i.e., 150, 250, and 350 µm), and two application volumes (i.e., 18.75 and 28.10 L/ha). Spraying droplet parameters (i.e., coverage, droplet density, and droplet spectra, and application uniformity), measured through the effective swath width, were recorded to assess spray deposition efficiency. Flight speed, droplet size, and application volume significantly influenced spray deposition. Treatments with slower flight speeds (4 m/s) and higher application volumes (28.10 L/ha) increased spray coverage, while droplet density was maximized at 4 m/s with the finest droplet size (150 µm), which are desirable characteristics for pesticide applications in specialty crops. Ultimately, the effective swath width and spray uniformity were maximized at a flight speed of 7.93 m/s with a droplet size of 350 µm. These results help optimize UAAS-based pesticide application, increasing efficiency and reducing environmental impact; however, understanding pesticide translocation dynamics (i.e., systemic or contact) on plants is key for growers to determine flight parameters. Full article
Show Figures

Figure 1

16 pages, 678 KiB  
Article
High Methoxyl Pectin–Tomato Paste Edible Films Formed Under Different Drying Temperatures
by Georgia Palavouzi, Charalampos Oikonomidis, Marianthi Zioga, Christos Pappas and Vasiliki Evageliou
Polysaccharides 2025, 6(3), 55; https://doi.org/10.3390/polysaccharides6030055 - 20 Jun 2025
Viewed by 494
Abstract
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed [...] Read more.
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed after drying at 40, 50, and 60 °C was investigated. Finally, films formed at different drying conditions (namely F40, F50, and F60) sharing the same antioxidant activity (44.28–45.53%) were studied in terms of their surface pH; solubility; folding endurance; antimicrobial, dynamic mechanical, and barrier properties; contact angle; and FT-IR. Their thickness, weight, opacity, strength, stiffness, and antioxidant activity (AA) [a*] increased with increasing tomato paste content, whereas [L*] decreased. The moisture content was statistically affected by both the presence of glycerol and the drying temperature. AA decreased as drying temperature increased. Overall, the thickness varied from 45 to 182.31 μm, weight from 0.27 to 1.24 g, moisture content from 20.74 to 56.66%, stress from 189 to 959 kPa, Young’s modulus from 86 to 382 kPa, and AA from 16.9 to 53%. In the last step, F60 was less hydrophilic, had a greater density, and better barrier properties, whereas F50 was stiffer and the least strong. Our findings provide information regarding the selection of an optimum drying temperature for pectin-based films with antioxidant properties. Full article
Show Figures

Figure 1

12 pages, 2114 KiB  
Article
Interface-Sensitive Charge Storage and Activation Behavior of Mn(1,3,5-Benzenetricarboxylic Acid (BTC))-Derived Mn3O4/Carbon Cathodes for Aqueous Zinc-Ion Batteries
by Jieun Lee and Byoungnam Park
Molecules 2025, 30(12), 2566; https://doi.org/10.3390/molecules30122566 - 12 Jun 2025
Viewed by 354
Abstract
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic [...] Read more.
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic acid) cathodes followed by thermal annealing to synthesize MOF-derived Mn3O4 offers a synergistic approach that addresses several key challenges in aqueous ZIB systems. The Mn3O4 cathode prepared via AC–EPD from Mn(BTC) exhibited a remarkable specific capacity of up to 430 mAh/g at a current density of 200 mA/g. Interestingly, the capacity continued to increase progressively with cycling, suggesting dynamic structural or interfacial changes that improved Zn2+ transport and utilization over time. Such capacity enhancement behavior during prolonged cycling at elevated rates has not been observed in previously reported Mn3O4-based ZIB systems. Kinetic analysis further revealed that the charge storage process is predominantly governed by diffusion-controlled mechanisms. This behavior can be attributed to the intrinsic characteristics of the Mn3O4 phase formed from the MOF precursor, where the bulk redox reactions involving Zn2+ insertion require ion migration into the electrode interior. Even though the electrode was processed as an ultrathin film with enhanced electrolyte contact, the charge storage remains limited by solid-state ion diffusion rather than fast surface-driven reactions, reinforcing the diffusion-dominant nature of the system. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

16 pages, 820 KiB  
Article
Stability Analysis of SEIAR Model with Age Structure Under Media Effect
by Hongliang Gao, Fanli Zhang and Jiemei Li
Axioms 2025, 14(6), 412; https://doi.org/10.3390/axioms14060412 - 28 May 2025
Viewed by 266
Abstract
In this paper, we establish an age-structured SEIAR epidemic model that incorporates media effects and employ the exponential function approach to demonstrate the crucial role of media influence in disease prevention and control. Notably, our model accounts for the possibility of recessive infected [...] Read more.
In this paper, we establish an age-structured SEIAR epidemic model that incorporates media effects and employ the exponential function approach to demonstrate the crucial role of media influence in disease prevention and control. Notably, our model accounts for the possibility of recessive infected individuals becoming dominant through contact with infectious individuals. Theoretical analysis yields the explicit expression for the basic reproduction number R0, which serves as a critical threshold for disease dynamics. Through comprehensive threshold analysis, we investigate the existence and stability of both disease-free and endemic equilibrium states. By applying characteristic equation analysis and the method of characteristics, we establish the following: (1) when R0<1, the disease-free equilibrium is globally asymptotically stable; (2) when R0>1, a unique endemic equilibrium exists and maintains local asymptotic stability under specific conditions. This study shows that strengthening media promotion, raising awareness, and reducing the density of recessive infected individuals can effectively control the further spread of a disease. To validate our theoretical results, we present numerical simulations that quantitatively assess the impact of varying media reporting intensities on epidemic containment measures. These simulations provide practical insights for public health intervention strategies. Full article
Show Figures

Figure 1

13 pages, 6378 KiB  
Article
Epidemic Dynamics and Intervention Measures in Campus Settings Based on Multilayer Temporal Networks
by Xianyang Zhang and Ming Tang
Entropy 2025, 27(5), 543; https://doi.org/10.3390/e27050543 - 21 May 2025
Viewed by 486
Abstract
This study simulates the spread of epidemics on university campuses using a multilayer temporal network model combined with the SEIR (Susceptible–Exposed–Infectious–Recovered) transmission model. The proposed approach explicitly captures the time-varying contact patterns across four distinct layers (Rest, Dining, Activity, and Academic) to reflect [...] Read more.
This study simulates the spread of epidemics on university campuses using a multilayer temporal network model combined with the SEIR (Susceptible–Exposed–Infectious–Recovered) transmission model. The proposed approach explicitly captures the time-varying contact patterns across four distinct layers (Rest, Dining, Activity, and Academic) to reflect realistic student mobility driven by class schedules and spatial constraints. It evaluates the impact of various intervention measures on epidemic spreading, including subnetwork closure and zoned management. Our analysis reveals that the Academic and Activity layers emerge as high-risk transmission hubs due to their dynamic, high-density contact structures. Intervention measures exhibit layer-dependent efficacy: zoned management is highly effective in high-contact subnetworks, its impact on low-contact subnetworks remains limited. Consequently, intervention measures must be dynamically adjusted based on the characteristics of each subnetwork and the epidemic situations, with higher participation rates enhancing the effectiveness of these measures. This work advances methodological innovation in temporal network epidemiology by bridging structural dynamics with SEIR processes, offering actionable insights for campus-level pandemic preparedness. The findings underscore the necessity of layer-aware policies to optimize resource allocation in complex, time-dependent contact systems. Full article
(This article belongs to the Special Issue Information Spreading Dynamics in Complex Networks)
Show Figures

Figure 1

17 pages, 25383 KiB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 828
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

26 pages, 15212 KiB  
Article
Dynamic Response and Reliability Assessment of Power Transmission Towers Under Wind-Blown Sand Loads
by Jun Lu, Jin Li, Xiaoqian Ma, Weiguang Tian, Linfeng Zhang and Peng Zhang
Energies 2025, 18(9), 2316; https://doi.org/10.3390/en18092316 - 30 Apr 2025
Viewed by 280
Abstract
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. [...] Read more.
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. These gaps are bridged in the present study through the development of a refined impact force model grounded in Hertz contact theory, which captures transient collision mechanics and energy dissipation during sand–structure interactions. Validated against field data from northwest China, the model enables a comprehensive parametric analysis of wind speed (5–60 m/s), sand density (1000–3500 kg/m3), elastic modulus (5–100 GPa), and Poisson’s ratio (0.1–0.4). Our results show that peak impact forces increase by 66.7% (with sand density) and 148% (with elastic modulus), with higher wind speeds amplifying forces nonlinearly, reaching 8 N at 30 m/s. An increased elastic modulus shifts energy dissipation toward elastic rebound, reducing the penetration depth by 28%. The dynamic analysis of a 123.6 m transmission tower under wind–sand coupling loads demonstrated significant structural response amplifications; displacements and axial forces increased by 28% and 41%, respectively, compared to pure wind conditions. These findings reveal the importance of integrating coupling load effects into design codes, particularly for towers in sandstorm-prone regions. The proposed framework provides a robust basis for enhancing structural resilience, offering practical insights for revising safety standards and optimizing maintenance strategies in arid environments. Full article
Show Figures

Figure 1

20 pages, 1621 KiB  
Review
Entropy Production in Epithelial Monolayers Due to Collective Cell Migration
by Ivana Pajic-Lijakovic and Milan Milivojevic
Entropy 2025, 27(5), 483; https://doi.org/10.3390/e27050483 - 29 Apr 2025
Viewed by 483
Abstract
The intricate multi-scale phenomenon of entropy generation, resulting from the inhomogeneous and anisotropic rearrangement of cells during their collective migration, is examined across three distinct regimes: (i) convective, (ii) conductive (diffusion), and (iii) sub-diffusion. The collective movement of epithelial monolayers on substrate matrices [...] Read more.
The intricate multi-scale phenomenon of entropy generation, resulting from the inhomogeneous and anisotropic rearrangement of cells during their collective migration, is examined across three distinct regimes: (i) convective, (ii) conductive (diffusion), and (iii) sub-diffusion. The collective movement of epithelial monolayers on substrate matrices induces the accumulation of mechanical stress within the cells, which subsequently influences cell packing density, velocity, and alignment. Variations in these physical parameters affect cell-cell interactions, which play a crucial role in the storage and dissipation of energy within multicellular systems. The internal dynamics of entropy generation, as a consequence of energy dissipation, are characterized in each regime using viscoelastic constitutive models and the surface properties at the cell-matrix biointerface. The focus of this theoretical review is to clarify how cells can modulate their rate of energy dissipation by altering cell-cell and cell-matrix adhesion interactions, undergoing changes in shape, and re-establishing polarity due to the contact inhibition of locomotion. We approach these questions by discussing the physical aspects of these complex phenomena. Full article
Show Figures

Figure 1

Back to TopTop