Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,933)

Search Parameters:
Keywords = constitutive mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6886 KB  
Article
Degradation Law and Constitutive Model of Dynamic Mechanical Properties of Sisal Fiber-Reinforced Coral Aggregate Concrete Under Marine Semi-Submerged Environment
by Yi Zhong, Xinxiao Liang, Yefeng Tang, Lili Zhang, Zikang Guo, Sheng He, Yuejing Luo and Peng Yu
Buildings 2026, 16(3), 520; https://doi.org/10.3390/buildings16030520 - 27 Jan 2026
Abstract
The durability of coral concrete in marine tidal zones is a critical concern due to the coupling effects of impact loads and aggressive ion erosion. This study investigates the dynamic mechanical degradation of Sisal Fiber-Reinforced Coral Aggregate Concrete (SFCAC) under a semi-submerged environment, [...] Read more.
The durability of coral concrete in marine tidal zones is a critical concern due to the coupling effects of impact loads and aggressive ion erosion. This study investigates the dynamic mechanical degradation of Sisal Fiber-Reinforced Coral Aggregate Concrete (SFCAC) under a semi-submerged environment, focusing on the interplay between fiber bridging and corrosion evolution. Split Hopkinson Pressure Bar (SHPB) tests were conducted on specimens with varying fiber dosages (0–6 kg/m3) and erosion durations (0–120 days). Quantitative results indicate that while the addition of sisal fibers had a limited effect on increasing the peak impact-compression strength, it significantly modified the failure characteristics. The dynamic compressive strength exhibited a non-linear trend, peaking at 30 days due to pore filling. However, after 120 days, the strength of the Plain Coral Concrete (SF0) deteriorated to 70.84 MPa, while the 6 kg/m3 fiber-reinforced group (SF6) maintained a higher residual strength of 77.63 MPa. Crucially, although the 6 kg/m3 specimens still suffered crushing failure under high strain rates, the fibers effectively mitigated catastrophic shattering by holding the fragments together, exhibiting superior post-peak energy absorption compared to the pulverized plain matrix. Microscopic analysis (SEM) revealed that although the hydrophilic nature of sisal fibers accelerated ion transport (leading to Friedel’s salt and gypsum formation), their physical bridging effect counteracted the corrosion-induced brittleness. Collectively, these findings provide a theoretical basis for the durability design of SFCAC structures in severe marine splash zones and offer new insights into utilizing sustainable, locally sourced materials for island engineering. Full article
Show Figures

Figure 1

35 pages, 797 KB  
Article
Research on the Impact of Fiscal Vertical Imbalance on the Green Total Factor Productivity of Enterprises
by Ruichao Liu, Zhenlin Liu and Jingyao Li
Sustainability 2026, 18(3), 1265; https://doi.org/10.3390/su18031265 - 27 Jan 2026
Abstract
The institutional environment constitutes the external foundation for corporate development. In the process of China’s modernization, addressing the fiscal constraints on corporate green development is a key issue in advancing the green transformation of the economy, as well as a new approach to [...] Read more.
The institutional environment constitutes the external foundation for corporate development. In the process of China’s modernization, addressing the fiscal constraints on corporate green development is a key issue in advancing the green transformation of the economy, as well as a new approach to understanding the implementation gaps in environmental regulations and the challenges facing the development of green finance. This paper draws on new institutional economics theory to construct an analytical framework of “institutional incentives-behavioural choices-performance outcomes.” Using unbalanced panel data from 2008 to 2022 on listed companies in the Shanghai and Shenzhen A-share markets and prefecture-level cities, a two-way fixed effects model is employed to systematically examine the impact of fiscal vertical imbalances on the efficiency of corporate green development. Heterogeneity analysis reveals the ‘institutional sensitivity gradient’ phenomenon, with the inhibitory effects of fiscal vertical imbalances being particularly pronounced among institutionally sensitive groups such as labour and capital-intensive enterprises, heavily polluting enterprises, mature and declining stage enterprises, and eastern coastal enterprises. Fiscal vertical imbalances severely constrain the pace of green transformation in traditional enterprises and the growth of green industries. It is necessary to reconfigure the central-local fiscal relationship oriented toward green development, innovate ecological compensation and green debt coordination mechanisms, and establish an incentive-compatible institutional environment to resolve the “green paradox.” Full article
(This article belongs to the Special Issue Development Economics and Sustainable Economic Growth)
Show Figures

Figure 1

32 pages, 815 KB  
Review
Biomethanization of Whey: A Narrative Review
by Juan Sebastián Ramírez-Navas and Ana María Carabalí-Banderas
Methane 2026, 5(1), 5; https://doi.org/10.3390/methane5010005 - 27 Jan 2026
Abstract
Whey and its permeates constitute highly organic, low-alkalinity dairy streams whose management remains suboptimal in many processing facilities. This narrative review integrates recent evidence on the anaerobic digestion (AD) of whey, linking substrate composition and biodegradability with microbial pathways, inhibition mechanisms, biogas quality, [...] Read more.
Whey and its permeates constitute highly organic, low-alkalinity dairy streams whose management remains suboptimal in many processing facilities. This narrative review integrates recent evidence on the anaerobic digestion (AD) of whey, linking substrate composition and biodegradability with microbial pathways, inhibition mechanisms, biogas quality, and techno-economic and environmental feasibility in industrial settings. Data for sweet whey, acid whey, and their permeates are synthesized, with emphasis on operational windows, micronutrient requirements, and co-digestion or C/N/P/S balancing strategies that sustain resilient methanogenic communities. Options for biogas conditioning and upgrading towards combined heat and power, boiler applications, and compressed or liquefied biomethane are examined, and selection criteria are proposed based on impurity profiles, thermal integration, and methane-recovery performance. Finally, critical R&D gaps are identified, including mechanistic monitoring, bioavailable micronutrition, modular upgrading architectures, and the valorization of digestate as a recovered fertilizer. This review provides an integrated framework to guide the design and operation of technically stable, environmentally verifiable, and economically viable whey-to-biomethane schemes for the dairy industry. Full article
(This article belongs to the Special Issue Innovations in Methane Production from Anaerobic Digestion)
Show Figures

Figure 1

26 pages, 11158 KB  
Article
SBAS-InSAR Quantifies Groundwater–Urban Construction Evolution Impacts on Tianjin’s Land Subsidence
by Jia Xu, Yongqiang Cao, Jie Liu, Jiayu Hou, Wei Yan, Changrong Yi and Guodong Jia
Geosciences 2026, 16(2), 57; https://doi.org/10.3390/geosciences16020057 - 27 Jan 2026
Abstract
Land subsidence constitutes a critical hazard to coastal megacities globally, amplifying flood risks and damaging infrastructure. Taking Tianjin—a major port city underlain by compressible sediments and affected by groundwater over-exploitation—as a case study, we address two key research gaps: the absence of a [...] Read more.
Land subsidence constitutes a critical hazard to coastal megacities globally, amplifying flood risks and damaging infrastructure. Taking Tianjin—a major port city underlain by compressible sediments and affected by groundwater over-exploitation—as a case study, we address two key research gaps: the absence of a quantitative framework coupling groundwater extraction with construction land expansion, and the inadequate separation of seasonal and long-term subsidence drivers. We developed an integrated remote-sensing-based approach: high-resolution subsidence time series (2016–2023) were derived via Small BAseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) using Sentinel-1 Synthetic Aperture Radar (SAR) imagery, validated against leveling measurements (R > 0.885, error < 20 mm). This subsidence dataset was fused with groundwater level records and annual construction land maps. Seasonal-Trend Decomposition using Loess (STL) isolated trend, seasonal, and residual components, which were input into a Random Forest (RF) model to quantify the relative contributions of subsidence drivers. Dynamic Time Warping (DTW) and Cross-Wavelet Transform (CWT) were further employed to characterize temporal patterns and lag effects between subsidence and its drivers. Our results reveal a distinct shifting subsidence pattern: “areal expansion but intensity weakening.” Groundwater control policies mitigated five historical subsidence funnels, reducing areas with severe subsidence from 72.36% to <5%, while the total subsiding area expanded by 1024.74 km2, with new zones emerging (e.g., northern Dongli District). The RF model identified the long-term groundwater level trend as the dominant driver (59.5% contribution), followed by residual (23.3%) and seasonal (17.2%) components. Cross-spectral analysis confirmed high coherence between subsidence and long-term groundwater trends; the seasonal component exhibited a dominant resonance period of 12 months and a consistent subsidence response lag of 3–4 months. Construction impacts were conceptualized as a “load accumulation-soil compression-time lag” mechanism, with high-intensity engineering projects inducing significant local subsidence. This study provides a robust quantitative framework for disentangling the complex interactions between subsidence, groundwater, and urban expansion, offering critical insights for evidence-based hazard mitigation and sustainable urban planning in vulnerable coastal environments worldwide. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

44 pages, 3456 KB  
Article
Structural Design and Motion Characteristics Analysis of the Inner Wall Grinding Robot for PCCP Pipes
by Yanping Cui, Ruitian Sun, Zhe Wu, Xingwei Ge and Yachao Cao
Sensors 2026, 26(3), 818; https://doi.org/10.3390/s26030818 - 26 Jan 2026
Abstract
Internal wall grinding of pipes constitutes a critical pretreatment procedure in the anti-corrosion repair operations of Prestressed Concrete Cylinder Pipes (PCCP). To address the limitations of low efficiency and poor safety associated with traditional manual internal wall grinding in PCCP anti-corrosion repair, this [...] Read more.
Internal wall grinding of pipes constitutes a critical pretreatment procedure in the anti-corrosion repair operations of Prestressed Concrete Cylinder Pipes (PCCP). To address the limitations of low efficiency and poor safety associated with traditional manual internal wall grinding in PCCP anti-corrosion repair, this study presents the design of a support-wheel-type internal wall grinding robot for pipes. The robot’s structure comprises a walking support module and a grinding module: the walking module employs four sets of circumferentially equally spaced (90° apart) independent-support wheel groups. Through an active–passive collaborative adaptation mechanism regulated by pre-tensioned springs and lead screws, the robot can dynamically conform to the inner wall of the pipe, ensuring stable locomotion. The grinding module is connected to the walking module via a slewing bearing and is equipped with three roller-type steel brushes. During operation, the grinding module revolves around the pipe axis, while the roller brushes rotate simultaneously, generating a composite three-helix grinding trajectory. Mathematical models for the robot’s obstacle negotiation, bend traversal, and grinding motion were established, and multi-body dynamics simulations were conducted using ADAMS for verification. Additionally, a physical prototype was developed to perform basic functional tests. The results demonstrate that the robot’s motion characteristics are highly consistent with theoretical analyses, exhibiting stable and reliable operation, excellent pipe traversability, and robust driving capability, thus meeting the requirements for internal wall grinding of PCCP pipes. Full article
(This article belongs to the Section Sensors and Robotics)
23 pages, 5044 KB  
Article
Flow Prediction and Simulation Analysis of Thermoplastic Composites PA6 Hot Moulding Resin
by Qingyu Li, Zhixu Dong, Shibo Mu, Xingwei Sun, Jianlong Zhao, Heran Yang, Yin Liu, Fuyan Yao, Xiaoming Fu, Weifeng Zhang, Dongxu Bao and Yaping Zhao
Appl. Sci. 2026, 16(3), 1243; https://doi.org/10.3390/app16031243 - 26 Jan 2026
Abstract
This study characterised the hot-press forming process of long carbon fibre PA6 materials using laminates prepared from UD-CA708A prepregs manufactured by Nanjing Special Plastic Composites Materials Co., Ltd. In order to investigate the resin flow behaviour during the hot compression moulding process, a [...] Read more.
This study characterised the hot-press forming process of long carbon fibre PA6 materials using laminates prepared from UD-CA708A prepregs manufactured by Nanjing Special Plastic Composites Materials Co., Ltd. In order to investigate the resin flow behaviour during the hot compression moulding process, a unified model integrating the material forming and resin flow sequences was established by Lagrangian and Eulerian discretization methods. Simultaneous measurements by rotational and torsional rheometers revealed that in-plane fibre flow dominated, and the long carbon fibre PA6 material showed anisotropic behaviour. The anisotropic viscosity tensor principal model was used to characterise this anisotropy, the parameters of which were determined experimentally by the rheometer. Based on these findings, a unified modelling approach for material forming and resin flow was developed and applied to simulation analysis. The validity of the anisotropic viscosity intrinsic model and the unified simulation framework is verified by integrating the rheological analysis, in-mold analysis, and evaluation of the microstructure and mechanical properties of the moulded specimens, which provides a technical framework and a strategy for the application of the model in complex geometries. Full article
Show Figures

Figure 1

13 pages, 234 KB  
Article
Disparities in Survival After In-Hospital Cardiac Arrest by Time of Day and Day of Week: A Single-Center Cohort Study
by Maria Aggou, Barbara Fyntanidou, Marios G. Bantidos, Andreas S. Papazoglou, Athina Nasoufidou, Aikaterini Apostolopoulou, Christos Kofos, Alexandra Arvanitaki, Nikolaos Vasileiadis, Dimitrios Vasilakos, Haralampos Karvounis, Konstantinos Fortounis, Eleni Argyriadou, Efstratios Karagiannidis and Vasilios Grosomanidis
J. Clin. Med. 2026, 15(3), 987; https://doi.org/10.3390/jcm15030987 - 26 Jan 2026
Abstract
Background: In-hospital cardiac arrest (IHCA) constitutes a high-impact clinical event, associated with substantial mortality, frequent neurological and functional impairment. There is a pressing need for primary IHCA studies that evaluate risk predictors, given the inherent challenges of IHCA data collection, previously unharmonized reporting [...] Read more.
Background: In-hospital cardiac arrest (IHCA) constitutes a high-impact clinical event, associated with substantial mortality, frequent neurological and functional impairment. There is a pressing need for primary IHCA studies that evaluate risk predictors, given the inherent challenges of IHCA data collection, previously unharmonized reporting frameworks, and the predominant focus of prior investigations on other domains. Among potential contributors, the “off-hours effect” has consistently been linked to poorer IHCA outcomes. Accordingly, we sought to examine whether in-hospital mortality after IHCA varies according to the time and day of occurrence within a tertiary academic center in Northern Greece. Methods: We conducted a single-center observational cohort study using a prospectively maintained in-hospital resuscitation registry at AHEPA University General Hospital, Thessaloniki. All adults with an index IHCA between 2017 and 2019 were included, and definitions followed Utstein-style recommendations. Results: Multivariable logistic regression adjusted for organizational, patient, and process-of-care factors demonstrated that afternoon/night arrests, weekend arrests, heart failure comorbidity, and need for mechanical ventilation were independent predictors of higher in-hospital mortality. Conversely, arrhythmia as the cause of IHCA and arrests occurring in the intensive care unit or operating room were associated with improved survival. Subgroup analyses confirmed consistent off-hours differences, with weekend events showing reduced 30-day and 6-month survival and worse functional status at discharge. Afternoon/night arrests were more frequent, characterized by longer response intervals and lower survival at both time points. Conclusions: Organizational factors during nights and weekends, rather than patient case mix, drive poorer IHCA outcomes, underscoring the need for targeted system-level improvements. Full article
22 pages, 7617 KB  
Article
DAS-YOLO: Adaptive Structure–Semantic Symmetry Calibration Network for PCB Defect Detection
by Weipan Wang, Wengang Jiang, Lihua Zhang, Siqing Chen and Qian Zhang
Symmetry 2026, 18(2), 222; https://doi.org/10.3390/sym18020222 - 25 Jan 2026
Viewed by 39
Abstract
Industrial-grade printed circuit boards (PCBs) exhibit high structural order and inherent geometric symmetry, where minute surface defects essentially constitute symmetry-breaking anomalies that disrupt topological integrity. Detecting these anomalies is quite challenging due to issues like scale variation and low contrast. Therefore, this paper [...] Read more.
Industrial-grade printed circuit boards (PCBs) exhibit high structural order and inherent geometric symmetry, where minute surface defects essentially constitute symmetry-breaking anomalies that disrupt topological integrity. Detecting these anomalies is quite challenging due to issues like scale variation and low contrast. Therefore, this paper proposes a symmetry-aware object detection framework, DAS-YOLO, based on an improved YOLOv11. The U-shaped adaptive feature extraction module (Def-UAD) reconstructs the C3K2 unit, overcoming the geometric limitations of standard convolutions through a deformation adaptation mechanism. This significantly enhances feature extraction capabilities for irregular defect topologies. A semantic-aware module (SADRM) is introduced at the backbone and neck regions. The lightweight and efficient ESSAttn improves the distinguishability of small or weak targets. At the same time, to address information asymmetry between deep and shallow features, an iterative attention feature fusion module (IAFF) is designed. By dynamically weighting and calibrating feature biases, it achieves structured coordination and balanced multi-scale representation. To evaluate the validity of the proposed method, we carried out comprehensive experiments using publicly accessible datasets focused on PCB defects. The results show that the Recall, mAP@50, and mAP@50-95 of DAS-YOLO reached 82.60%, 89.50%, and 46.60%, respectively, which are 3.7%, 1.8%, and 2.9% higher than those of the baseline model, YOLOv11n. Comparisons with mainstream detectors such as GD-YOLO and SRN further demonstrate a significant advantage in detection accuracy. These results confirm that the proposed framework offers a solution that strikes a balance between accuracy and practicality in addressing the key challenges in PCB surface defect detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 4403 KB  
Article
Machine Learning Inversion Method for Elastoplastic Constitutive Parameters of Encapsulation Materials
by Mingqi Gao, Tong Hu, Yagang Zhang, Yanming Zhang, Dongyang Lei, You Wang, Yangyang Li, Jian Zhang and Ce Zeng
Nanomaterials 2026, 16(3), 161; https://doi.org/10.3390/nano16030161 - 25 Jan 2026
Viewed by 111
Abstract
Accurate measurement of material mechanics parameters is crucial for evaluating process quality and product reliability and is a major challenge in the development of 3D heterogeneous integration technology. Aiming to perform high-accuracy measurements of the elastoplastic nonlinear constitutive parameters of microelectronic materials using [...] Read more.
Accurate measurement of material mechanics parameters is crucial for evaluating process quality and product reliability and is a major challenge in the development of 3D heterogeneous integration technology. Aiming to perform high-accuracy measurements of the elastoplastic nonlinear constitutive parameters of microelectronic materials using the nanoindentation testing technique, we take advantage of a neural network to construct a forward characterization model to characterize these response characteristic parameters for different materials, design an improved algorithm for obtaining a reverse iterative solution of the forward characterization model, and develop a material mechanics parameter measurement method to solve overdetermined equations using the least-squares method. This method was further improved by addressing the issues of algorithm stability and solution uniqueness, achieving high-precision and fast reverse solutions for elastoplastic constitutive parameters. The relative error of the material parameters is less than 3% (95% confidence interval), the maximum error is less than 8%, and the inversion convergence error of the key indentation response characteristic parameters is less than 0.1%. The difference between the measured material parameters and the theoretical model in the influence on the process stress of TCV (through ceramic via) products is verified through finite element simulation. Full article
Show Figures

Figure 1

24 pages, 8665 KB  
Article
Parameters Identification of Tire–Clay Contact Angle Based on Numerical Simulation
by Kaidi Wang, Yanhua Shen, Shudi Yang and Ruibin Cao
Machines 2026, 14(2), 139; https://doi.org/10.3390/machines14020139 - 25 Jan 2026
Viewed by 42
Abstract
The predictive accuracy of the Bekker–Wong model for wheel traction is highly dependent on the precision of the wheel–soil contact angle parameters. These parameters are typically identified through extensive and costly single wheel–soil tests, which are limited by poor experimental repeatability and site-specific [...] Read more.
The predictive accuracy of the Bekker–Wong model for wheel traction is highly dependent on the precision of the wheel–soil contact angle parameters. These parameters are typically identified through extensive and costly single wheel–soil tests, which are limited by poor experimental repeatability and site-specific constraints. This study proposes a method for obtaining contact angle parameters through numerical simulation. Firstly, a finite element model of an off-road tire is established. The Drucker–Prager (D-P) constitutive model parameters of clay under different moisture were calibrated by soil mechanical tests. And then the moist clay was modeled through the SPH algorithm. An FEM–SPH interaction model was developed to define the tire–moist clay interaction. Meanwhile, the tire–moist clay interaction model was verified by a single wheel–soil test device. To identify the empirical parameters of tire–soil interaction, numerical simulations were conducted for multiple operating conditions involving different slip ratios, soil moisture contents, and vertical loads. By processing the simulated wheel–soil contact characteristic images, the contact angles for each condition were extracted. Finally, the contact angle parameters in the Bekker–Wong model were identified. The empirical parameters were integrated into the Bekker–Wong model to predict traction. The results indicate that the maximum relative error of traction force between the prediction and experiment did not exceed 13.6%, which validated the reliability of the proposed method. Full article
23 pages, 1672 KB  
Review
Field-Evolved Resistance to Bt Cry Toxins in Lepidopteran Pests: Insights into Multilayered Regulatory Mechanisms and Next-Generation Management Strategies
by Junfei Xie, Wenfeng He, Min Qiu, Jiaxin Lin, Haoran Shu, Jintao Wang and Leilei Liu
Toxins 2026, 18(2), 60; https://doi.org/10.3390/toxins18020060 - 25 Jan 2026
Viewed by 46
Abstract
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that [...] Read more.
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that synthesizes current understanding of Bt Cry toxin modes of action and the complex, multilayered regulatory mechanisms of field-evolved resistance. Beyond the classical pore-formation model, emerging evidence highlights signal transduction cascades, immune evasion via suppression of Toll/IMD pathways, and tripartite toxin–host–microbiota interactions that can dynamically modulate protoxin activation and receptor accessibility. Resistance arises from target-site alterations (e.g., ABCC2/ABCC3, Cadherin mutations), altered midgut protease profiles, enhanced immune regeneration, and microbiota-mediated detoxification, orchestrated by transcription factor networks (GATA, FoxA, FTZ-F1), constitutive MAPK hyperactivation (especially MAP4K4-driven cascades), along with preliminary emerging findings on non-coding RNA involvement. Countermeasures now integrate synergistic Cry/Vip pyramiding, CRISPR/Cas9-validated receptor knockouts revealing functional redundancy, Domain III chimerization (e.g., Cry1A.105), phage-assisted continuous evolution (PACE), and the emerging application of AlphaFold3 for structure-guided rational redesign of resistance-breaking variants. Future sustainability hinges on system-level integration of single-cell transcriptomics, midgut-specific CRISPR screens, microbiome engineering, and AI-accelerated protein design to preempt resistance trajectories and secure Bt biotechnology within integrated resistance and pest management frameworks. Full article
Show Figures

Figure 1

22 pages, 12394 KB  
Article
Investigating the Mechanical and Failure Evolution of Saw-Tooth Jointed Rock Materials: A Numerical Study Under Uniaxial Compression
by Yunda Dong, Pu Yuan, Aobo Li and Changning Chen
Appl. Sci. 2026, 16(3), 1214; https://doi.org/10.3390/app16031214 - 24 Jan 2026
Viewed by 82
Abstract
Joint roughness coefficient (JRC) and inclination exert a decisive influence on the stability and safety of rock mass engineering. Simulations of uniaxial compression were conducted on saw-tooth-shaped joint specimens using a calibrated particle flow (PFC2D) model. The specimens contained five JRC values (0, [...] Read more.
Joint roughness coefficient (JRC) and inclination exert a decisive influence on the stability and safety of rock mass engineering. Simulations of uniaxial compression were conducted on saw-tooth-shaped joint specimens using a calibrated particle flow (PFC2D) model. The specimens contained five JRC values (0, 5, 10, 15, 20) and five joint inclinations (0°, 30°, 45°, 60°, 90°). The results indicate that at joint inclinations of 0° and 90°, JRC has a marginal influence on peak stress and elastic modulus. In contrast, as the inclination increases, the peak stress, peak strain, and elastic modulus collectively exhibit an approximate V-shaped trend. The dominant failure mode observed was a mixed splitting-shear mechanism. The number of cracks at final failure increases with higher JRC values under the same joint inclination. As the joint inclination varied, the distributions of global, tensile, and shear cracks all exhibited similar V-shaped trends. Concurrently, the proportions of different microcrack types demonstrated relative stability throughout the failure process, with tensile and shear failures constituting the dominant microscopic mechanisms. Full article
Show Figures

Figure 1

23 pages, 5269 KB  
Article
Sustainable Functionalization of Natural Fibers Using Biochar: Structural and Evaporation Studies
by Juan José Quiroz Ramírez, Reinier Abreu-Naranjo, Oscar M. Rodriguez-Narvaez, Sergio Alonso Romero and Alejandro Suarez Toriello
Processes 2026, 14(3), 415; https://doi.org/10.3390/pr14030415 - 24 Jan 2026
Viewed by 90
Abstract
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with [...] Read more.
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with biochar via immersion and crosslinking-assisted deposition. Structural analyses (SEM, FTIR, XRD, CHNS/O) confirmed the transition from heterogeneous lignocellulosic matrices to cellulose-rich scaffolds and finally to hierarchical composites in which crystalline cellulose cores are coated with amorphous carbon structures containing aromatic domains typically formed during biomass carbonization. The NaOH/urea/citric acid crosslinking system significantly improved biochar adhesion, producing uniform and mechanically stable photothermal layers. Under 500 W m−2 illumination, the biochar-modified fibers exhibited rapid thermal response and enhanced surface heating, resulting in increased water evaporation rates, with cellulose sponge achieving the highest performance (1.12–1.25 kg m−2 h−1). Water-quality analysis of the condensate showed >97% TDS removal, complete rejection of hardness, fluoride, nitrates, arsenic, and barium, and turbidity <0.2 NTU, meeting NOM-127-SSA1-2021 standards. Overall, the findings demonstrate that biochar-functionalized natural fibers constitute a scalable, environmentally benign strategy for efficient solar-driven purification, supporting their potential for sustainable clean-water technologies in resource-limited settings. Full article
(This article belongs to the Special Issue Advances in Biochar and Biobased Carbonaceous Materials)
Show Figures

Figure 1

25 pages, 8717 KB  
Article
Lactic Acid Bacteria Postbiotics as Adjunctives to Glioblastoma Therapy to Fight Treatment Escape and Protect Non-Neoplastic Cells from Side Effects
by Pola Głowacka, Agnieszka Pudlarz, Joanna Wasiak, Magdalena Peszyńska-Piorun, Michał Biegała, Karol Wiśniewski, Dariusz J. Jaskólski, Adam Marek Pieczonka, Tomasz Płoszaj, Janusz Szemraj and Monika Witusik-Perkowska
Cells 2026, 15(3), 226; https://doi.org/10.3390/cells15030226 - 24 Jan 2026
Viewed by 186
Abstract
Despite tremendous scientific efforts aimed at glioblastoma’s (GB) ability to escape therapeutic attempts, the concern remains unsolved. Postbiotics, metabolites, and macromolecules of probiotic bacteria could become adjuvant therapeutics both dealing with cellular events constituting tumor therapy escape mechanisms and protecting normal cells from [...] Read more.
Despite tremendous scientific efforts aimed at glioblastoma’s (GB) ability to escape therapeutic attempts, the concern remains unsolved. Postbiotics, metabolites, and macromolecules of probiotic bacteria could become adjuvant therapeutics both dealing with cellular events constituting tumor therapy escape mechanisms and protecting normal cells from therapy-induced damage. The study aims to evaluate the dual potential of postbiotics obtained from lactic acid bacteria, L. plantarum and L. rhamnosus, on patient-derived and commercially available GB and normal cells alone and in combination with chemotherapeutic and irradiation oncotreatment regimens. Postbiotic mixtures (PMs) show cytoprotective potential against a new anti-cancer agent—ARA12—on astrocytes and cytoprotective action to irradiated normal fibroblast cells. Although GB cells’ apoptotic response varied between patient-derived cells, both PMs exert cytotoxic or cytostatic effects alone and, in most of the studied therapeutic combinations, on all tested GB cell lines. In particular, L. plantarum PM alleviates treatment escape, possibly shifting the tumor drug response from senescence to apoptosis. The results suggest that postbiotic-based adjunctive treatment could potentiate the therapeutic effect toward neoplastic cells, while alleviating chemotherapy’s adverse effects, helping clinicians to tackle the issue of therapy resistance and improve patients’ comfort. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

23 pages, 1322 KB  
Review
Impact of Early-Life Environmental Exposures and Potential Transgenerational Influence on the Risk of Coronary Artery Disease and Heart Failure
by Patrycja Obrycka, Julia Soczyńska, Kamila Butyńska, Agnieszka Frątczak, Jędrzej Hałaburdo, Wiktor Gawełczyk and Sławomir Woźniak
Cells 2026, 15(3), 222; https://doi.org/10.3390/cells15030222 - 24 Jan 2026
Viewed by 217
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease (CAD) has also become an increasingly discussed issue. It has long been recognized that control of risk factors is crucial for prevention. Researchers stress the need to monitor these factors from the earliest stages of life, and detailed analyses indicate an influence of the prenatal period on the development of chronic diseases, including cardiovascular disorders. Transgenerational and intergenerational epigenetic mechanisms are also taken into account. This review aims to systematically evaluate the existing literature and summarize the mechanisms that may link these factors. We consider epigenetic, metabolic, immunological, and inflammatory influences. We describe examples of environmental exposures, such as air pollution, maternal diet, toxins, and infections, and analyze data derived from clinical studies. We discuss gaps in the literature and identify limitations, outlining directions for future research and emphasizing the need for CVD prevention initiated at the earliest stages of life. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

Back to TopTop