Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Meteorological Conditions
2.2. Experimental Design
2.3. Treatment Application and Data Collection
2.3.1. Spraying Droplet Parameters
2.3.2. Uniformity of Application
2.4. Statistical Analysis
3. Results
3.1. Spray Coverage, Droplet Density, and Droplet Spectra on KWP Cards
3.1.1. Spray Coverage
3.1.2. Spray Droplet Density
3.1.3. Spray Droplet Spectra
3.2. Spray Effective Swath
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhananjayan, V.; Jayakumar, S.; Ravichandran, B. Conventional Methods of Pesticide Application in Agricultural Field and Fate of the Pesticides in the Environment and Human Health. In Controlled Release of Pesticides for Sustainable Agriculture; K.R., R., Thomas, S., Volova, T.K.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–39. ISBN 978-3-030-23396-9. [Google Scholar]
- Gibbs, J.L.; Peters, T.M.; Heck, L.P. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Trans. ASABE 2021, 64, 819–828. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, J.; Zhou, J.; Cheng, J.; Bian, X.; Shen, J.; Wang, P. Key Technology Progress of Plant-Protection UAVs Applied to Mountain Orchards: A Review. Agronomy 2022, 12, 2828. [Google Scholar] [CrossRef]
- Cavalaris, C.; Karamoutis, C.; Markinos, A. Efficacy of Cotton Harvest Aids Applications with Unmanned Aerial Vehicles (UAV) and Ground-Based Field Sprayers—A Case Study Comparison. Smart Agric. Technol. 2022, 2, 100047. [Google Scholar] [CrossRef]
- Moraes, T.R.; Cornago Junior, V.M.; de Araújo, V.C.R.; Esperancini, M.S.T.; Antuniassi, U.R. Cost of Aerial and Ground Sprayings and Technological Replacement Point: A Case Study in the Region of Mineiros, GO, Brazil. Eng. Agríc. 2021, 41, 359–367. [Google Scholar] [CrossRef]
- Abi Saab, O.J.G.; Couto, D.T.A.; Higashibara, L.R. Perdas de Produtividade Causadas Pelo Rodado de Pulverizadores; FEPAF: Botucatu, SP, Brazil, 2007. [Google Scholar]
- González, C.; Bongiovanni, R.; Picone, L. Efecto de la Pisada del Equipo Pulverizador Sobre la Estructura y Rendimiento del Cultivo de Soja en Aplicaciones de Fin de Ciclo; Universidad Nacional del Litoral: Rosario, Argentina, 2023. [Google Scholar]
- Hanna, S.O.; Conley, S.P.; Shaner, G.E.; Santini, J.B. Fungicide Application Timing and Row Spacing Effect on Soybean Canopy Penetration and Grain Yield. Agron. J. 2008, 100, 1488–1492. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Struttmann, T.; Zawada, J. 2019 NAAA Aerial Application Industry Survey: Operators; National Agricultural Aviation Association (NAAA): Alexandria, VA, USA, 2019; p. 150. [Google Scholar]
- Thomson, S.J.; Womac, A.R.; Mulrooney, J.E. Reducing Pesticide Drift by Considering Propeller Rotation Effects From Aerial Application Near Buffer Zones. Sustain. Agric. Res. 2013, 2, 41. [Google Scholar] [CrossRef]
- Byers, C.; Virk, S.; Rains, G.; Li, S. Spray Deposition and Uniformity Assessment of Unmanned Aerial Application Systems (UAAS) at Varying Operational Parameters. Front. Agron. 2024, 6, 1418623. [Google Scholar] [CrossRef]
- Martin, D.E.; Woldt, W.E.; Latheef, M.A. Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems. Drones 2019, 3, 83. [Google Scholar] [CrossRef]
- He, X. Rapid Development of Unmanned Aerial Vehicles (UAV) for Plant Protection and Application Technology in China. Outlooks Pest Manag. 2018, 29, 162–167. [Google Scholar] [CrossRef]
- Xing, W.; Cui, Y.; Wang, X.; Shen, J. Optimization of Operational Parameters of Plant Protection UAV. Sensors 2024, 24, 5132. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, R.; Huddleston, E. II.7 Factors Affecting Application and Chemical Deposition. In IPM Handbook; Pest Management Research: Sidney, MT, USA, 2004. [Google Scholar]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field Evaluation of an Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Spray Volume on Deposition and the Control of Pests and Disease in Wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- OECD. Report on the State of the Knowledge—Literature Review on Unmanned Aerial Spray Systems in Agriculture; Series on Pesticides and Biocides; OECD: Paris, France, 2021; ISBN 978-92-64-98314-4. [Google Scholar]
- Felipe Oliveira Ribeiro, L.; Leandro da Vitória, E.; Pereira Bastos, H.; Vieira Zanelato, J.; de Assis Martins Júnior, J.; de Vicente Ferraz, A.; Gomes dos Santos, T.; de Assis Ferreira, F.; Victor Oliveira Ribeiro, J.; de Assis Silva, S.; et al. Droplet Distribution and Mitigation of Occupational Exposure Risk in Eucalyptus Sprout Eradication Using a Remotely Piloted Aircraft. Front. Plant Sci. 2025, 15, 1504608. [Google Scholar] [CrossRef]
- Wang, P.; He, M.; Li, M.; Yang, Y.; Li, H.; Xi, W.; Zhang, T. Optimization of Application Parameters for UAV-Based Liquid Pollination in Pear Orchards: A Yield and Cost Perspective. Agronomy 2024, 14, 2033. [Google Scholar] [CrossRef]
- American Society of Agricultural and Biological Engineers. ASAE S386.2 FEB1988 (R2018) Calibration and Distribution Pattern Testing of Agricultural Aerial Application Equipment; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; p. 9. [Google Scholar]
- DJI. AGRAS T40/T20P User Manual v1.4; DJI: Shenzhen, China, 2023; p. 89. [Google Scholar]
- American Society of Agricultural and Biological Engineers. ASABE S572.1 Droplet Size Classification; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017; p. 8. [Google Scholar]
- United States Department of Agriculture (USDA). Specialty Crops Program; United States Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Corteva Agriscience. Intrepid® 2F Insecticide—EPA Reg. No. 62719-442; United States Environmental Protection Agency: Washington, DC, USA, 2023. [Google Scholar]
- United Phosphorus, Inc. (UPL). Assail® 30SG Insecticide—EPA Reg. No. 8033-36-70506; United States Environmental Protection Agency: Washington, DC, USA, 2023. [Google Scholar]
- Bayer CropScience LP. Luna Sensation® Fungicide—EPA Reg. No. 264-1066; United States Environmental Protection Agency: Washington, DC, USA, 2023. [Google Scholar]
- Syngenta Crop Protection, LLC. Quadris® Flowable Fungicide—EPA Reg. No. 100-1098; United States Environmental Protection Agency: Washington, DC, USA, 2023. [Google Scholar]
- United States Environmental Protection Agency (EPA). Pesticide Regulation (PR) Notice 93-02: Waiver of Crop Field Trial Data for Aerial Applications; U.S. Environmental Protection Agency, Office of Pesticide Programs: Washington, DC, USA, 1993. [Google Scholar]
- Martin, D.E.; Latheef, M.A. Payload Capacities of Remotely Piloted Aerial Application Systems Affect Spray Pattern and Effective Swath. Drones 2022, 6, 205. [Google Scholar] [CrossRef]
- Fritz, B.K.; Martin, D.E. Measurement and Analysis Methods for Determination of Effective Swath Width from Unmanned Aerial Vehicles. In Pesticide Formulation and Delivery Systems: 40th Volume, Formulation, Application, and Adjuvant Innovation; Elsik, C.M., Ed.; ASTM International: West Conshohocken, PA, USA, 2020; pp. 62–85. [Google Scholar]
- Houston, T. Optimization of Nozzle, Application Height, and Speed for UASS Pesticide Applications. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2022. [Google Scholar]
- Zhu, H.; Salyani, M.; Fox, R.D. A Portable Scanning System for Evaluation of Spray Deposit Distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Gill, M. AccuStain Software User Guide; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2020. [Google Scholar]
- Kannan, N.; Martin, D.; Srinivasan, R.; Zhang, W. Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift. Drones 2024, 8, 667. [Google Scholar] [CrossRef]
- Kannan, N.; Read, Q.; Zhang, W. An Algae-Based Polymer Material as a Pesticide Adjuvant for Mitigating off-Target Drift. Heliyon 2024, 10, e35510. [Google Scholar] [CrossRef]
- Lv, M.; Xiao, S.; Yu, T.; He, Y. Influence of UAV Flight Speed on Droplet Deposition Characteristics with the Application of Infrared Thermal Imaging. Int. J. Agric. Biol. Eng. 2019, 12, 10–17. [Google Scholar] [CrossRef]
- Lodwik, D.; Pietrzyk, J.; Malesa, W. Analysis of Volume Distribution and Evaluation of the Spraying Spectrum in Terms of Spraying Quality. Appl. Sci. 2020, 10, 2395. [Google Scholar] [CrossRef]
- Teske, M.E.; Wachspress, D.A.; Thistle, H.W. Prediction of Aerial Spray Release from UAVs. Trans. ASABE 2018, 61, 909–918. [Google Scholar] [CrossRef]
- Chen, P.; Douzals, J.P.; Lan, Y.; Cotteux, E.; Delpuech, X.; Pouxviel, G.; Zhan, Y. Characteristics of Unmanned Aerial Spraying Systems and Related Spray Drift: A Review. Front. Plant Sci. 2022, 13, 870956. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.F.O.; Vitória, E.L.D.; Soprani Júnior, G.G.; Chen, P.; Lan, Y. Impact of Operational Parameters on Droplet Distribution Using an Unmanned Aerial Vehicle in a Papaya Orchard. Agronomy 2023, 13, 1138. [Google Scholar] [CrossRef]
- Guo, S.; Li, J.; Yao, W.; Zhan, Y.; Li, Y.; Shi, Y. Distribution Characteristics on Droplet Deposition of Wind Field Vortex Formed by Multi-Rotor UAV. PLoS ONE 2019, 14, e0220024. [Google Scholar] [CrossRef]
- Bryant, J.E.; Yendol, W.G. Evaluation of the Influence of Droplet Size and Density of Bacillus Thuringiensis Against Gypsy Moth Larvae (Lepidoptera: Lymantriidae). J. Econ. Entomol. 1988, 81, 130–134. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Wang, C.; Teng, G. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Sensors 2022, 22, 7425. [Google Scholar] [CrossRef]
- Shan, C.; Wang, G.; Wang, H.; Xie, Y.; Wang, H.; Wang, S.; Chen, S.; Lan, Y. Effects of Droplet Size and Spray Volume Parameters on Droplet Deposition of Wheat Herbicide Application by Using UAV. Int. J. Agric. Biol. Eng. 2021, 14, 74–81. [Google Scholar] [CrossRef]
- Chaim, A.; Neto, J.C.; Gattaz, N.C. Programa de Análise de Deposição de Agrotóxicos; Brazilian Health Regulatory Agency: Brasília, Brazil, 2023. [Google Scholar]
- Ghafoor, A.; Khan, F.A.; Khorsandi, F.; Khan, M.A.; Nauman, H.M.; Farid, M.U. Development and Evaluation of a Prototype Self-Propelled Crop Sprayer for Agricultural Sustainability in Small Farms. Sustainability 2022, 14, 9204. [Google Scholar] [CrossRef]
- Khan, F.A.; Ghafoor, A.; Khan, M.A.; Umer Chattha, M.; Kouhanestani, F.K. Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach. Agriculture 2022, 12, 408. [Google Scholar] [CrossRef]
- Kjær, C.; Bruus, M.; Bossi, R.; Løfstrøm, P.; Andersen, H.V.; Nuyttens, D.; Larsen, S.E. Pesticide Drift Deposition in Hedgerows from Multiple Spray Swaths. J. Pestic. Sci. 2014, 39, 14–21. [Google Scholar] [CrossRef]
- Pereira, R.B.; de Moura, A.P.; Pinheiro, J.B. Tecnologia de Aplicação de Agrotóxicos Em Cultivo Protegido de Tomate e Pimentão; Embrapa Hortaliças: Brasília, Brazil, 2015. [Google Scholar]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Effect of Droplet Size Parameters on Droplet Deposition and Drift of Aerial Spraying by Using Plant Protection UAV. Agronomy 2020, 10, 195. [Google Scholar] [CrossRef]
- Yu, S.-H.; Kim, Y.-K.; Jun, H.-J.; Choi, I.S.; Woo, J.-K.; Kim, Y.-H.; Yun, Y.-T.; Choi, Y.; Alidoost, R.; Lee, J. Evaluation of Spray Characteristics of Pesticide Injection System in Agricultural Drones. J. Biosyst. Eng. 2020, 45, 272–280. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, X.Y.; Qin, W.C.; Cai, C.; Zhou, L.F. Optimization and Test for Structural Parameters of UAV Spraying Rotary Cup Atomizer. Int. J. Agric. Biol. Eng. 2017, 10, 78–86. [Google Scholar] [CrossRef]
- Jackiw, I.M.; Ashgriz, N. On Aerodynamic Droplet Breakup. J. Fluid Mech. 2021, 913, A33. [Google Scholar] [CrossRef]
- New, T.H.; Teo, Z.W.; Li, S.; Ong, Z.A.; Nagel, B. Flow Structures and Aerodynamic Behavior of a Small-Scale Joined-Wing Aerial Vehicle under Subsonic Conditions. Aerospace 2023, 10, 661. [Google Scholar] [CrossRef]
- Qing, T.; Ruirui, Z.; Liping, C.; Min, X.; Tongchuan, Y.; Bin, Z. Droplets Movement and Deposition of an Eight-Rotor Agricultural UAV in Downwash Flow Field. Int. J. Agric. Biol. Eng. 2017, 10, 47–56. [Google Scholar]
- Grift, T.E.; Walker, J.T.; Gardisser, D.R. Spread Pattern Analysis Tool (SPAT): II. Examples of Aircraft Pattern Analysis. Trans. ASAE 2000, 43, 1351–1362. [Google Scholar] [CrossRef]
- Carpenter, T.G.; Reichard, D.L.; Khan, A.S. Spray Deposition from a Row-Crop Airblast Sprayer. Trans. ASAE 1983, 26, 338–342. [Google Scholar] [CrossRef]
- Smith, D.B.; Oakley, D.; Williams, E.; Kirkpatrick, A. Broadcast Spray Deposits from Fan Nozzles. Appl. Eng. Agric. 2000, 16, 109–113. [Google Scholar] [CrossRef]
- Kim, C.J.; Yuan, X.; Kim, M.; Kyung, K.S.; Noh, H.H. Monitoring and Risk Analysis of Residual Pesticides Drifted by Unmanned Aerial Spraying. Sci. Rep. 2023, 13, 10834. [Google Scholar] [CrossRef]
- Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet Deposition and Control Effect of Insecticides Sprayed with an Unmanned Aerial Vehicle against Plant Hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Richardson, B.; Rolando, C.A.; Somchit, C.; Dunker, C.; Strand, T.M.; Kimberley, M.O. Swath Pattern Analysis from a Multi-Rotor Unmanned Aerial Vehicle Configured for Pesticide Application. Pest Manag. Sci. 2020, 76, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Shilin, W.; Jianli, S.; Xiongkui, H.; Le, S.; Xiaonan, W.; Changling, W.; Zhichong, W.; Yun, L. Performances Evaluation of Four Typical Unmanned Aerial Vehicles Used for Pesticide Application in China. Int. J. Agric. Biol. Eng. 2017, 10, 22–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Wang, K.; Li, X. Aerodynamic Characteristics of Different Airfoils under Varied Turbulence Intensities at Low Reynolds Numbers. Appl. Sci. 2020, 10, 1706. [Google Scholar] [CrossRef]
Meteorological Parameters | 19-April | 25-April |
---|---|---|
Wind Speed (m/s) | 0.98 ± 0.20 | 0.90 ± 0.28 |
Temperature (°C) | 25.2 ± 1.06 | 24.6 ± 1.95 |
Relative Humidity (%) | 61.9 ± 4.76 | 60.0 ± 6.89 |
Treatment | Flight Speed (m/s) | Droplet Size (µm) | Application Volume (L/ha) |
---|---|---|---|
1 | 4 | 150 | 18.75 |
2 | 4 | 150 | 28.10 |
3 | 4 | 250 | 18.75 |
4 | 4 | 250 | 28.10 |
5 | 4 | 350 | 18.75 |
6 | 4 | 350 | 28.10 |
7 | 7 | 150 | 18.75 |
8 | 7 | 150 | 28.10 |
9 | 7 | 250 | 18.75 |
10 | 7 | 250 | 28.10 |
11 | 7 | 350 | 18.75 |
12 | 7 | 350 | 28.10 |
13 | 10 | 150 | 18.75 |
14 | 10 | 150 | 28.10 |
15 | 10 | 250 | 18.75 |
16 | 10 | 250 | 28.10 |
17 | 10 | 350 | 18.75 |
18 | 10 | 350 | 28.10 |
Effects | Coverage (%) | Droplet Density (drops/cm2) | Dv0.1 (µm) | Dv0.5 (µm) | Dv0.9 (µm) | RSF | Effective Swath (m) |
---|---|---|---|---|---|---|---|
Flight Speed | ** | ** | ** | ns | ns | ** | ** |
Droplet Size | ns | ** | ** | ** | ** | ** | ns |
Application Volume | ** | ns | ** | ** | ** | ns | ns |
FS 1 × DS 2 | ns | ns | ns | ns | ** | ns | * |
FS × AV 3 | ** | ns | ** | ** | ** | ns | ns |
DS × AV | ns | ns | ns | ns | ns | ns | ns |
FS × DS × AV | ns | ns | ns | ns | ns | ns | ns |
Flight Speed (m/s) | Application Volume (L/ha) | |
---|---|---|
18.75 | 28.10 | |
Spray Coverage (%) | ||
4 | 5.54 ± 0.41 B † | 8.51 ± 0.52 A |
7 | 4.13 ± 0.32 B | 5.37 ± 0.27 A |
10 | 3.48 ± 0.22 A | 3.27 ± 0.22 A |
Regression ‡ | Y = 6.77 − 0.34x (p < 0.0001) Adj. R2 = 0.36 | Y = 11.83 − 0.87x (p < 0.0001) Adj. R2 = 0.75 |
Dv0.1 | ||||
---|---|---|---|---|
Flight Speed (m/s) | Application Volume (L/ha) | |||
18.75 | 28.10 | |||
4 | 174.58 ± 5.97 B † | 192.00 ± 5.61 A | ||
7 | 182.25 ± 7.95 B | 194.67 ± 6.97 A | ||
10 | 194.33 ± 8.27 A | 191.08 ± 6.65 A | ||
Regression ‡ | Y = 160.68 + 3.29x (p = 0.06) Adj. R2 = 0.09 | Y = 193.65 − 0.15x (p = 0.91) Adj. R2 = 0.0003 | ||
Droplet Size (µm) | Dv0.1 | |||
150 | 161.62 ± 2.20 | |||
250 | 189.71 ± 2.73 | |||
350 | 213.12 ± 2.58 | |||
Regression | Y = 123.77 + 0.25x (p < 0.0001) Adj. R2 = 0.75 | |||
Dv0.5 | ||||
Flight Speed (m/s) | Application Volume (L/ha) | |||
18.75 | 28.10 | |||
4 | 306.17 ± 9.25 B | 339.67 ± 9.98 A | ||
7 | 308.83 ± 11.48 B | 344.17 ± 11.37 A | ||
10 | 330.67 ± 12.95 A | 323.17 ± 11.54 A | ||
Regression | Y = 286.63 + 4.08x (p = 0.1327) Adj. R2 = 0.06 | Y = 354.91 − 2.75x (p = 0.2950) Adj. R2 = 0.03 | ||
Droplet Size (µm) | Dv0.5 | |||
150 | 282.17 ± 3.84 | |||
250 | 325.96 ± 4.01 | |||
350 | 368.21 ± 3.71 | |||
Regression | Y = 217.89 + 0.43x (p < 0.0001) Adj. R2 = 0.78 | |||
Dv0.9 | ||||
Flight Speed (m/s) | Application Volume (L/ha) | |||
18.75 | 28.10 | |||
4 | 463.92 ± 9.76 B | 507.58 ± 9.86 A | ||
7 | 464.92 ± 14.67 B | 522.58 ± 17.28 A | ||
10 | 479.92 ± 16.69 A | 482.92 ± 18.05 A | ||
Regression | Y = 450.91 + 2.66x (p = 0.41) Adj. R2 = 0.01 | Y = 533.13 − 4.11x (p = 0.27) Adj. R2 = 0.03 | ||
Dv0.9 | ||||
Flight Speed (m/s) | Droplet Size (µm) | |||
150 | 250 | 350 | Regression | |
4 | 449.12 ± 10.30 | 485.13 ± 8.31 | 523.00 ± 9.63 | Y = 393.40 + 0.36x (p < 0.0001) Adj. R2 = 0.59 |
7 | 429.88 ± 12.75 | 502.75 ± 14.46 | 548.62 ± 13.12 | Y = 345.31 + 0.59x (p < 0.0001) Adj. R2 = 0.64 |
10 | 413.75 ± 5.77 | 484.87 ± 9.21 | 545.62 ± 7.94 | Y = 316.57 + 0.65x (p < 0.0001) Adj. R2 = 0.87 |
Regression | Y = 472.18 − 5.89x (p = 0.01) Adj. R2 = 0.22 | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caputti, T.; de Oliveira, L.P.; Rodrigues, C.; Cremonez, P.; Foshee, W.; Simmons, A.M.; da Silva, A.L.B.R. Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs). Drones 2025, 9, 461. https://doi.org/10.3390/drones9070461
Caputti T, de Oliveira LP, Rodrigues C, Cremonez P, Foshee W, Simmons AM, da Silva ALBR. Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs). Drones. 2025; 9(7):461. https://doi.org/10.3390/drones9070461
Chicago/Turabian StyleCaputti, Thiago, Luan Pereira de Oliveira, Camila Rodrigues, Paulo Cremonez, Wheeler Foshee, Alvin M. Simmons, and Andre Luiz Biscaia Ribeiro da Silva. 2025. "Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs)" Drones 9, no. 7: 461. https://doi.org/10.3390/drones9070461
APA StyleCaputti, T., de Oliveira, L. P., Rodrigues, C., Cremonez, P., Foshee, W., Simmons, A. M., & da Silva, A. L. B. R. (2025). Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs). Drones, 9(7), 461. https://doi.org/10.3390/drones9070461