Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,662)

Search Parameters:
Keywords = constituent materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 6488 KiB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1,030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 269
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

15 pages, 1445 KiB  
Article
Gas Chromatography–Mass Spectrometry Analysis of Artemisia judaica Methanolic Extract: Chemical Composition, Radical Scavenging Potential, Bioherbicidal Activity, and Dengue Vector Control
by Naimah Asid H. Alanazi, Amani Alhejely, Sultan Mohammed Areshi, Hanan K. Alghibiwi, Samiah A. Alhabardi, Mohammed A. Akeel, Amal Naif Alshammari, Sarah Mohammed Alrajeh, Gadah A. Al-Hamoud and Salama A. Salama
Int. J. Mol. Sci. 2025, 26(15), 7355; https://doi.org/10.3390/ijms26157355 - 30 Jul 2025
Viewed by 251
Abstract
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived [...] Read more.
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived from the above-ground portions of Artemisia judaica collected in Jazan, Saudi Arabia. GC-MS was used to evaluate the chemical composition of the methanolic extract derived from Artemisia judaica. GC-MS analysis revealed a total of 22 volatile compounds in the extract. The most prominent compounds identified were 2-ethylhexanoic acid, 5-hydroxy-6-(1-hydroxyethyl)-2,7-dimethoxynaphtho-quinone, and piperitone. The extract demonstrated strong antioxidant activity in both the DPPH and ABTS radical scavenging assays, comparable to the standard antioxidant ascorbic acid. The IC50 value for the extract was 31.82 mg/mL in the DPPH assay and 39.93 mg/mL in the ABTS testing. Additionally, the extract exhibited dose-dependent inhibition of seed germination, root growth, and shoot growth of the weed Chenopodium murale in allelopathic bioassays. The most significant suppression was observed in shoot growth with an IC50 value of 45.90 mg/mL, which was lower than the IC50 values for root development and seed germination of C. murale, recorded at 56.16 mg/mL and 88.80 mg/mL, respectively. Furthermore, the findings indicated that methanolic extracts had significant lethal toxic effects on the life cycle of Aedes aegypti. Future research will focus on extracting uncontaminated substances and evaluating the biological effects of each specific constituent. Full article
Show Figures

Figure 1

21 pages, 3340 KiB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 255
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

18 pages, 4680 KiB  
Article
Preparation of Glass-Ceramics Using Zinc-Containing Smelting Slag: Structure, Properties and Solidification of Zinc
by Nannan Wu, Junhui Huang, Junxi Qiu, Zonghang Li, Xiaofan Li, Bohan Li, Nianzhe Li, Yuxuan Zhang and Shunli Ouyang
Materials 2025, 18(15), 3555; https://doi.org/10.3390/ma18153555 - 29 Jul 2025
Viewed by 159
Abstract
The stabilization of heavy metal elements, such as zinc, in the form of ions within the glass-ceramics represents a valuable approach to addressing environmental pollution caused by heavy metals. This study investigates the feasibility and physicochemical properties of diopside-based glass-ceramics synthesized from zinc-containing [...] Read more.
The stabilization of heavy metal elements, such as zinc, in the form of ions within the glass-ceramics represents a valuable approach to addressing environmental pollution caused by heavy metals. This study investigates the feasibility and physicochemical properties of diopside-based glass-ceramics synthesized from zinc-containing smelting slag. The zinc-rich smelting slag is abundant in SiO2, Al2O3, CaO, and other constituents, thereby providing cost-effective and efficient raw materials for glass-ceramic production. The conversion of zinc-containing smelting slag into glass-ceramics was achieved through a melting process. We analyzed the effects of varying doping levels on the properties of the resulting glass-ceramics. The results indicated that as the doping level of smelting slag increases, the crystallization temperature of the glass-ceramics decreases while the crystal phases of diopside and anorthite progressively increase, significantly enhancing both mechanical strength and chemical stability. Notably, when the doping level reaches 60%, these glass-ceramics exhibit remarkable physical properties, including high density (3.12 g/cm3), Vickers hardness (16.60 GPa), and excellent flexural strength (150.75 MPa). Furthermore, with increasing amounts of doped smelting slag, there are substantial improvements in acid resistance, alkali resistance, and corrosion resistance in these materials. Raman spectroscopy and EDS analysis further verified a uniform distribution of the crystal phase and effective immobilization of heavy metal zinc. Full article
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 198
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 737 KiB  
Article
Influence of Plant-Based Substrate Composition and Extraction Method on Accumulation of Bioactive Compounds in Hericium erinaceus (Bull.) Pers. Fruiting Bodies
by Katarzyna Kała, Małgorzata Cicha-Jeleń, Katarzyna Sułkowska-Ziaja, Beata Ostachowicz, Ewa Węgrzynowicz, Jan Lazur, Agnieszka Szewczyk and Bożena Muszyńska
Molecules 2025, 30(15), 3094; https://doi.org/10.3390/molecules30153094 - 24 Jul 2025
Viewed by 357
Abstract
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium [...] Read more.
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium erinaceus (Bull.) Pers. cultivated on various plant-based substrates derived from waste materials, specifically hemp straw and beech sawdust. Another objective was to compare various extraction methods in terms of their impact on the concentration of these compounds. Elemental analysis was performed using the TXRF method, while bioactive constituents were determined using the DAD/UV RP-HPLC technique. The plant-based substrate and extraction method influenced the levels of obtained metabolites. Dual extraction with moderate ethanol concentrations was most effective for isolating key bioactive compounds from H. erinaceus—notably ergothioneine, lovastatin, L-phenylalanine, and ergosterol—while antioxidant activity did not correlate with the concentration of the solvent used. Although dual extracts enhanced certain antioxidants and metabolites, whole fruiting bodies contained higher levels of bioelements. Overall, fruiting bodies grown on beech sawdust had greater amounts of most bioactive compounds compared to those cultivated on hemp straw, emphasizing that both substrate choice and extraction method critically influence the mushroom’s bioactive profile and its potential health benefits. Full article
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 240
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 358
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

29 pages, 6133 KiB  
Article
Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis
by Yujin Shen, Xi Ma, Zhenzhen Du, Yang Li, Zhinan Mei and Ling Zhao
Pharmaceuticals 2025, 18(7), 1059; https://doi.org/10.3390/ph18071059 - 18 Jul 2025
Viewed by 349
Abstract
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the [...] Read more.
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the therapeutic effects of ZHW on AR and elucidate its underlying mechanisms and potential targets through an integrated analysis of network pharmacology and proteomics. Materials and Methods: The volatile components of ZHW were analyzed by gas chromatography–mass spectrometry (GC-MS). The mouse model of AR was induced by OVA sensitization. The therapeutic efficacy of ZHW was assessed based on nasal symptom scores, histopathological examination, and inflammatory cytokine levels. Furthermore, the underlying mechanisms and potential targets of ZHW were investigated through integrated network pharmacology and proteomics analyses. Results: GC-MS analysis identified 39 bioactive compounds in ZHW. Inhalation treatment with ZHW demonstrated significant anti-allergic effects in OVA-sensitized mice, as evidenced by (1) reduced sneezing frequency and nasal rubbing behaviors; (2) decreased serum levels of IL-4, histamine, and OVA-specific IgE; (3) attenuated IL-4 concentrations in both nasal lavage fluid and lung tissue; (4) diminished nasal mucosal thickening; and (5) suppression of inflammatory cell infiltration. Integrated network pharmacology and proteomics analyses indicated that ZHW’s therapeutic effects were mediated through the modulation of multiple pathways, including the PI3K-Akt signaling pathway, the B cell receptor signaling pathway, oxidative phosphorylation, and the FcεRI signaling pathway. Key molecular targets involved Rac1, MAPK1, and SYK. Molecular docking simulations revealed strong binding affinities between ZHW’s primary bioactive constituents (linalool, levomenthol, linoleic acid, Linoelaidic acid, and n-Valeric acid cis-3-hexenyl ester) and these target proteins. Conclusions: The herbal formulation ZHW demonstrates significant efficacy in alleviating allergic rhinitis symptoms through multi-target modulation of key signaling pathways, including PI3K-Akt- and FcεRI-mediated inflammatory responses. These findings substantiate ZHW’s therapeutic potential as a novel, non-invasive treatment for AR and provide a strong basis for the development of new AR therapies. Future clinical development will require systematic safety evaluation to ensure optimal therapeutic outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 998
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

15 pages, 2369 KiB  
Article
Optimization of the Sintering Densification, Microstructure, Mechanical Properties, and Oxidation Resistance of Tib2–Tic–Sic Composite Ceramics via a Two-Step Method
by Fei Han, Wenzhou Sun, Youjun Lu, Junqing Ma and Shidiao Xu
Materials 2025, 18(14), 3297; https://doi.org/10.3390/ma18143297 - 13 Jul 2025
Viewed by 461
Abstract
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study [...] Read more.
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study initially elucidates the densification mechanisms and investigates the influence of sintering temperature on the densification behavior, microstructural evolution, and mechanical properties of the resultant ceramics. The experimental findings reveal that the sintering process of TiB2–TiC–SiC ceramics exhibits characteristics consistent with solid-phase sintering. As the sintering temperature escalates, both the relative density and mechanical properties of the ceramics initially improve, reaching a maximum at an optimal sintering temperature of 1900 °C, before subsequently declining. Microstructural examinations conducted at this optimal temperature indicate a homogeneous distribution of the two primary phases, with no evidence of excessive grain growth. Furthermore, this research explores the effects of SiC addition on the mechanical performance and oxidation resistance of TiB2–TiC–SiC composite ceramics. The results demonstrate that the incorporation of SiC effectively suppresses grain growth and promotes the formation of rod-like TiB2 microstructures, thereby enhancing the mechanical attributes of the ceramics. Additionally, the addition of SiC significantly improves the oxidation resistance of the composite ceramics compared to their TiB2–TiC binary counterparts Full article
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites
by Zhou Li, Zhongli Zhang, Jiahao Tian, Junhao Li, Shiqi Xia, Libo Zhou and Long Yu
Processes 2025, 13(7), 2234; https://doi.org/10.3390/pr13072234 - 12 Jul 2025
Viewed by 391
Abstract
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, [...] Read more.
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, and their impact resistance and damage mechanisms are yet to be thoroughly understood. In this study, a novel design of two volume fractions of IPCs based on the TPMS IWP configuration is developed using Python-based parametric modeling, with the Ti6Al4V alloy TPMS scaffolds fabricated via selective laser melting (SLM) and the AlSi12 reinforcing phase through infiltration casting. The influence of Ti alloy volume fraction and strain rate on the dynamic mechanical behavior of the Ti/Al IPC is systematically investigated using a split Hopkinson pressure bar (SHPB) experimental setup. Microscopic characterization validates the effectiveness and reliability of the proposed IPC fabrication method. Results show that the increasing Ti alloy volume fraction significantly affects the dynamic mechanical properties of the IPC, and IPCs with different Ti alloy volume fractions exhibit contrasting mechanical behaviors under increasing strain rates, attributed to the dominance of different constituent phases. This study enhances the understanding of the dynamic behavior of TPMS-based IPCs and offers a promising route for the development of high-performance energy-absorbing materials. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 18467 KiB  
Article
Additive Manufacturing of Variable Density Lenses for Radio Frequency Communications in X-Band
by Aleksandr Voronov, Carmen Bachiller, Álvaro Ferrer, Felipe Vico, Lluc Sempere, Felipe Peñaranda and Rainer Kronberger
J. Manuf. Mater. Process. 2025, 9(7), 238; https://doi.org/10.3390/jmmp9070238 - 11 Jul 2025
Viewed by 431
Abstract
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three [...] Read more.
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three constituent parts: a horn antenna, a support, and a lens. The horn antenna is the active element and must be electrically conductive; it was manufactured with Rigid10K acrylic resin and subsequently metallized using an electroless process. The support needed to be light, robust, and electrically transparent, so that Polyamide 11 (PA11) was used. The lens realization was intended for a dielectric material whose permittivity varies with its density. Therefore, the dielectric permittivity and loss tangent of different polymeric materials used in AM at 2.45, 6.25, and 24.5 GHz were measured. In addition, stochastic and gyroid mesh structures have been studied. These structures allow for printing a volume that presents porosity, enabling control over material density. Measuring the dielectric characteristics of each material with each density enables the establishment of graphs that relate them. The sets were then manufactured, and their frequency response and radiation diagram were measured, showing excellent results when compared with the literature. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Graphical abstract

12 pages, 4872 KiB  
Article
Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys
by Katarzyna N. Braszczyńska-Malik
Materials 2025, 18(14), 3277; https://doi.org/10.3390/ma18143277 - 11 Jul 2025
Viewed by 365
Abstract
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of [...] Read more.
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of the alloys’ microstructure were carried out by scanning electron microscopy (SEM+EDX) as well as X-ray diffraction (XRD). In as-cast conditions; both alloys were mainly composed of α-Mg; Al11RE3; and Al10RE2Mn7 intermetallic phases. Additionally; α+γ eutectic (where γ is Al12Mg17) in the Mg-5Al-3RE alloy and an Al2RE phase in the Mg-5Al-5RE material were revealed. The same phase composition was revealed for both alloys after the GTA welding process. The results of the dendrite arm size (DAS) and Vickers microhardness measurements were also described. Both welded materials exhibited an intensive size reduction of the structural constituents after GTA welding. About 75% smaller values of the dendrite arm spacing were revealed in the fusion zones of the investigated materials than in the as-cast conditions. The GTA welding process also influenced the microhardness of the experimental alloys and increased them by about 21% compared to the base metal; which was the consequence of the refinement of the structural constituents. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

Back to TopTop